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1. INTRODUCTION

In our earlier paper (Čirka et al. 2002) an algo-
rithm for design of the deterministic LQ 1DoF
(one-degree-of-freedom) controller was derived.
The present paper gives the details for the track-
ing and disturbance rejection problem and for
2DoF (two-degrees-of-freedom) controller struc-
ture. The advantages of 2DoF controller struc-
tures are well known: feedback properties can
be shaped independently of tracking proper-
ties (Youla and Bongiorno 1985, Grimble 1988).

As before, derivation is based on the class of
all stabilising linear controllers for linear, time-
invariant plant model. We use the fact that all sta-
bilising controllers for the plant can be synthesised
by conveniently parameterised augmentations to
any stabilising controller, called a nominal con-
troller. The augmentations are parameterised by
an arbitrary stable parameterQ, called the Youla–
Kučera parameter.

The approach presented in this paper translates
the classical deterministic LQ tracking and dis-
turbance rejection problem into an optimal con-

trol with emphasis on design of an optimal YK
parameter. We provide a computational proce-
dure for a deterministic optimal 2DoF controller
from any nominal (stabilising) controller. This
approach allows us to calculate a new optimal LQ
deterministic controller from a previous one when
the plant has changed. The nominal controller is
based on algebraic approach developed by Kučera.
The control design is performed in input-output
formulation leading to Diophantine and spectral
factorisation equations.

The choice of the LQ cost follows the ideas pre-
sented in (Dostál et al. 1994) where penalisation
of the control signal derivative rather than the
control signal itself is assumed. This choice of the
LQ cost reflects more closely the practical needs
of process control.

1.1 Notation

All systems in this work are assumed to be SISO
and continuous-time. The systems are described
by means of fractions of polynomials in complex
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Fig. 1. Block diagram of the 2DoF closed-loop
system

argument s, used in L-transform. Rps denotes the
set of stable proper rational transfer functions and
S denotes the set of stable polynomials.

For simplicity, the arguments of polynomials are
omitted whenever possible - a polynomial X(s) is
denoted by X . We denote X∗(s) = X(−s) for any
function X(s).

2. CLOSED-LOOP SYSTEM

2.1 System description

Consider a 2DoF controller feedback system with
two exogenous inputs d and w illustrated in Fig. 1.
A continuous-time linear time-invariant input-
output representation of the plant to be controlled
is considered

y = Gu+ d, G =
B

A
(1)

where y, u, d are process output, controller out-
put, and disturbance signal, respectively. A and
B are polynomials that describe the input-output
properties of the plant. We assume that the con-
dition deg B ≤ deg A holds (i.e. transfer function
of the plant is proper) and A and B are coprime
polynomials.

The reference w and the disturbance d are consid-
ered to be from a class of functions expressed in
the form

Fww = Hw, Fd = H (2)

whereHw, Fw andH , F are pairs coprime polyno-
mials and degHw ≤ degFw and degH ≤ degF ,
respectively. For example the most common case
of reference step changes implies Fw = s.

The 2DoF controller is described by the equation

Xũ = Rw − Y y (3)

where the pairs X , Y and X , R are coprime
polynomials and X(0) is nonzero.

Note 1. It is clear that by putting R = Y we get
the traditional 1DoF controller (Fig. 2).
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Fig. 2. Block diagram of the 1DoF closed-loop
system

In order to track asymptotically the desired ref-
erence class and to reject disturbances, a precom-
pensator is inserted into the closed-loop system of
the form

FFwu = ũ (4)

3. NOMINAL CONTROLLER

The general conditions posed on the control sys-
tem properties are

- stability of the control system
- asymptotic tracking of the reference
- disturbance rejection

3.1 Feedback system, stability and disturbance

rejection

Consider the nominal plant and the nominal con-
troller transfer functions with fractional represen-
tations

G =
NG

DG

, Cy =
NCy

DC

, Cr =
NCr

DC

(5)

where

NG =
B

M1

, DG =
A

M1

∈ Rps (6)

NCy
=

Y

M2

, NCr
=

R

M2

,

DC =
FFwX

M2

∈ Rps (7)

(

w=
Nw

Dw

, Nw =
Hw

M1

, Dw =
Fw

M1

)

and M1, M2 ∈ S with degrees

deg(M1) = max(degA, degFw)

deg(M2) = deg(FFwX)

Stabilising nominal controllers are then given by
solution of the Diophantine equation

DGDC +NGNCy
= 1 (8)

Substituting equations (6) and (7) into (8), the
stability condition in S is of the form

AFFwX +BY = M1M2 = M (9)



3.2 Asymptoting tracking

The aim of the nominal system is not only to
achieve stability and disturbance rejection but
also asymptotic tracking of the reference.

First, we will formulate the conditions for asymp-
totic tracking. We consider the feedback sys-
tem (1)–(4). The objective is to design controller
Cr such that output y asymptotically tracks the
reference signal w. From the elementary algebra
follows that the tracking error (for d = 0) is given
as

w − y =

(

1 −
NGNCr

DGDC +NGNCy

)

Nw

Dw

(10)

Since DGDC +NGNCy
= 1, it follows for asymp-

totic tracking that Dw has to divide (1−NGNCr
)

in Rps, which leads to the second Diophantine
equation

DwWw +NGNCr
= 1 (11)

Substituting equations (6) and (7) into (11), the
tracking Diophantine equation is finally of the
form

FwW +BR = M1M2 = M (12)

4. LQ CONTROLLER DESIGN

The goal of optimal deterministic LQ tracking
is to design a controller that enables the control
system to satisfy the above basic requirements and
in addition the control law that minimises the cost
function

J =

∫

∞

0

(

ϕũ2(t) + ψe2(t)

)

dt (13)

where e = w − y denotes the control error and
ϕ > 0, ψ ≥ 0 are weighting coefficients. The cost
function (13) can be rewritten using Parseval’s
theorem, to obtain an expression in the complex
domain

J =

1

2πj

∫ j∞

−j∞

(

ũ∗(s)ϕũ(s) + e∗(s)ψe(s)

)

ds (14)

4.1 The YK parameterisation

Suppose that a nominal stabilising controller that
gives rise to the closed-loop polynomial M (not
necessarily LQ optimal or minimum degree) has
been found as a solution of Diophantine equa-
tions (9) and (12), respectively.

There are infinitely many solutions of (9) and (12)
that stabilise the plant. The nominal solution
(X , Y , R) will serve only as a starting point.
It is possible to search among general solutions
to minimise the cost (14). In our case, all such
controllers are given by the following theorem:

Theorem 1. Let the nominal model plant G =
NG/DG = B/A, with NG, DG, B and A defined
by (6), be stabilised by a 2DoF controller C =
[NCr

NCy
]/DC = [R Y ]/FFwX , with NCr

, NCy
,

DC , R, Y , and FFwX defined by (7). Then the
set of all feedback stabilising controllers for the
plant G is given by

Cy(Qy) =
Ym +AmFFwQy

Xm −BmQy

1

FFw

(15)

All feedforward parts are given by

Cr(Qr, Qy) =
Rm +M2FwQr

Xm −BmQy

1

FFw

(16)

where

Qr, Qy ∈ Rps, Am = AM2, Bm = BM2,

Xm = XM1, Ym = YM1, and Rm = RM1

Proof 1. (Vidyasagar 1985)

We now present a solution to the deterministic LQ
controller design problem in the Youla-Kučera pa-
rameterisation framework starting from the plant
model B/A and any stabilising 2DoF controller
[R Y ]/FFwX , using the set of all stabilising con-
trollers for the plant, i.e. we show how to compute
optimal parameters Qr and Qy that minimise the
cost function (13).

Note 2. In fact, Qr and Qy are not parameters
such as a time constant or gain, but are sta-
ble filters built into a stabilising controller. This
theory has been developed in a continuous-time
setting by (Youla et al. 1976) and in a discrete-
time setting by (Kučera 1979). Moreover, all the
relevant input/output operators of the associated
closed-loop system turn out to be linear, or more
precisely affine in the operators Qr and Qy.

Theorem 2. Consider the minimisation of the cost
function (13) with respect to the Youla-Kučera
parameters Qr and Qy that are specified as trans-
fer functions. Solve spectral factorisation equa-
tions

D∗

cDc =ϕA∗F ∗F ∗

wAFFw + ψB∗B (17)

D∗

fDf =A∗AH∗

dHd (18)

D∗

rDr =H∗

wHw (19)

for stable Dc, Df , and Dr and bilateral Diophan-
tine equations with unknown Qyn, Qrn, V ∗, and
T ∗

ψDfB
∗FwX − ϕDfA

∗F ∗F ∗

wFwY =

= QynD
∗

cFw +MV ∗ (20)

ψDrB
∗M −DrDcD

∗

cR = QrnD
∗

cF
−

w +MF+
w T

∗

(21)
The optimal Youla-Kučera parameters are then
given as



Qy =
Qyn

DcDf

M1

M2

∈ Rps (22)

Qr =
Qrn

DcDrF
+
w

M1

M2

∈ Rps (23)

As Dc, Df , Dr, and M2 are stable, it follows
that Qr and Qy are stable transfer functions
and fulfil the condition from the Youla-Kučera
parameterisation.

Proof 2. The proof of Theorem 2 is given in the
Appendix.

5. ILLUSTRATIVE EXAMPLE

In this section, an example is presented to show
all steps of the calculation in case of LQ design.
Let us consider the controlled system described by
the following transfer function

G =
B

A
=

3

5s+ 1

The reference has been chosen as step change
w(t) = 1(t) and disturbance d(t) = 0.1 sin(t).
From this follows that Fw = s and F = s2 + 1.
The weighting coefficients ϕ and ψ in the cost
function (13) have been selected as ϕ = 0.1,
ψ = 1. Using MATLAB/Polynomial 1 function
spf (spectral polynomial factorisation) for equa-
tions (17), (18), and (19), the following stable
polynomials Dc, Df , and Dr were obtained

Dc = 1.581s4 + 3.961s3 + 6.511s2 + 6.258s+ 3

Df = 0.5s+ 0.1

Dr = 1

For the YK parameterised LQ controller a nomi-
nal 2DoF controller that stabilises the closed-loop
is chosen as

Cy =
Y

FFwX

=
13.4s3 + 8.333s2 + 6.733s+ 1.667

s4 + 4.8s3 + s2 + 4.8s

Cr =
R

FFwX
=

1.667

s4 + 4.8s3 + s2 + 4.8s

and yields the closed-loop pole polynomial of the
form

D = M1M2

where M1 = (s+ 1) and M2 = (s+ 1)4

The polynomials Qyn and Qrn are calculated
from (20) and (21). This gives the optimal YK
transfer functions Qy and Qr as

1 Polynomial toolbox (PolyX Ltd. 1998)

Qy =
Qyn

DcDf

M1

M2

Qr =
Qrn

DcDrF
+
w

M1

M2

where

Qyn =−0.2594s4 − 0.4269s3 − 0.2325s2

−0.01259s− 0.03603

Qrn = 12.53s4 + 41.29s3 + 53.08s2 + 30.99s

+6.958

Finally, calculation of the 2DoF LQ controller C
yields

Cy =
Ym +AmFFwQy

FFw(Xm −BmQy)

=
5.196s3 + 3.461s2 + 3.647s+ 0.6325

s4 + 2.505s3 + s2 + 2.505s

Cr =
Rm + FwM2Qr

FFw(Xm −BmQy)

=
3.162s+ 0.6325

s4 + 2.505s3 + s2 + 2.505s

6. CONCLUSIONS

In this paper, we have presented a procedure to
compute deterministic LQ (2DoF) controller from
a stabilising controller using the Youla-Kučera
parameterisation. The presented controller design
procedure ensures stability of the controlled sys-
tem, asymptotic tracking of the references and
disturbance rejection. The proposed approach can
be applied in adaptive control framework.
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Appendix A. PROOF OF THEOREM 2

From the 2DoF system structure shown in Fig. 1
the control input ũ and tracking error e can be
written as

ũ=
Rm +M2FwQr

M1M
AFHw

−
Ym +AmFFwQy

M1M
AFwH

e=

[

1 −
B(Rm +M2FwQr)

M1M

]

Hw

Fw

+
Xm −BmQy

M1M
AFwH

Minimising equation (13) with respect to all stable
Qr and Qy corresponds to minimisation of the
following cost function in complex domain

J(Qr, Qy) =
1

2πj

j∞
∫

−j∞

(ϕSũ + ψSe) ds (A.1)

where Sũ and Se are spectral functions of the form

Sũ = ũ∗ũ = S∗

ũ1Sũ1 = Sũ2Sũ3 + Sũ4Sũ5

Sũ1 =
Rm +M2FwQr

M1M
AFHw

−
Ym +AmFFwQy

M1M
AFwH

Sũ2 =
A∗F ∗H∗

wAFHw

M∗

1M1M∗M

Sũ3 =M∗

2M2F
∗

wFwQ
∗

rQr +RmM
∗

2F
∗

wQ
∗

r

+R∗

mM2FwQr +R∗

mRm

Sũ4 =
A∗F ∗

wH
∗AFwH

M∗

1M1M∗M

Sũ5 =A∗

mF
∗F ∗

wAmFFwQ
∗

yQy + YmA
∗

mF
∗F ∗

wQ
∗

y

+Y ∗

mAmFFwQy + Y ∗

mYm

Se = e∗e = S∗

e1Se1 = Se2Se3 − Se4Se5 + Se6Se7

Se1 =

[

1 −
B(Rm +M2FwQr)

M1M

]

Hw

Fw

−
Xm −BmQy

M1M
AFwH

Se2 =
B∗BH∗

wHw

M∗

1M1M∗MF ∗

wFw

Se3 =M∗

2M2F
∗

wFwQ
∗

rQr +RmM
∗

2F
∗

wQ
∗

r

+R∗

mM2FwQr +R∗

mRm

Se4 =
H∗

wHw

M∗

1M1M∗MF ∗

wFw

Se5 =M1MB∗M∗

2F
∗

wQ
∗

r +M∗

1M
∗BM2FwQr

+M1MB∗R∗

m +M∗

1M
∗BRm

+M∗

1M1M
∗M

Se6 =
A∗F ∗

wH
∗AFwH

M∗

1M1M∗M

Se7 =B∗

mBmQ
∗

yQy −XmB
∗

mQ
∗

y −X∗

mBmQy

+X∗

mXm

The integrand may now be split into terms that
depend on each part of the controller and terms
that do not depend on the controller at all. Com-
pleting the squares in (A.1) the integrand can be
expressed as

J =
1

2πj

j∞
∫

−j∞

(Q∗

1Q1 +Q∗

2Q2 + yd) ds (A.2)

Q1 =
DfDcFw

M1M1

Qy +
ϕDfA

∗F ∗F ∗

wFwY

MD∗

c

−
ψDfB

∗FwX

MD∗

c

Q2 =
DrDc

M1M1

Qr +
DrDcR

MFw

−
ψDrB

∗

FwD∗

c

where the term yd does not depend on the con-
troller and does not, therefore, enter into the
following cost minimisation procedure. The first
two terms in (A.2) depend on the feedback (Qy)
and feedforward (Qr) parts of the controller, re-
spectively. The stable polynomials Dc, Df and
Dr are defined from three spectral factorisation
equations (17), (18), and (19).

Each of the controller-dependent terms in (A.2)
may now be simplified separately as follows.

Qy dependent term We can manipulate the sec-
ond and third terms in the term Q1. These can be
separated in

ψDfB
∗FwX

MD∗

c

−
ϕDfA

∗F ∗F ∗

wFwY

MD∗

c

=
QynFw

M
+
V ∗

D∗

c

(A.3)
Finally, the term Q1 may be expressed as



Q1 =

(

DfDcFw

M1M1

Qy −
QynFw

M

)

−
V ∗

D∗

c

= S+

1 +S−

1

(A.4)
where S+

1 denotes the term in brackets and S−

1

denotes strictly unstable term.

Qr dependent term We can manipulate the sec-
ond and third terms in the term Q2. These can be
separated in

ψDrB
∗

FwD∗

c

−
DrDcR

MFw

=
Qrn

MF+
w

+
T ∗

D∗

cF
−

w

(A.5)

Finally, the term Q2 may be expressed as

Q2 =

(

DrDc

M1M1

Qr −
Qrn

MF+
w

)

−
T ∗

D∗

cF
−

w

= S+

2 +S−

2

(A.6)
where S+

2 denotes the term in brackets and S−

2

denotes strictly unstable term.

A.1 Minimisation

Substituting from (A.4) and (A.6) into (A.2), the
cost function integrand may be written as

J =
1

2πj

∫ j∞

−j∞

(S11S
∗

11 + S22S
∗

22 + yd) ds (A.7)

S11 = S+
1 + S−

1 , S22 = S+
2 + S−

2

In (A.7) S+

i , S
−

i denote strictly stable and un-
stable terms, respectively. Therefore, the terms
S+

i S
−∗

i are analytic in Re(s) ≥ 0. Thus, using
the identity

∫

S−

i S
+∗

i ds =

∫

S+

i S
−∗

i ds (A.8)

and invoking Cauchy’s theorem, the integrals of
the cross terms S−

i S
+∗

i , S+

i S
−∗

i in (A.7) are zero.
The cost function therefore simplifies to

J =
1

2πj

∫ j∞

−j∞

[ 2
∑

i=1

(S+

i S
+∗

i + S−

i S
−∗

i ) + yd

]

ds

(A.9)
Since the terms S−

i and yd are independent of
the controller, the cost function J is minimised
by setting

S+

i = 0, i = 1, 2 (A.10)

Feedback controller From (A.4), setting S+

1 = 0
results in

DfDcFw

M1M1

Qy −
QynFw

M1M2

= 0 (A.11)

or

Qy =
Qyn

DcDf

M1

M2

(A.12)

Feedforward controller From (A.6), setting S+

2 =
0 gives

DrDc

M1M1

Qr −
Qrn

M1M2FwF
+
w

= 0 (A.13)

or

Qr =
Qrn

DcDrF
+
w

M1

M2

(A.14)

This concludes the proof.


