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Abstract: A sliding-mode controller is applied to a two-dimensional, ten-segment
human locomotor system model in order to track kinematic gait samples. Motion
tracking is performed to within 2 degrees of the references for the mean of ten
samples with driving moments typically within two standard deviations of the
expected values. The use of sliding-mode techniques also produces antagonistic
muscle activity at periods similar to those measured from experimental subjects.
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1. INTRODUCTION

Human locomotor system models are an increas-
ingly common way of studying gait and many
have been developed in recent years (Zajac et
al., 2002; Zajac et al., 2003). The application
of control techniques increases the versatility of
these models, permitting more detailed study of
the processes involved in gait as well as the de-
velopment of FES (Functional Electrical Stimula-
tion) based therapies for pathological conditions.

Where control models do exist they are typically
based around the knee (Ferrarin et al., 2001; Jez-
ernik et al., 2004; Lim et al., 2003; Schauer et
al., 2003) or ankle joints if not individual muscles
(Negrd et al., 2003; Watanabe et al., 1999). Larger
models tend to be concerned only with paraplegia
or robotics (Davoodi et al., n.d.; Ephanov and
Hurmuzlu, 1997; Popovic et al., 1999; Riener and
Fuhr, 1998). For this study a model was developed
to simulate both normal gait and relatively minor
pathological locomotion patterns. It comprises 2-

dimensional simulation of the human locomotor
system composed of 10 rigid segments (upper
body, pelvis, thighs, shanks, feet and toes) de-
veloped using Lagrange’s equations and a total
of 50 musculotendon actuators grouped according
to their influence on the joints. Ligaments at the
hips and knees were also included to prevent hy-
perextension of these joints.

A sliding-mode controller was applied to drive
the model to follow measured gait trajectories.
The attraction of sliding-mode control is based on
its order reduction properties and its insensitiv-
ity to certain types of uncertainty (Edwards and
Spurgeon, 1998), which permits precise tracking
of model to subject even with such complex non-
linear systems as the human body. It was for these
reasons that it was decided to begin an investi-
gation into the value of sliding-mode techniques
for human motion control as an alternative to the
commonly used control strategies.



During this early model development it was seen
that the motion tracking controller immediately
began to produce antagonism (simultaneous con-
traction of opposing muscles) in the muscle activ-
ity patterns as a result of its switching function.
This was not a designed property, but found to
be an unexpected benefit of the sliding-mode ap-
proach.

Sections 2 and 3 briefly describe the human neu-
romusculoskeletal model and the application of a
sliding-mode controller to drive it. The motion
tracking, joint moment and muscle activity results
for a set of normal individuals are then presented
in Section 4.

2. THE MODEL

Due to space limitations, the full details of the
model cannot be included here. The following is
only an overview.

A two-dimensional ten-segment pin-jointed model
(see Figure 1) was used to simulate human gait
patterns, the motion dynamics developed using
Lagrange’s equations and described by the equa-
tion:

a = M−1f (1)
Where a is a vector of linear and angular acceler-
ations of the body segments, f is a vector of the
forces and moments acting on the body and M is
a 12*12 mass and moment of inertia matrix.
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Fig. 1. Stick figure of the body segments.

Data from sources of cadaver measurements were
used to provide the set of default body segment
parameters used in the model (Delp, 1990; Lar-
ivire and Gagnon, 1999; Piazza and Delp, 1996).
Hyperextension ligaments at the hip and knee
joints were modelled using equations from Piazza
and Delp ((Piazza and Delp, 1996)).

A modified Hill-type musculotendon actuator
model as seen in Figure 2 describes the force

produced by each muscle based on the level of
activation and the length and contraction veloc-
ity conditions. Full details of this muscle model
can be found in publications of Zajac and Delp
(Delp, 1990; Delp and Zajac, 1992; Piazza and
Delp, 1996; Zajac, 1989; Zajac and Stevenson,
1986).
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Fig. 2. Hill-type musculotendon model.

Parameters for the musculotendon actuators de-
scribing all of the significant muscles in the right
leg for a generic, normal individual were obtained
from the International Society of Biomechanics
website (Delp, 1990) (for the left leg of the model,
the muscle parameters used in the right leg are
reflected). Geometrical calculations based on the
relative positions of the muscle attachment sites
to the joints were then used to find the influence
of the muscles on the body.

The muscles were grouped on each side for prac-
tical purposes according to their actions across
the joints: lumbar flexors, lumbar extensors, hip
flexors, hip extensors, hip & knee flexors, hip &
knee extensors, knee flexor, knee extensors, knee
& ankle flexors, ankle plantarflexor, ankle dorsi-
flexor, ankle plantarflexors & toe flexors, ankle
dorsiflexors & toe extensors. It should be noted
that reference data was not available for all of
these groups for comparison in the results section.

Ground reactions for the model were produced
by applying the force plate readings to the foot
segments. This is by no means an ideal solution,
however the authors have been unable to find or
generate a model which produces ground reactions
sufficiently similar to those measured in practice.

3. SLIDING-MODE CONTROLLER

A modified control law from Edwards & Spur-
geon (Edwards and Spurgeon, 1998) pp. 11-15,
including a linear feedback component to provide
asymptotic reaching of the sliding surface, was
applied to the model:

u(t) = ë− (λ+ Φ)ė(t)−Φλe(t)− ρsgn(s(t)) (2)



Where u is the system input, e is the error in
the segment angle, λ is a positive design scalar
defining the switching function:

s = λe+ ė (3)

The control objective is to force s to zero and
attain the sliding mode. Φ is a positive design
scalar introduced to prescribe an asymptotically
stable first order dynamic to the error signal and
thus permit a reduction in ρ, a positive design
scalar defining the switching amplitude.

For simulation purposes there were no physical
constraints on the controller gain, so the following
parameter values were chosen on the basis that
they provided rapid error decay and maintained
sliding motion across the gait cycle:

λ = 200 (4)

ρ = 200 (5)

Φ = 100 (6)

Sliding-mode techniques produce a reduction to
a first-order decay regardless of the complexity
of the second-order plant being controlled, which
continues for as long as the control action is pow-
erful enough to maintain the sliding-motion. The
controller also cancels the effects of disturbances
in the closed loop system without requiring any
knowledge of those disturbances. This insensitiv-
ity to unmodelled dynamics and parameter inac-
curacies gives sliding-mode techniques an advan-
tage in the control of simulated human motion.

For the human locomotor model under consid-
eration here, assume a set of desired reference
signals; xref , ẋref and ẍref , are available from
measured kinematic data. The error between the
measured data and model outputs (xsim, ẋsim)
can be defined as:

e = xsim − xref (7)

ė = ẋsim − ẋref (8)
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Fig. 3. Block diagram of controlled system. The
external forces acting on the plant include
ground reactions and gravity. The internal
forces are ligament and passive muscular
forces. The controlling moments represent the
active muscle behaviour.

ë = −ẍref (9)
The output from the controller is then a set of
desired accelerations (ẍdesired), which must be
passed through the mass and moment of inertia
matrix of equation (1) in order to generate the
moments required to drive the model (Figure 3).

For simplicity at this early stage of development,
the moments from the controller were used to
drive the model segments directly with muscle
activity estimated independently under open-loop
conditions (see Figure 3).

Using the Hill-type model, muscle activity can
be calculated at each instant by dividing the
control moment, Tc, by the maximum moment
that the muscle can generate about the joint at
that instant, Tmax:

activation =





Tc
Tmax

, for
Tc
Tmax

> 0

0, for
Tc
Tmax

< 0
(10)

The activation signals are constrained to be
greater than zero, so control moments must be dis-
tributed between the muscles of antagonistic pairs
(muscles on opposite sides of a joint). (N.B. using
this muscle model, activity (not neural excitation)
is linear with the maximum instantaneous muscle
force (not maximum isometric muscle force))

Only one pair of antagonistic muscle groups cross
the toe joints, providing a straight-forward calcu-
lation. These muscles also cross the ankle and the
result of any activation must be calculated for this
joint before finding the activations of the other
muscle groups crossing the ankle.

Soleus and gastrocnemius oppose tibialis anterior
across the ankle, but gastrocnemius also crosses
the knee joint. Therefore the distribution of activ-
ity between soleus and gastrocnemius is chosen to
minimise the knee moment whilst still completely
accounting for the ankle moment, i.e. for a plan-
tarflexion moment across the ankle:

Tankle =Asoleus × Tmax soleus ankle
+Agastroc × Tmax gastroc ankle (11)

where:

Tknee min = |Tknee − Tmax gastroc kneeAgastroc|
(12)

T(.) represents the moment about the stated joint
as either the moment required to be accounted
for or the maximum that can be generated by the
muscle stated. A(.) is the level of activation of the
stated muscle.

As there are only three remaining antagonistic
muscle group pairs crossing the hip and knee
joints it is possible to calculate each of the six
possible minimum activity distributions and select
the smallest. Only one pair crosses the lumbar
joint.



In order to produce a more realistic outcome, an
additional constraint ensures that muscles per-
forming similar actions cannot be activated ex-
cessively higher than each other:

|A2
1 −A2

2| ≤ 0.25 (13)

This constraint is not devised based on quanti-
tative measurement of the relationships between
muscle actions, but is rather a rendering of the
intuitive fact that large loads are distributed be-
tween suitable muscles.

4. RESULTS

Figure 4 demonstrates the average motion track-
ing results for ten gait samples. Joint angles are
represented, rather than the segment angles cal-
culated directly by the model, as they are more
appropriate for gait analysis. To avoid settling
time issues, the gait cycle is repeated with the end-
start transition between cycles interpolated for a
few frames and only the second cycle is shown.

Sub-figures (d), (e) and (f) of Figure 4 show the
moments required to drive the model to follow the
reference trajectories in (a), (b) and (c). The mean
reference moments and standard deviations to
either side of it are included for comparison. These
reference curves were included in the original data
files and were calculated using the software the
data was sampled and processed with.

In the absence of EMG (electromyogram) data for
all of the data sets used in this study, simulated
muscle activity is compared to normal activity
approximations from Perry (Perry, 1992) in Fig-
ure 5. An exact match cannot be expected under
these circumstances, but some idea of the model’s
performance can be obtained. The bars represent
the periods where the EMG and activation curves
rise above the mean level for those muscles during
the cycle. This is a common method of assessing
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Fig. 5. Average simulated leg muscle activity
compared to approximate data from Perry.

the performance of muscle activity estimators and
measuring the correlation between EMG signals
and simulated muscle activity (Lu, 1999; Nordin
and Frankel, 2001; Zajac et al., 2002; Zajac et
al., 2003).

5. DISCUSSION

The controller provides motion tracking of the
sampled gait patterns with a maximum error of
1.71 degrees from the reference trajectories, well
within the one standard deviation range illus-
trated in Figure 4 (sub-figures a-c). The largest
errors occur at maximal extension of the hip joint
as the hyperextension ligaments act against the
system. The gait pattern of an individual would
normally take this action into account but the
model operates using default parameters for which
the joint angle trajectories are not optimised. De-
spite this the elastic, energy efficient behaviour of
the hip ligaments make them a useful component
of the model.

The joint moments (Figure 4 (d-f)) show much
greater variation from the reference signals, es-
pecially in the swing phase where the limb acts
as a pendulum undergoing rapid acceleration and
deceleration and is therefore more sensitive to
parameter variations than during the more sedate
and stable stance phase. Measuring a subject’s
physical parameters rather than using a default
set would reduce the error, although without tak-
ing in vitro measurements of the joint moments,
which is extremely impractical, generating closely
matching data proves only that the methods of
calculation were similar, not that the data are
accurate.

The simulated muscle activity estimation provides
a correlation of 74.8% with the reference EMG
signals in measuring activity greater than average
(Figure 5), which is consistent with other work
in the field (Lu, 1999; Zajac et al., 2002; Zajac
et al., 2003). Differences that occur suggest un-
modelled joint dynamics and inaccuracies in the
muscle parameters. The error in joint moments
(Figure 4 (d-f)) could also account for some of
the differences, although similar moments prove
only that the methods of calculation were similar,
not that the results are accurate.

The most significant deviation of muscle activity
is seen in the rectus femoris muscle. It is consis-
tently stimulated far more than the reference sug-
gesting that the muscle geometry makes it a more
desirable choice for activation than is the case
in practice. However, taking accurate parametric
readings for every muscle and ligament within the
body would be more difficult and time consuming
than measuring EMG readings directly.
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Fig. 4. Average joint angle and moment motion tracking results for the right leg

Significantly, antagonism can be seen in the activ-
ity of the muscles crossing the hip and knee joints.
Gluteus maximus and the biarticular hamstrings
act in opposition across the hip to iliopsoas and
rectus femoris while the hamstrings oppose the
vasti and rectus femoris across the knee. However
there are periods where opposing muscles are ac-
tivated simultaneously. At periods during the gait
cycle the joint angles are particularly sensitive to
changes in moments and antagonism occurs to
stabilise the motion. Likewise the high frequency
oscillation of the sliding-mode controller has a
greater effect at these sensitive points, causing the
stimulation of both sides of an antagonistic pair.

The gastrocnemii and soleus muscles oppose tib-
ialis anterior across the ankle joint. However there
is no antagonism seen in the simulated results
while it is extensive in the reference EMG mea-
surements. Tibialis anterior in particular shows a
much reduced level of activity at the beginning of
the stance phase where it would normally contract
to help stabilise the joint as body weight is trans-
ferred to the limb. This suggests that the modelled
ankle is more stable than the reference ankles so
that the switching function of the controller does
not produce an amplitude of oscillation in the
moment sufficient to cross zero and thus stimulate
both muscles. It was also noted that the magni-
tude of the simulated activity of the gastrocnemii
and soleus were consistently lower than expected,
meaning a smaller change in activation is required
to control the moment thus reducing or eliminat-
ing the antagonism. This implies that parameter
differences are again the cause.

6. CONCLUSION

Gait patterns are optimised for minimum energy
consumption given the individuals physical char-
acteristics (Anderson and Pandy, 2001). Param-
eters such as segment mass and length, muscle
strength and geometries and ligament behaviour
clearly influence this relationship between motion

and energy use. Forcing the model to follow the
gait pattern of a subject using only default pa-
rameters, it is almost inevitable that the joint mo-
ments and muscle actions will show discrepancies
from the expected curves and that the pattern
will be less than optimal for the model. In order
to reduce errors, more of the physical parameters
of each subject must be measured and applied to
the model during simulation, although as there
are several hundred required to define the model
exactly some compromise must be reached.

The value of the sliding-mode techniques is the in-
sensitivity to this sort of plant-model mismatch. It
is possible to produce a control effort comparable
to the human nervous system without the need
for detailed knowledge of it or of the body being
controlled. The emergence of antagonism is an
unexpected benefit of this technique and further
demonstrates the value of the control strategy in
the simulation of neuromuscular control signals.
Previous attempts have been made to simulate
antagonism (Kaufman et al., 1999), but it is an
inherent feature of the sliding-mode approach.

The antagonism provided by this model is some-
what inconsistent in its occurrences; in particular
the ankle joint shows no antagonism where a sig-
nificant amount would normally be expected. Re-
designing the controller with antagonism specifi-
cally in mind would help and greater parametric
accuracy could increase the correlation between
simulated and measured muscle activity, consider-
ation should be given to reducing the strength of
the modelled calf muscles at least. However, per-
fect accuracy cannot be expected as muscle stimu-
lation patterns change with the physical condition
of the subject and even between one step and the
next. Knowledge of the neural processes involved
in muscle selection and activation during motion
is also very limited preventing direct duplication.
Any muscle activity pattern should be considered
to represent one of a myriad possibilities and pro-
viding it is capable of generating the required gait,
it is just as valid as the measured one.
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