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Abstract: This paper is concerned with predictive controller design for the outlet oil temper-
ature in distributed collector solar fields. The design method proposed combines feedback
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to a nonlinearity measure. Copyright © 2005 IFAC
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1. INTRODUCTION

This paper is concerned with predictive controller de-
sign in the presence of constraints for the outlet oil
temperature in distributed collector solar fields. Study-
ing this problem is important not only because of its
intrinsic interest, but also because it forms a paradigm
which can be applied to other processes of economic
interest, which involve transport of mass and/or en-
ergy over a spatial dimension. Although there is a
rich literature on solar plant control (see (Silva et
al., 2003; Camacho et al., 1997) for detailed reviews),
the problem of incorporating constraints received little
attention. In (Camacho et al., 1994) and in other ear-
lier papers there quoted, a static series feed-forward
block is used to approximately compensate plant non-
linearity. Both (Camacho, 1994; Coito et al., 1997)
consider predictive adaptive controllers, but the fo-
cus is on adaptive algorithms which can be applied
to a wide variety of plants, and thereby constraints
are not discussed. In this paper, instead, the dominant
dynamics of the plant is explored in order to propose
a predictive control law with constraints.

1 This work has been done under the project AMBIDISC, contract
POSI/SRI/36328/2000.

Fig. 1. General view of the ACUREX field.

The control law proposed relies on two main steps:
First, a transformation of the manipulated variable is
found and shown to yield a reduced complexity lin-
ear model. In the second step this model is used to
solve a predictive control problem in the presence of
constraints. The reduced complexity model is justified
here on the basis of a nonlinearity measure as pro-
posed in (Schweickhard et al., 2003; Schweickhard et
al., 2003a). This leads to an increased performance.
An adaptive version is also presented.

The paper is organized as follows: After this intro-
duction, in which the problem is motivated and the



main contribution is stated, the reduced plant model is
derived in section 2. Section 3 explains how to tackle
constraints when using the reduced model and section
4 presents simulation results illustrating the advantage
of the proposed approach. Finally, section 4 draws
conclusions.

2. REDUCED ARX FIELD MODEL

The distributed collector solar field serving as a proto-
type to this work (fig. 1) is formed by mirror collectors
which concentrate direct sun radiation. At their focus
lies a pipe containing an oil able to accumulate energy
in the form of heat. The main control objective is
to control the outlet oil temperature, the manipulated
variable being the oil flow. The main disturbance is the
solar radiation. Such a plant may be represented by the
simplified model (Barão et al., 2002):

∂T (z, t)

∂t
+ u(t)

∂T (z, t)

∂z
= α R(t) (1)

where T(z, t) is the temperature at position z ∈ [0, L]
measured along the pipe at time t ∈ [0, +∞[, u is
the oil velocity (proportional to flow) and R denotes
solar radiation. The parameter α depends on the mirror
efficiency and on oil specific heat (which is a function
of temperature), being thereby considered as uncertain
and L is the pipe length.

Let the pipe be divided in N elements and h =
L/N . Finite difference approximation of space partial
derivatives, yields the following non-linear state-space
model:

ẋ =
u

h
A x +

u

h
B x0 + C R(t) (2)

with A, B and C appropriate matrices and the compo-
nent k of x is xk(t) ≡ T (kh, t). For k = N :

ẋN = −
u

h
(xN − xN−1) + αR(t) (3)

where y = xN = TN is the outlet oil temperature
that is taken as the model output. Exact input/output
feedback linearization (Barão, 2002) is performed by
defining the virtual control variable v, related to u by

u =
αR − v

xN − xN−1

h (4)

This transformation puts the system in the Byrnes-
Isidori normal form (Isidori, 1995) which, since in this
case the relative degree is 1, is an integrator:

ẋN = v (5)

The approximation

xN − xN−1

h
≈

y − y0

L
(6)

in which y ≡ xN ≡ TN , y0 ≡ x0 ≡ Tin allows to
tackle the technological constraint according to which
temperature is only measured at the inlet and the outlet
points of the pipe. Furthermore, since

α = α0 + α̃ (7)
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Fig. 2. Controller structure

where α0 is the nominal efficiency, yields the approx-
imate feedback linearization law (Barão, 2002):

u =
α0 R − v

y − y0

L (8)

under which (assuming (6)) the field dynamics be-
comes a pure integrator with a disturbance

ẏ = v + α̃ R (9)

The expression (8) corresponds to an exact lineariza-
tion only for a reduced first order model. When ap-
plied to the actual system, its effect is to improve the
”linearity” of the resulting compensated system, in
the sense of reducing a Nonlinearity Measure (NLM)
(Schweickhardt, 2003; Schweickhardt, 2003a). As can
be seen in fig. 13 and is discussed in Appendix I, the
actual behavior of the system with feedback is not
exactly an integrator but can be approximated by an
integrator with an extra real pole. Therefore, the com-
pensated system is described by the family of linear
systems

τ ÿ + ẏ = Kp v + α̃ R(t) (10)

parameterized by τ, Kp and α̃. Remark that, for
τ = 0, Kp = 1 and α̃ = 0 one gets ẏ = v, i. e. the
reduced linearized model with α = α0 belongs to the
set of models considered. As shown in Appendix I, the
inclusion of the extra filter in (10) is made, according
to (Schweickhardt, 2003; Schweickhardt, 2003a), by
showing that a Nonlinearity Measure is improved for
values of τ 6= 0 e Kp 6= 1.

Fig. 2 shows a block diagram of the proposed con-
troller. Coupling the static compensator defined by
(9) with the plant defines a new manipulated variable
v. Between the new manipulated variable v and the
output y, it is shown above that the system is described
by the linear model (10). For the sake of designing
an external loop with a model predictive controller
(MPC), (10) is sampled, yielding the ARX model:

yk = a1yk−1 + a2yk−2 + b1vk−1 + d1Rk−1 + ek−1

(11)

The parameters of (11) are related to the parameters of
(10) by the expressions

a1 =
2τ + dt

τ + dt
; a2 = −

τ

τ + dt

b1 =
Kp dt2

τ + dt
; d1 =

α̃ dt2

τ + dt

If an adaptive version is required, these parameters
may also be estimated on-line by RLS.



3. PREDICTIVE CONTROL WITH
CONSTRAINTS

The predictive controller designed (MPC in fig. 2)
minimizes the following quadratic cost

J =

N2∑

i=N1

(rk+i − yk+i)
2

+ ρ

Nv−1∑

i=0

(∆vk+i)
2

where rk is the reference to track, yk is the output,
∆vk is the consecutive increment of the input v and
N1, N2, Nu (N2 ≥ N1, N2 ≥ Nu) are integer
horizons. The parameter ρ penalizes sudden input
excursions. In order to ensure closed loop stability it is
possible (Mosca, 1995) to impose P terminal equality
constraints in the output:

yk+N2+1 = rk+N2+1

...
yk+N2+P = rk+N2+1

(12)

In the case where there are additional input and output
constraints

u ≤ u(t) ≤ u ∀t
∆u ≤ ∆u(t) ≤ ∆u ∀t

y ≤ y(t) ≤ y ∀t

the solution is obtained by solving an equivalent
Quadratic Programming (QP) optimization problem
that will have a numerical solution if it is feasible.
Eventual non-feasible solutions at startup are solved
by resorting to the QP solution with no constraints and
saturation in u.

Since the manipulated variable is now the virtual
control v and not u, the most significative aspect of
the extension is the way in which constraints in u are
transformed in constraints in v. The constraints in v
are time varying and thereby vary along the horizon
Nv, since they depend on future values of input and
output. The simplest way to overcome this problem
is to obtain the constraints for time k and assume
consistent values for the remaining horizon, yielding
for the problem at hand:

vk0 ≤ vk ≤ vk0 i = 0
vi ≤ vk+i ≤ vi i = 1, . . . , Nv − 1
yi ≤ yk+i ≤ yi i = N1, . . . , N2

yk+N2+i = rk+N2+1 i = 1, . . . , P

where

vk0 = α0 R −
(y − y0)

L
uk

vk0 = α0 R −
(y − y0)

L
uk

Here, ω and ω denote, respectively, the upper and
lower allowed bounds of a generic variable ω.

The output constraints are the same since this variable
is not transformed by feedback linearization.

Radiation R is seen as a disturbance assumed constant
along the prediction horizon N2.

4. RESULTS

The examples considered hereafter use a rigorous
physically based model of the field, developed ac-
cording to (Camacho, 1997), thereby reproducing with
fidelity the nonlinear dynamics of the plant. Inlet oil
temperature Tin(t) and radiation R(t) are sequences
actually measured in the field. At about 4h30 radia-
tion suddenly drops due to a passing cloud, thereby
causing a fast disturbance. Three examples are shown
for the closed loop.

4.1 Example 1: Integrator model

In the first example, the predictive ARX model based
on the pure integrator is used, its parameters being
kept constant at a priori values. Table 1 shows the
controller parameters used, including the horizons in
the cost function N1, N2 and Nv, the number of
equality constraints P , the weight ρ, the forgetting
factor λ for RLS (when used), the value of the input
and output constraints, the parameters of the predictive
filter τ and Kp, the sampling interval dt and the
nominal mirror efficiency α0.

Fig. 3 shows (from top to bottom) the outlet oil
temperature [◦C] and the respective reference signal
(above), the corrected solar radiation [Wm−2], mul-
tiplied by 0.2, the oil flow u [m3s−1], multiplied by
1 × 105 and the virtual control signal, v, [◦Cs−1]
multiplied by the factor 1 × 103. Fig. 4 shows the
time varying constraint imposed to the virtual signal
(dashed lines show the minimum and maximum val-
ues allowable to u), which ensures that the actual flow
stands between 2 and 10 ls−1. This fact is illustrated
in fig. 3, in which it can be seen that the flow does not
violate the lower limit of 2 ls−1 = 2 × 10−3m3s−1

when the set-point changes from 225◦C to 270◦C just
after 5 h. Fig. 5 shows a detail of the response to set-
point changes, which exhibits an oscillatory character.

4.2 Example 2: Modified model

In the second example, table 2 and figures 6, 7 and
8, adaptation is turned on after 1.5h, there are no
equality constraints and the maximum temperature
limit is set to 265◦C. The time constant τ in (10)
is now made different from zero, opposite to the
previous example. In fig. 6 a reduction in oscillation
is noticeable, thereby suggesting that the extra filter
and the adaptation substantially improve controller
performance. Remark that the reference, around 5h,
surpasses the maximum limit imposed to temperature,
but the actual temperature respects the constraint (fig.
6).



Table 1. Controller parameters - Example
1.

Parameter Value
N1 1
N2 25
Nv 10
P 2
ρ 2 × 105

λ -
v [◦Cs−1] -1.0
v [◦Cs−1] 1.0
y [◦C] 10.0
y [◦C] 275.0
Kp [adim.] 1.0
τ [s] 0.0
dt [s] 15.0
α0 [◦Cm2J−1] 4.778 × 10−4
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Fig. 3. Example 1 – Process signals.

4.3 Example 3: Adaptation

In the last example, table 3 and figures 9, 10, 11 and
12, the controller is adaptive (the parameters in (11)
being estimated by RLS), has equality constraints and
the prediction horizon is smaller such as to render
it more ”aggressive”. The controller presents a good
performance. Remark in particular the large amplitude
transition between 225◦C and 290◦C in which the
virtual control signal attains the constraint without
violating it for a long period of time.

In all simulations there is a very good rejection of
disturbances imposed by changes in radiation due to
clouds (between 4h and 5 h.

5. CONCLUSIONS

A control algorithm combining feedback lineariza-
tion, predictive control with constraints and parame-
ter adaptation is applied to temperature control in a
distributed collector solar field. The input transform
associated to feedback linearization implies a nontriv-
ial constraint management. A distinguishing feature of
the work reported consists of using a reduced com-
plexity model justified on the basis of a nonlinearity
measure. This lead to a noticeable increase in perfor-
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Fig. 4. Example 1 – Time varying constraint in virtual
control.
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Fig. 5. Example 1 – Detail of temperature response.

Table 2. Example 2 – Controller parame-
ters.

Parameter Value
N1 1
N2 25
Nv 10
P -
ρ 2 × 105

λ 0.98
v [◦Cs−1] -1.0
v [◦Cs−1] 1.0
y [◦C] 10.0
y [◦C] 265.0
Kp [adim.] 1.0
τ [s] 50.0
dt [s] 15.0
α0 [◦Cm2J−1] 4.778 × 10−4

mance (compare figs. 5 and 12), allowing large set-
point jumps (65oC).

Appendix I - Nonlinearity measure

This appendix considers the computation of the non-
linearity measure defimned in (Schweickhardt, 2003;
Schweickhardt, 2003a) for the reduced model of the
linearized solar field. Consider a non-linear BIBO sta-
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Fig. 6. Example 2 – Process signals.
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Fig. 7. Example 2 – Time varying constraint in virtual
control.
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Fig. 8. Example 2 – Detail of temperature response.

ble system described by the operator y(t) = N [u(t)]
which maps its input/ouput behavior. The nonlinearity
measure (NLM) φ(N ,U) of this system is the positive
definite scalar given by:

φ(N , u) = inf
G

sup
u

‖G[u] −N [u]‖

‖N [u]‖

where G ∈ G and u ∈ U , G being the space of linear
operators and U the set of inputs considered.

Table 3. Example 3 – Controller parame-
ters.

Parameter Value
N1 1
N2 15
Nv 10
P 2
ρ 5 × 104

λ 0.9999
v [◦Cs−1] -1.0
v [◦Cs−1] 1.0
y [◦C] 10.0
y [◦C] 295.0
Kp [adim.] 1.0
τ [s] 50.0
dt [s] 15.0
α0 [◦Cm2J−1] 4.778 × 10−4
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Fig. 9. Example 3 – Process signals.
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Fig. 10. Example 3 – Adaptive parameters.

The computation of the NLM is in general a difficult,
non-linear, min-max optimization problem of infinite
dimension. In the case at hand a numerically feasible
solution φN was obtained restricting G to be given by
(10) and the input to be a square wave. The optimiza-
tion operates therefore only in Kp and τ . The non-
linear solution yk = N [uk] is obtained by numerical
integration of the detailed physical model with feed-
back, sampled at time k. Fig. 13 shows the response
of the linearized system, of the pure integrator (which
yields a triangular wave) and of the integrator with the
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Fig. 11. Example 3 – Time varying constraint in vir-
tual control.
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Fig. 12. Example 3 – Detail of temperature response.
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Fig. 13. Linearized system response to a square wave.

extra filter (Kp = 0.96, τ = 75 s), between 2 h and
3.4 h, for a square wave (u(t) = 0.04 sign[sin(3.5 ×
10−3t)]), as well as the result of coupling (2) with
(8. The improved approximation of the integrator with
extra filter is clear. Fig. 14 shows two iterations for
the computation of NLM, one with the pure integrator
model (dashed) and the other with the integrator with
an extra filter. The filter provides an improvement of
80%. The results obtained in other experiments are
consistent, thereby justifying the proposed model.
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Fig. 14. Two iterations of NLM with the pure integra-
tor (dashed) and the filtered integrator (solid).
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