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Abstract: We discuss stabilization of linear systems by dynamic high-gain rotation.
The existence of stabilizing rotations is established for systems with negative
trace, and an adaptive method to choose the controller gain is presented. The
stabilization is robust with respect to arbitrary (possibly time-varying) skew-
symmetric perturbations, which is also illustrated by a numerical example.
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1. INTRODUCTION

Consider a system

ẋ = A x + u for A ∈ R
n×n with tr A < 0. (1)

We study the problem of stabilizing (1) by ro-
tation in the sense that a state feedback u(t) =
S(t)x(t) with a skew-symmetric matrix S yields
stability of the closed-loop system

ẋ = [A + S(t)]x . (2)

Recall that the trace of A, which is the sum of the
diagonal elements of A, is the exponential growth
rate of n-volumes under the linear flow generated
by the equation. A negative trace thus means that
n-volumes decay exponentially to zero. Adding of
S to the nominal system matrix A amounts to
imposing an additional rotation. If the nominal
system arises from a mechanical system, this
can, up to a certain extent, be interpreted as an
exchange of energy between different modes of the
system.

The idea of stabilization by rotation is not new. It
has been investigated for random and for stochas-
tic linear differential equations by Arnold et al.
(1983) (see also Arnold et al. (1996)). In their
approach, an essential assumption is sufficient
‘richness’ of the noise in the sense that enough
rotations have to be excited by the noise. Another
approach, using periodic excitations by skew-
symmetric matrices, goes back to Meerkov (1980),
whilst for example Morgan and Narendra (1977)
and C̆elikovský (1993) analyze stability in special
cases, when S(t) is given.

In the present note, we establish, for systems
(1), the existence of merely a single deterministic
time-independent skew-symmetric matrix S and a
scalar (possibly time-varying) gain parameter so
that ẋ = [A+k(t)S]x is stable in a sense which will
be made precise below. The essential mechanism
in this approach of “energyless stabilization” is a
mixing of stable and unstable modes, exploiting
the fact that under the condition tr A < 0 the



stable modes dominate the dynamic behaviour as
soon as the mixing is strong enough.

More precisely, we present the following results for
(1).

(i) There exists a skew-symmetric ΣA ∈ Rn×n

and some k0 ≥ 0, such that u(t) = k ΣAx(t)
applied to (1) yields, for any k ≥ k0, an
asymptotically stable closed-loop system ẋ =
[A + k ΣA]x.

(ii) There exists a skew-symmetric ΣA ∈ Rn×n

and some k0 ≥ 0 such that, for any mono-
tonically increasing and continuous function
k : [0,∞) → [k0,∞), the application of
u(t) = k(t) ΣAx(t) to (1) yields an asymp-
totically stable system ẋ = [A + k(t) ΣA]x.

(iii) If monotonicity of k in (ii) is dropped, then
the system is not necessarily stable.

(iv) The dynamical state feedback

u(t) = k(t) ΣA x(t)

k̇(t) = min{ε, ‖x(t)‖}, k(0) = k0

applied to (1) yields, for any ε > 0 and initial
data k0 ∈ R, x(0) ∈ Rn, a closed-loop initial
value problem which has a unique solution
(x, k) on the whole of R≥0 and this solution
satisfies: k(t) converges to a finite limit as
t → ∞ and limt→∞ x(t) = 0.

Note that in (i) the matrix ΣA and the scalar
k0 depend on A, or – as we will see – only on
the symmetric part of A. Having established (i),
it is not straightforward to show that k can be
replaced by a time-varying k(·) which satisfies
k(t) ≥ k0 for all t ≥ 0. In fact, the latter is not
sufficient and monotonicity of k(·) is necessary for
the result in (ii). In (iv) we show how to determine
the scalar parameter k0 needed in (i) adaptively.
The idea is to increase k(t) as long as ‖x‖ is not
integrable so that k(t) finally becomes sufficiently
large and ensures that ‖x‖ becomes integrable.

2. PRELIMINARIES

For n ∈ N consider the skew-symmetric matrix

Σn =






0 −1
. . .

1 0




 = (σij)1≤i,j≤n

∈ R
n×n,

with σij =







0 , i = j ,
−1 , i < j ,

1 , i > j .

The eigenvalues iωj of Σn are imaginary and dis-
tinct. We write Ωn = diag (ω1, . . . , ωn). Through-
out this paper, we will use the following nota-
tion. In denotes the identity matrix in Rn×n. Let

A ∈ Rn×n be given, and let U be an orthogonal
matrix containing the eigenvectors of A+AT ; then
UT (A + AT )U = D is diagonal and we set

ΣA = UT ΣnU , (3)

which is skew-symmetric. We will make use of the
eigenstructure of the matrix pencil

Ak = A + kΣA , k ∈ R (4)

for large k.

Lemma 1. Let A ∈ Rn×n. Then there exist k0 > 0
and some analytic matrix-valued function S· :
[k0,∞[→ GLn(C) with the properties:

(a) S−1
k AkSk = ikΩn + tr A

n
In +∆k, where ∆k =

diag (δ1(k), . . . , δn(k)) = O(1/k) as k → ∞.
(b) limk→∞ Sk = S∞, where S∗

∞S∞ = In and
S∗
∞ΣAS∞ = iΩn.

(c) S∗
kSk − In = O(1/k), as k → ∞.

The proof of Lemma 1 is based on the following
general result in perturbation theory (e.g. Baumgärtel
(1972); Demmel (1997)).

Theorem 2. Let A, B ∈ Rn×n and assume that
B has distinct eigenvalues λ1(B), . . . , λn(B) with
corresponding eigenvectors v1(B), . . . , vn(B).
Then there exists ε0 > 0 such that, for all ε ∈
(0, ε0), the matrix εA + B has also n distinct
eigenvalues and, as ε → 0,

λj(εA + B) = λj(B) + ε
vj(B)∗A vj(B)

vj(B)∗vj(B)
+ O(ε2).

For appropriate numbering, and j = 1, . . . , n, we
also have that

ε 7→ λj(εA + B) and ε 7→ vj(εA + B)

are analytic on (0, ε0), and limε→0 vj(εA + B) =
vj(A).

Corollary 3. Let A ∈ Rn×n with tr A < 0. Then
there exists k0 > 0 such that, for all k ≥ k0,
σ(A + kΣA) ⊂ C−.

Proof: Lemma 1 implies Re λj(Ak) = trA
n

+
O(1/k) for j = 1, . . . , n. If k is large enough, then
all the real parts are negative. 2

3. STABILIZATION BY ROTATION

The result of Corollary 3 does not imply that for
continuous k(·) with k(t) ≥ k0 for all t ≥ 0 and
sufficiently large k0 > 0, the time-varying system



ẋ = (A + k(t)ΣA)x (5)

is asymptotically stable. This is illustrated in
Example 9. However, we can show that if k0 >
0 is sufficiently large and k(·) is monotonically

increasing and k(t) ≥ k0 for all t ≥ 0, then (5)
becomes asymptotically stable.

Theorem 4. Let A ∈ Rn×n with tr A < 0.
Then there exists some k0 ≥ 0 such that, for any
monotonically non-decreasing and continuous k :
[0,∞) → [k0,∞), the zero solution of system (5)
is uniformly asymptotically stable.

Note that in Theorem 4 the scalar k0 depends on
A. This drawback can be resolved by determining
k(·) adaptively. Loosely speaking, k is adaptively
tuned such that it increases as long as ‖x‖ is not
integrable, and settles to a finite limit when it is
stabilizing.
As a prerequisite we also need a variation of The-
orem 4, where the monotonicity assumption is re-
placed by boundedness condition on the derivative
of k.

Theorem 5. Let A ∈ R
n×n with tr A < 0.

Then for any differentiable k : [0,∞) → R with
k(t) → ∞ as t → ∞ and lim supt→∞ |k̇(t)| < ∞,
the zero solution of

ẋ = [A + k(t) ΣA]x (6)

is uniformly exponentially stable.

The Theorems 4 and 5 constitute the backbone of
the following adaptive stabilization result.

Theorem 6. Let A ∈ Rn×n with tr A < 0, and
ε > 0. Then the state feedback

u(t) = k(t) Σn x(t)

together with gain adaptation

k̇(t) = min{ε, ‖x(t)‖}, k(0) = k0, (7)

applied to (1) yields, for any initial data x(0) =
x0 ∈ Rn, k0 ∈ R, the closed-loop initial value
problem

ẋ(t) = [A + k(t) ΣA]x(t), x(0) = x0,

k̇(t) = min{ε, ‖x(t)‖}, k(0) = k0,

}

(8)

which has a unique solution (x, k) on the whole of
R≥0, and this solution satisfies:

(i) limt→∞ k(t) = k∞ ∈ R ,
(ii) limt→∞ x(t) = 0 .

Remark 7.

(i) Note that the result in Theorem 6 does not
say that the system ẋ = [A + k(t) ΣA]x
becomes asymptotically stable; nor is the so

called “limit system” ẋ = [A + k∞ ΣA]x
necessarily stable. The dynamic gain adap-
tation (8) ensures only that the trajectory
(x, k) converges.

(ii) Note further that the increase of k is at
most linear. This may be advantageous when
compared to k̇(t) = ‖x(t)‖p for p ≥ 1.
The latter is a valid alternative to (7) but
omitted here for brevity. The gain adaptation
k̇(t) = ‖x(t)‖2 has been introduced for high-
gain stabilizable linear input-output systems,
see for example the seminal work by Morse
(1983), Willems and Byrnes (1984). The gain
adaptation (7) has been introduced in Ilch-
mann and Ryan (2004).

(iii) We also omit for brevity to show that this
dynamic stabilization is robust with respect
to arbitrary bounded skew-symmetric per-
turbations of A. It can be shown that A can
be replaced by A + Σ(t) for any measurable
Σ : t 7→ Rn×n with Σ(t) = −Σ(t)T and
supt>0 ‖Σ(t)‖ < ∞.

For the proof of Theorem 4 we need the following
observation.

Lemma 8. Let A ∈ Rn×n with tr A < 0. Then
by Corollary 3 there exists k0 ≥ 0 such that

σ(Ak) ⊂ C− , for all k ≥ k0,

and therefore (see, for example, Sontag (1998))

Pk :=

∫ ∞

0

eAT
k seAks ds (9)

is the unique positive definite solution of

AT
k Pk + PkAk = −In , for all k ≥ k0 . (10)

Furthermore, there exist numbers a > 0 and
M > 1, such that for all k, m ≥ k0:

κ2(Pk) = ‖Pk‖‖P−1
k ‖≤ 1 +

a

k
, (11)

and

AT
mPk + PkAm ≤

(
−1 + |k−m|

k
M
)
In . (12)

Proof of Theorem 4: Let x : R+ → R denote a
solution of (5) for a given function k as specified.
For arbitrary m ≥ k0, let Pm be given by (9).
Assume that, for some fixed m and all t in a
given interval [t0, t1], we have (with M defined
in Lemma 8)

|k(t) − m| ≤ m

2M
. (13)

A standard Lyapunov argument yields

‖x(t1)‖2 ≤ κ2(Pm) e
−1

2‖Pm‖
(t1−t0)‖x(t0)‖2 . (14)



Now we distinguish between the two cases, when
k either is bounded or unbounded. In the first case
k(t) converges monotonically to some number k∗.
We set m = k∗, and by convergence there exists
some t0 > 0 such that (13) holds for all t ≥ t0.
Hence

‖x(t)‖2 ≤ κ2(Pk∗) e
−1

2‖Pk∗
‖

(t−t0) ‖x(t0)‖2 → 0

as t → ∞.
The second case, when k(t) → ∞ as t → ∞,
is more subtle. Now we do not have a joint
uniform static quadratic Lyapunov function for all
k(t) ∈ R. To overcome this problem, we write the
interval [k0,∞[ as a disjoint union of subintervals
[kj , kj+1[, such that (13) holds for m = (kj +
kj+1)/2 and all k(t) ∈ [kj , kj+1[.
Such a partition is obtained as follows: Condition
(13) is equivalent to

k(t) ∈ [m − m
2M

, m + m
2M

] = m[ 2M−1
2M

, 2M+1
2M

] .

Setting

kj = γjk0, γ :=
2M + 1

2M − 1
, for j = 0, 1, 2, . . . ,

we find the intervals [kj , kj+1[ to be suitable. With
these kj we define tj = sup{t ≥ 0 | k(t) ≤ kj},
such that obviously tj+1 ≥ tj for all j, tj → ∞ as
j → ∞ and k(t) ∈ [kj , kj+1] for all t ∈ [tj , tj+1].

Finally, we define mj :=
kj+kj+1

2 = γjm0, m0 :=
1+γ

2 k0, and consider (14) for an interval [tj , tj+1]
instead of [t0, t1] with m = mj .
From Lemma 8 we recall that

κ2(Pmj
) ≤ 1 +

a

mj

= 1 +
a

m0

1

γj
. (15)

Moreover, since ‖Pmj
‖ → n

−2trA as j → ∞, there
exists a number j0 ∈ N such that for all j ≥ j0 we
have ‖Pmj

‖ ≤ n
−tr A , which means

− 1

2‖Pmj
‖ ≤ tr A

2n
< 0 . (16)

Inserting (15) and (16) in (14), we obtain, for
j ≥ j0,

‖x(tj+1)‖2 ≤
(

1 +
α

γj

)

e−βδj‖x(tj‖2 , (17)

where we have set α = a
m0

, β = − trA
2n

> 0,

and δj = tj+1 − tj . Note that
∑∞

j=0 δj = ∞.
For simplicity of notation and without loss of
generality, we assume that j0 = 0. Then for all
j we have

‖x(tj+1)‖2 ≤
j
∏

`=0

(

1 + α
γ`

)

e−βδ`‖x(t0)‖2 .

We finally conclude that
∏j

`=0

(

1 + α
γ`

)

e−βδ`

converges to 0 as j → ∞, because

ln

(
j
∏

`=0

(

1 + α
γ`

)

e−βδ`

)

≤
j
∑

`=0

α
γ` −

j
∑

`=0

βδ`

diverges to −∞ as j → ∞.

Thus x(tj) → 0 as j → ∞. Moreover, ‖x(t)‖2 ≤
(1 + a)‖x(tj)‖2 for t ∈ [tj , tj+1]. Hence, in fact,
x(t) → 0 as t → ∞, which completes the
proof. 2

It is noteworthy that we cannot dispense with
the monotonicity assumption in Theorem 4. We
present an example of a system of the form
(5) which is destabilized by periodic switching
between two values k and m of k(t). These values
can be chosen arbitrarily large, i.e. for each k0 > 0
we can find appropriate k, m > k0. In fact, we can
even destabilize the system by switching between
gain values kj and mj , where both kj and mj tend
monotonically to infinity.

Example 9. Let A =

[
−4 0

0 2

]

, ΣA =

[
0 −1
1 0

]

.

The eigenvalues of Ak = A + kΣA are −1 ± iαk

with

αk =
√

k2 − 9 ∈ R , if k ≥ 3 . (18)

Consider the product eAktkeAmtm , where

tk =
π

2αk

, tm =
π

2αm

.

A straighforward computation yields

eAktkeAmtm =
e−(tk+tm)

−αkαm

[
km − 9 3(k − m)

3(k − m) km − 9

]

.

We denote the spectral radius of this matrix by
ρ(k, m). By elementary estimates, it follows that
for k = 9m we have ρ(k, m) ≥ 1 + ν

m
with some

ν > 0 independent of m. For a given sequence
m = m1, m2, m3, . . . we set kj = 9mj , and for the
corresponding time intervals tkj

and tmj
we switch

the gain value k(·) between kj and mj . This leads
to the transfer operator

eAk1
tk1 eAm1

tm1

︸ ︷︷ ︸

=:Φ1

eAk2
tk2 eAm2

tm2

︸ ︷︷ ︸

=:Φ2

· · ·

with ρ(Φj) ≥ 1 + ν
mj

and corresponding normal-

ized eigenvector v = 1√
2
[1, 1]T of Φj for all j.

Hence ‖(Φ1Φ2 . . . Φ`) v‖ ≥
∏`

j=1

(

1 + ν
mj

)

→ ∞
for ` → ∞. The latter is satisfied if

∑∞
j=1

1
mj

= ∞,

e.g. for mj ≤ rj for some r > 0. We conclude that
e.g. for mj = 9j the zero solution of system (5) is
unstable. 2

Clearly, we could approximate the step function
k in Example 9 by some smooth function which



destabilizes the system, too. But an important
feature of such a destabilizing smooth function
lies in the fact that its derivative takes arbitrarily
large values as k → ∞. It is therefore not sur-
prising that an alternative to the monotonicity
condition in Theorem 4 is provided by a bound-
edness condition on the derivative of k, as given
in Theorem 5.

Proof of Theorem 5:

We follow the proof of Theorem 4 for the case
of unbounded k up to inequality (17). Choosing
j0 large enough, we may assume α

γj ≤ 1 for
all j ≥ j0. Moreover, since kj+1 − kj → ∞,

and lim supt→∞ |k̇(t)| < ∞, we may also assume
δj ≥ 2 ln 2

β
for all j ≥ j0, such that

‖x(tj+1)‖2 ≤ 2e−
β

2
(tj+1−tj)e−

β

2
(tj+1−tj) ‖x(tj)‖2

≤ e−
β

2
(tj+1−tj) ‖x(tj)‖2 .

This proves uniform exponential stability. 2

It is quite instructive to see, how Theorems 4 and
5 play together in Step 2 of the following proof.

Proof of Theorem 6:

Step 1: Since the right hand side of (8) is locally
Lipschitz, the initial value problem has a unique
solution (x, k) : [0, ω) → R

n × R for a maximal
ω ∈ (0,∞]. Furthermore, k has at most linear
growth and therefore a possible finite escape time
can only occur in the x-dynamics, which, however,
is a linear system. Therefore, ω = ∞.
Step 2: We show that k ∈ L∞(R≥0, R), whence
Assertion (i).
Suppose that k /∈ L∞([0,∞), R). By (7) it follows
that k(t) tends monotonically to ∞ for t → ∞.
Now Theorem 4 ensures that x(t) tends to 0 as
t → ∞. By the gain-adaptation law (7), there
exists t0 ≥ 0 such that 0 ≤ k̇(t) ≤ ε for all t ≥ t0.
Therefore, Theorem 5 yields that x(t) tends to 0
exponentially, and, invoking again (7), k – as
the integral of an exponentially decaying function
– is bounded. This contradicts the assumption
k /∈ L∞([0,∞), R).
Step 3: We show that x ∈ L∞(R≥0, R

n).
Seeking a contradiction, suppose that x is un-
bounded. Observe, however, that by boundedness
of k and (5), there exists c1 > 0 so that

∀t > 0 :
d

dt
‖x(t)‖ ≤ c1 ‖x(t)‖ .

Choose some t0 ≥ 0 such that ‖x(t0)‖ ≥ ε.
For arbitrary r > 0, set

τr := inf {t > t0 | ‖x(t)‖ = er‖x(t0)‖} ,

σr := sup {t ∈ [t0, τr) | ‖x(t)‖ = ‖x(t0)‖} .

Then

er‖x(t0)‖ = ‖x(τr)‖ ≤ ec1(τr−σr)‖x(t0)‖ ,

and thus τr −σr ≥ r/c1. Since k is monotonically
increasing, and

k̇(t) = ε , for all t ∈ [σr, τr] ,

we have

k(τr) = k(σr) + ε (τr − σr) ≥ k0 +
ε

c1
r .

Since r is arbitrary, the latter contradicts bound-
edness of k. Therefore, x is bounded.

Step 4: We show Assertion (ii).
Since x and k are bounded, it follows that ẋ
is bounded, and so x is uniformly continu-
ous. Consequently, also t 7→ min{ε, ‖x(t)‖}
is uniformly continuous. Thus we may apply
Barbălat’s lemma (Barbălat (1959)) to conclude
that k∞ − k0 =

∫∞
0

min{ε, ‖x(t)‖} dt ∈ R yields
min{ε, ‖x(t)‖} → 0 as t → ∞, which is Asser-
tion (ii). This completes the proof of the Theo-
rem. 2

4. NUMERICAL EXAMPLE

Just to get an impression we apply the gain
adaptation of Theorem 6 to a system of the form

ẋ = (A + δΣ(t) + k(t)ΣA)x .

As an example we choose A =





1 1 1
0 1 1
0 0 −3



 and

Σ(t) = sin tΣ0−cos(
√

2t)ΣA. For the values δ = 0,
δ = 10, δ = 20 we plot (in Fig. 1) the norm of
the solution ‖x(t)‖ and the size of the adaptation
parameter k(t). Analogous results are obtained
for different matrices and higher dimensions; one
may note the fast oscillations in the solution as k
increases.

5. CONCLUSIONS

We have shown numerous stabilization results of
linear systems by rotation. Our main achieve-
ments are the following results:

(a) For any A with tr A < 0, there exists a skew-
symmetric matrix ΣA, such that A + kΣA is
stable for all large k. The matrix ΣA depends
only on the symmetric part A + AT of A.

(b) The system ẋ = A+k(t)ΣA is stable, if k(t) is
sufficiently large and k grows monotonically.
If k is not monotone, then the system may
be unstable, even if k is arbitrarily large.

(c) A stabilizing controller gain function k can
be chosen adaptively.

(d) The dynamic state feedback controller is ro-
bust with respect to skew-symmetric pertur-
bations.



It is clearly a drawback of our approach that we
require the full state vector to be available for
control. Therefore our results can only be seen
as a first step towards the design of an adaptive
controller using rotations. Questions for further
research are for example:

(e) Characterize, for a given matrix A, all skew-
symmetric matrices Σ which are stabilizing
in the sense of (a).

(f) Can a suitable Σ be found adaptively?
(g) Give conditions for a system to be stabiliz-

able by rotations, if one does not have full
access to the state vector.

0 5 10 15 20
0

1

2

3

4
δ=0

||x(t)||
ln(k(t))
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δ=10

||x(t)||
ln(k(t))

0 5 10 15 20
0

1

2

3

4
δ=20

||x(t)||
ln(k(t))

Fig. 1. Dynamic gain adaptation for the time
varying system ẋ = (A + δΣ(t) + k(t)ΣA)x
with different values δ.
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