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Abstract: In this paper, the decision parts of a launch rocket—guidance law (GL)
and autopilot—are discussed. In the controller design, the differential geometry
and sliding mode control are employed. In addition to the individual GL and
autopilot system, stability of the integrated guidance/autopilot (G/A) system are
discussed. Finally, various simulations are demonstrated to examine the feasibility
and performance of the rocket’s integrated G/A system. Copyright c©2005 IFAC
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1. INTRODUCTION

The control of flight vehicles has been an impor-
tant topic ever since the range of human activities
was extended from the earth to the universe. It
becomes even more influential to mankind as the
modern technology progresses, such as invention
of the rockets that transport spacecrafts and satel-
lites beyond the sky. In this paper, the controller
design of trajectory-following launch rockets are
discussed. Specially, GL and autopilot systems
are the two control units in which we are inter-
ested among whole rocket system. Conventionally,
the autopilot system design of spacecrafts and
aircrafts are based on the optimal control the-
ory and the systemical discussion can be found
in (Bryson, 1994). Yet, inventive work that uti-
lize adaptive control and neural network control
on the G/A of autonomous launch vehicles is
proposed by (Johnson et al., 2001). Neverthe-
less, the rocket autopilot systems with quaternion
representation and sliding mode control design
in our previous research works (Yeh, 2003) and
(Cheng, 2004) have also acquired excellent per-
formance, and are reinvented in this paper.

In this paper, new GL and autopilot systems are
proposed. The utilization of differential geometry
and sliding mode theory in GL is designed for
the launch rocket to follow the preset trajectory.
To construct a whole-phase-single-strategy rocket
autopilot system that is suitable in both endo-
and exo-atmosphere, we apply the sliding mode
theory and use a wingless rocket airframe based on
TVC/DCS (Thrust Vector Control/Divert Con-
trol System). In addition to the respective GL and
autopilot subsystems, the integrated G/A systems
are discussed, and the design methodologies of the
system parameters are suggested. Various simu-
lations including aerodynamic model are demon-
strated at the last to verify the feasibility and test
the performance of the rocket’s integrated G/A
systems.

2. NEW GL FOR LAUNCH ROCKETS

3-D Geometry Modelling Generally speaking,
GLs and autopilot systems are both the strate-
gic parts in an airframe; decisions and control
commands are made by them. GLs guide the
airframe’s directions based on the current state
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of the airframe and the circumstances, while au-
topilot systems which depend on a well-designed
controller follow the guidance commands stably.
The illustrative and conceptual flowchart of the
commands in an airframe is shown in Fig. 1, and
the GL system is discussed in this section. The
GL is designed for a transport rocket to trace
a preset optimal launching trajectory from the
earth to the space. The preset optimal launching
trajectory is characterized by a set of polynomial
in three dimensions:

r(τ) =
[
x(τ) y(τ) z(τ)

]T (1)

Based on the differential geometry (Goetz, 1970),
we can find the unit tangent vector t, unit normal
vector n, unit binormal vector b, and curvature κ
of the preset trajectory as follows:

t(τ) =
ṙ
|ṙ| n(τ) = b × t

b(τ) =
ṙ · r̈
|ṙ · r̈| κ(τ) =

|ṙ × r̈|
|ṙ|3

(2)

The proposed strategy for a rocket to follow a
trajectory is firstly to find the n(τ ′) − b(τ ′) plane
that includes the current position of the rocket
rR(t), then minimizing the distance error r(t) =
r(τ ′) − rR(t), as shown in Fig. 2. In other words,
the rocket rR is supposed to track the desired
point rD = r(τ ′) on the n-b plane of the moving
orthogonal coordinate t-n-b. To do so, we begin
with finding the dynamic equations of distance
error, velocity error, and acceleration error:

r = rD − rR = r(τ ′) − rR (3)

ṙ = v = vD − vR = (vR · t)t− vR

= vR‖−vR = −vR⊥ (4)

v̇ = a = aD − aR

= κ|vR‖|2n + (aR · t)t − aR

= κ|vR‖|2n + aR‖ − aR

= κ|vR‖|2n − aR⊥ (5)

In (3), the desired point r(τ ′) is exactly the
projection of the rocket position rR(x, y, z) on the
preset trajectory r(τ), and it is be determined by
the parameter τ ′ that can be calculated by:
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Fig. 2. Geometry of Trajectory-Following Rocket

τ ′ =
{
τ
∣∣ [r(τ) − rR] · ṙ(τ) = 0

}
(6)

In (4), we avoid directly computing the time
derivative of rD due to the inevitable time delay
and resultant numerical error. Instead, we use the
fact that vD, the velocity of the projection point,
is identical to the projection of the rocket velocity
on t, i.e. (vR·t)t. Since it is exactly the component
of vR parallel to t, we define vR‖ = (vR · t)t
and vR⊥ = vR − vR‖, the component of vR

perpendicular to t and on the n-b plane. Similarly,
we also avoid computing the time derivative of
vD directly in (5). We instead use the fact that
aD, the acceleration of the projection point, is
equivalent to the summation of (aR · t)t, the
projection of the rocket acceleration on t, and the
normal acceleration of the trajectory. The latter
is determined by its radius of curvature and the
component of rocket velocity in n direction, i.e.

|vR‖|2
1
κ

n = κ|vR‖|2n (7)

Likewise, we also define aR‖ = (aR · t)t and
aR⊥ = aR − aR‖. Divide the acceleration of the
rocket into components as:

aR = gR + F R

m = gR + ṁ
mvR + aRp , (8)

where gR is the gravity, F R is the propellent force,
and aRp is the acceleration due to the propellant
of the rocket and variation of mass of the rocket.
Accordingly, (5) becomes:

a = κ|vR‖|2n − gR⊥ − ṁ
mvR⊥ − aRp⊥ , (9)

where the subscript ⊥ represents the components
on the n-b plane, i.e. the components perpendic-
ular to t. Notice that a, v, and r are all on the
same n-b plane.

Guidance Laws Design Applying the sliding
mode control theory, we define the sliding surface
variable as

Sg = v + λr , (10)
where λ is a 3 × 3 diagonal P.D. matrix, and Sg

is a 3 × 1 vector. Since ṙ = v, thus Sg = 0
implies {r , v} → 0 exponentially. To design a
controller capable of leading the convergence to
Sg, we choose the Lyapunov function candidate

Vg(Sg) = 1
2 ST

g Sg (11)



Taking the time derivative of Vg , we have:

V̇g = ST
g

(
κ|vR‖|2n − gR⊥ − ṁ

mvR⊥ − aRp⊥
− λvR⊥ + dg

)
, (12)

where the disturbance d
( 3×1)
g is specially taken

into consideration, which comes from both para-
metric uncertainties and unmodelled dynamics.
Parametric uncertainties might be caused by the
estimated errors of position, velocity, mass, vari-
ance of mass, propellent force, etc., whereas un-
modelled dynamics could be aerodynamics, para-
sitic dynamics, etc. Without loss of generality, we
assume that there exists an upper bound dmax

g on
the disturbance dg , i.e. |dg| ≤ dmax

g . Design the
control law as:

aRp⊥ = κ|vR‖|2n − gR⊥ − ṁ

m
vR⊥ − λvR⊥

+(dmax
g + ηg)sgn(Sg) , (13)

where η
( 3×1)
g > 0 is an adjustable vector variable,

and sgn(Sg) = [sgn(Sg1), sgn(Sg2), sgn(Sg3)]T .
With the designed control law, we get:

V̇g = ST
g dg − ST

g dmax
g sgn(Sg) − ST

g ηgsgn(Sg)

≤−ηT
g |Sg| (14)

Accordingly, the system trajectories will reach
the sliding surface Sg = 0 in finite time less
than maxi

|Sgi(t0)|
ηg

, remain on it, and then are
constrained by the sliding surface itself, namely
Sg = v + λr, which implies the exponential
convergence of distance error r and velocity error
v. Knowing that |aM | = N

m , aRp‖ = (aRp · t)t,
and aRp⊥ = aRp − aRp‖, we have

aRp‖ = t
√(

N
m

)2 − |aRp⊥|2 (15)

Hence, the desired acceleration command is

ad = aRp⊥ + aRp‖ , (16)

and is delivered to the autopilot system described
in next section.

3. AUTOPILOT DESIGN AND ANALYSIS OF
INTEGRATED G/A SYSTEM

The autopilot systems and the analysis of inte-
grated G/A system are discussed in this section.
An autopilot system is a mechanism which re-
ceives the acceleration commands from GLs and
controls the actuators to stabilize the airframe
while performing those commands. In this pa-
per, the autopilot system is divided into three
parts for design as in Fig. 1, but the actuator
dynamics is excluded from our topics. Fig. 3 shows
the architecture of the rocket, where TVC is a
mechanism realized by a moveable tail nozzle, and
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DCS is an additional auxiliary propellent system
mounted on lateral of the airframe. Both TVC
and DCS have the advantage of maneuvering abil-
ity in both endo- and exo-atmosphere, whereas
control surfaces work only in endoatmosphere.
With this reason and a motivation to design a
whole-phase-single-strategy controller, we choose
an airframe without control surface, which dom-
inates the aerodynamic force. By this, the de-
signed whole-phase-single-strategy controller will
be more compatible with the circumstance where
less aerodynamic influence on the airframe in both
endo- and exo-atmosphere is expected. Based on
physics laws, the kinematic equations of the air-
frame are composed of those of both TVC and
DCS, that is

F prop
b = F TV C

b +F DCS
b =


 N cos θ

N sin θ cos φ+FD
y

N sin θ sin φ+FD
z




τ prop
b = τ TV C

b + τ DCS
b (17)

=


 0

N lTV C sin θ sin φ − lDCSFD
z

−N lTV C sin θ cos φ + lDCSFD
y


 (18)

Translate Acceleration CMDs into Attitude CMDs
The “Transform” part in Fig. 1 transforms the ac-
celeration commands from a GL into the attitude
commands. In Fig. 4, the vector of the desired
acceleration command ad generated from (16) is
produced by the constant main propellant TVC,
and the directions of yb and zb are the “don’t care”
factors for this cylindrical, non-aerodynamically
maneuvering airframe. To interpret the attitude
commands, we firstly set a reference coordinate
frame, and then find the relationship between the
reference coordinate frame and the acceleration
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Fig. 4. Desire Quaternion



command vector. According to the Euler’s rota-
tion theory, there exists a vector ê and an angle φ
such that xi will coincide with xb after undergoing
an rotation of the angle φ by the vector ê . The
vector ê and the angle φ can be obtained by:

ê = xi×xb

|xi×xb| = xi×ad

|xi×ad| (19)

φ = cos−1
(

xi·xb

|xi||xb|
)

= cos−1
(

xi·ad

|xi||ad|
)

, (20)

which can be used to represent the desired at-
titude command in quaternion representation as
described in the following subject.

Translate Attitude CMDs into Torque CMDs
The “Controller” part in Fig. 1 generated the
torque commands for the desired attitude com-
mands. The attitude is expressed by quaternion q
and angular velocity ω; (qe, ωe) are defined as the
errors between desired values (qd, ωd) and current
values (q, ω) as follows:




qe1

qe2

qe3

qe4


 =




qd4 qd3 −qd2 −qd1

−qd3 qd4 qd1 −qd2

qd2 −qd1 qd4 −qd3

qd1 qd2 qd3 qd4







q1

q2

q3

q4




ωe = ω − ωd , (21)

where the quaternion is defined as:

q =
[

q
q4

]
=[ q1 q2 q3 q4 ]T =

[
ê sin(φ/2)
cos(φ/2)

]
, (22)

where the unit vector ê = [e1 e2 e3]T and angle φ
are the Euler Axis and Angle exactly. By (22), qd

can be computed from (19) and (20), and in turn
yield the desired angular velocity by the kinematic
equation of quaternion:

ωd = 2


 qd4 qd3 −qd2 −qd1

−qd3 qd4 qd1 −qd2

qd2 −qd1 qd4 −qd3


 q̇d (23)

To generate the torque commands that eliminate
the attitude errors qe and ωe, a controller design
based on sliding mode control theory is proposed.
Define the sliding surface variable as

Sa = Pqe + ωe , (24)

where P is a 3 × 3 P.D. matrix, whereas Sa, qe,
and ωe are 3 × 1 vectors. Choose the Lyapunov
function candidate as

Va(Sa) = 1
2 ST

a J Sa , (25)

where J is the inertia matrix of the airframe.
Taking the time derivative of Va , we have:

V̇a = ST
a

(
1
2 J̇Sa + JP q̇e + Jω̇ − Jω̇d

)
(26)

Applying the kinematic equation of quaternion

q̇e = 1
2 qe × ωe + 1

2 qe4ωe (27)

and the Euler’s equation

Jω̇ = τ b − J̇ω − ω × (J ω) , (28)

we then have:

V̇a = ST
a

(1
2
J̇Sa + JP (

1
2

qe × ωe +
1
2

qe4ωe)

+ τ b − J̇ω − ω × (J ω) − Jω̇d + da

)
, (29)

where the torque command τ b is the control input
of this error tracking system, and the disturbance
d
( 3×1)
a is also taken into consideration as in GL,

including aerodynamics, actuator dynamics, par-
asitic dynamics, etc. Assume that there exists an
upper bound dmax

a on the disturbance da , i.e.
|dai|≤dmax

ai , i=1, 2, 3, and design the control law:

τDb = − 1
2 J̇Sa − JP

(
1
2 qe×ωe + 1

2 qe4ωe

)
+ J̇ω

+ω×(J ω) + Jω̇d − (dmax
a + ηa) sgn(Sa),(30)

where η
( 3×1)
a > 0 is an adjustable vector variable,

and sgn(Sa) = [sgn(Sa1), sgn(Sa2), sgn(Sa3)]T .
With the designed control law, we get:

V̇a = ST
a da − ST

a dmax
a sgn(Sa) − ST

a ηasgn(Sa)

≤−ηT
a |Sa| (31)

Accordingly, the system trajectories will reach
the sliding surface Sa = 0 in finite time less
than maxi

|Sai(t0)|
ηa

, remain on it, and then are
constrained by the sliding surface itself, namely

Sa = Pqe + ωe = 0 (32)

Now, we shall verify that ωe and qe will converge
to zero when the above condition is reached.
Define the Lyapunov function candidate as

Vq(qe) = q T
e qe (33)

Take the time derivative of Vq and use (32):

V̇q = qe4 q T
e ωe =−qe4 q T

e Pqe (34)

Substitute (32) into the kinematic equation of
quaternion:

q̇e4 = − 1
2 qe · ωe = 1

2 q T
e Pqe ≥ 0 , (35)

which implies that qe4 is a non-decreasing positive
variable. Define the domain of rotation angle
φ to be between −π and π, which implies a
non-negative qe4, to avoid the sign ambiguity
in the representation of quaternion. Thus qe4 =
cos(φ

2 ) ≥ 0. If we select a nonzero qe4(t0), which
is determined by the designable initial conditions,
we have 0 < qe4(t0) ≤ qe4(t) ,∀ t ≥ 0. Substituting
it into (34), we have

V̇q ≤ −qe4(t0)q T
e Pqe < 0 , (36)

i.e. Vq(qe) is P.D., and V̇q(qe) is N.D. In addition,
Vq(qe) → ∞ as |qe| → ∞. According to the
Lyapunov direct method, the equilibrium point
qe = 0 is globally asymptotically stable. Com-
bined with (32), the asymptotical stability of qe

also implies the asymptotical stability of ωe.



In summary, with the control law (30) the system
trajectories will reach the sliding surface (32) in
finite time less than maxi

|Sai(t0)|
ηa

, remain on it,
and it follows the asymptotic convergence of the
attitude error qe and angular velocity error ωe.

Translate Torque CMDs into Actuator CMDs
The “Transfer” part in Fig. 1 is designed to cal-
culate the actuator commands that can reach the
desired torque commands. It is interesting to note
that a TVC system generates an unpleasantly
accompanied lateral force while it is trying to
generate a rotational torque by moving the noz-
zle. This accompaniment, however, can be easily
eliminated by the addition of the auxiliary DCS.
In other words, the cooperative strategy between
TVC and DCS ensures a rotational torque without
lateral force accompanied, which is a proper way
for an airframe to change the direction of heading.
To do so, we simply let the summation of the last
two terms of (17) be zero, i.e.,

FD
y =−N sin θ cos φ ; FD

z =−N sin θ sin φ , (37)

and thus get the desired relationship between
TVC moving angles and the required DCS propul-
sion. Substituting them into (18), we have:

τby =
(
N lTV C + N lDCS

)
sin θ sin φ (38)

τbz =− (
N lTV C + N lDCS

)
sin θ cos φ , (39)

which are the rotational torque generated by the
cooperation of the actuators TVC and DCS. To
attain the desired torque commands τDb from
(30), the required actuator commands by refor-
mulating (38) and (39) should be:

sin θD =
√

τ2
Dby

+τ2
Dbz

N lT V C+N lDCS (40)

sin φD = τDby√
τ2

Dby
+τ2

Dbz

; cos φD = −τDbz√
τ2

Dby
+τ2

Dbz

Substituting these required TVC moving angles
into (37), we can obtain the correspondingly re-
quired DCS propulsion:

FD
y = τDbz

lT V C+lDCS ; FD
z = −τDby

lT V C+lDCS (41)

In (40), 0 ≤ φD ≤ 2π and 0 ≤ θD ≤ θM = sin−1k,
the maximum limit of TVC moving angle. The
following saturation function is used to modify the
torque commands if the desired actuator angle θD

exceed the its limit θM :

τDbi = τDbi , if (42)
√

(τDby)2+(τDbz)2 ≤ kN
(
lTV C + lDCS

)
τDbi = τDbi√

(τDby)2
+(τDbz)2

kN(lT V C+lDCS) , o.w.

where the subscript i = y or z.

Integrated G/A System Analysis While deriving
the GL, we assume having a perfect autopilot

system to execute the guidance commands and
thus fulfill the aimed goal. The assumption is
unrealistic though, and thus the the stability anal-
ysis should be re-derived for an integrated G/A
system with an imperfect autopilot subsystem.
Recall from (16) that ad = aRp⊥ + aRp‖, the
desired acceleration command given by GL. For
an imperfect autopilot system, the actual acceler-
ation output is defined as ac rather than ad, and
the relationship between them is found in (Cheng,
2004), where the final result is:

ac⊥ = (1 + E)aRp⊥ (43)

If the control |aRp⊥| �= 0, and we let P in Sa =
ωe + Pqe to be P = p I3×3, then the bound of E
is found as:

|E| ≤ 1
p EA , (44)

where EA is a bounded positive scalar. The con-
trol |aRp⊥| = 0 if the situation is satisfying and
no further control is needed. Define the Lyapunov
function candidate of the integrated G/A system:

V = 1
2 ST

g Sg + 1
2 ST

a J Sa , (45)

Substitute ac⊥ for aRp⊥ in (9), it is found in
(Cheng, 2004) that

V̇ ≤−ηT
g |Sg|+ST

g

(
dg+ EAEB

p

)
−dmax

g |Sg|−ηT
a |Sa| ,

(46)
where EB is a bounded positive scalar. If we
choose a large enough p and let dmax

g to be

dmax
g ≥ |dg| + EAEB

p (47)

Then we have:

V̇ ≤ −ηT
g |Sg| − ηT

a |Sa| (48)

is N.D. In addition, V → ∞ as
∣∣[xT ;ST

a ]
∣∣ → ∞.

According to the Lyapunov direct method, we can
therefore conclude that with the suggested system
parameters the overall integrated G/A system is
globally asymptotically stable.

4. SIMULATION AND ANALYSIS

In this section, we examine the performance of
the rocket integrated G/A system. In this sim-
ulation, we referred to actual information from
the launch rocket Taurus, which recently trans-
ported the Taiwanese Satellite II in June, 2004.
The launch rocket Taurus consists four stages, and
the Stage IV starts igniting about 8min after the
Stage III had been burnout. In other words, the
rocket made no further control but was affected
only by the gravity and did free motion in its
direction by its own velocity from the instance
the Stage III being burnout to the instance the
Stage IV starting igniting. In fact, the orbit posi-
tion, entering velocity and attitude of the instance
Stage III being burnout are all designed to achieve
those of the instance Stage IV starting igniting.
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Fig. 5. Rocket’s Integrated System

Therefore, the simulation is made on the flight
sequence from Stage I to Stage III, and the goal
is to track the position, velocity and attitude of
the preset trajectory profile. The preset trajectory
can be characterized by 2 order polynomial as:

r(τ) =


 x(τ)

y(τ)
z(τ)


 =


 0.49427τ2 + 4.0778e−12τ

0.49427τ2 + 4.0778e−12τ
3.2886e−16τ2 + 259τ




where τ = 0 ∼ 1000. Because of the different
mechanism in each stage, the parameters of rocket
airframe are divided into 4 sets, and can be found
in (Isakowitz, 1991). The initial total mass and
length of whole rocket are 75,000kg and 27.4m,
respectively, and the initial velocity of rocket is
set 2.59m/s upright. In the simulation, we simply
omit the rotation and revolution of the earth.

In Fig. 5(a), we draw an arrow each 10sec to rep-
resent the attitude of the rocket. The total flight
time is 279sec, final velocity is 6744.7m/s and
the maximum distance error is less than 9.5474m
throughout the whole launch phase, thus satisfy
the requirements. Through the whole phase, two
dramatic changes are occurred when the rocket
makes stage separations in 112.6sec and 188.2sec.
In (b), (g) and (h), the peak value of errors happen
at the two time instant, and those errors have
converged immediately as expected. In (c), the
variation of propulsion acceleration is induced by
the decreasing of the fuel mass and the different

propellent force in each stage. In (d), the nor-
mal acceleration of trajectory increasing as the
airspeed growing but decreasing as the reducing
of the radius of curvature of the preset trajectory.
In (i), the moving angle of TVC θ reaches the
constraint 15deg. In (j), the total thrust torque
is generated by the cooperation TVC and DCS.
In (k), the aerodynamics produces huge effect
and induces distance errors before 112.6sec, when
the rocket is inside atmosphere and is with the
maximum surface without any stage separations.

In summary, the performance of the designed
rocket integrated G/A system is excellent, and
the system can achieve the trajectory-following
task in the presence of aerodynamics which is
considered as disturbance over the design.

5. CONCLUSIONS

Being the decision parts of an rocket, GL and
autopilot system are discussed is this paper. A
wingless airframe based on TVC/DCS and the
sliding mode theory is proposed, which makes the
autopilot system an whole-phase-single-strategy
robust controller. Besides, new rocket GL based
on differential geometry and sliding mode theory
is presented. Finally, the stability of the integrated
G/A system is guaranteed by the suggested sys-
tem parameters, and verified by various simula-
tions.
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