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Abstract: The paper suggests a method for motion generation and feedback stabilization
of a dynamical model of an underactuated ship with 3 degrees of freedom and 2 control
inputs with a presence of lumped enviromental forces acting on the model. If the
geometrical path for ship motion is given, the method suggests a description of all feasible
motions of the model along this path. It is shown how to desing controller to counteract
enviromental forces remaining on path. Copyright c©2005 IFAC.

1. INTRODUCTION

This paper discusses the motion planning and mo-
tion feedback stabilization for dynamical underactu-
ated ship models taken from (Fossen, 2002). The re-
lated control problems of orbital stabilization for un-
deractuated mechanical systems have recently been
approached and solved based on ideas of virtual holo-
nomic constraints. The constraint functions of the con-
figuration states for the mechanical system are not
imposed by physical constraints, but are chosen dur-
ing the design. The function values are then made
invariant along the closed loop system solutions by
feedback action, see details in (Shiriaev and Canudas
de Wit, 2004).

The ship models considered do not enter into the
class of systems considered in (Shiriaev and Canudas
de Wit, 2004), as they contain the first and second
order velocity terms due to the friction forces, which
were disregarded in (Shiriaev and Canudas de Wit,
2004). However, the beauty of such ship models is
that the path planning for such models results in a
dynamical system which could be analyzed by the

method suggested in (Shiriaev and Canudas de Wit,
2004) and (Shiriaev et. al., 2004).

This observation opens up several possibilities for mo-
tion planning and the feedback stabilization for under-
actuated ships. It also provides new insights and in-
terpretation to previously developed control schemes
reported in (Hauser and Hindman, 1995; Fossen and
Strand, 2001; Skjetne et al., 2004) for classes of fully
actuated systems. To clarify the paper contribution
and to emphasize its differences compared to the re-
sults reported in (Fossen and Strand, 2001; Skjetne
et al., 2004), we should state that both approaches
suggest to choose a particular path (geometrical con-
straint imposed on configuration coordinates), which a
feedback controller is to make orbitally stable. If such
stabilizing controller is found, the remaining degree
of freedom is then the scalar variable θ which param-
eterizes the motion of the system along the prescribed
path. In the case of full actuation the dynamics of the
θ-variable 1 could be chosen 2 arbitrarily.

1 that is, the desired velocity θ̇ and acceleration θ̈
2 under appropriate technical assumptions



However, for underactuated systems the dynamics of θ
cannot be chosen arbitrarily. It is determined primarily
by the dynamics of the system itself and the prescribed
path. Therefore, for an underactuated case a number
of questions arise: How to determine what functions
θ(t) are obtained provided that the path is given?
Could one describe all functions {θ(t)} provided that
the path is given? Could one stabilize the motion of
the system encapsulated by a particularly chosen θ(t)
provided that the path is given? In this paper these
questions are considered and partly answered. The rest
of the paper is organized as follows: Section 2 contains
both a description of the ship model and one of the
main results stating the stability properties of the
desired equilibrium. The proof of Theorem 2 is given
in Appendix A. Section 3 describes the controller
design and a numerical example with simulations is
given in Section 4. Section 5 concludes the paper.

2. MOTION PLANNING FOR
UNDERACTUATED SHIP MODEL

In this Section a path planning problem for a ship with
3 degrees of freedom and 2 control inputs is discussed.
Feasible motions of the ship model for these paths
are computed for an illustrative example 3 taken from
(Fossen, 2002, Example 10.1, p. 410): it describes
a high speed container ship of length L = 175 m
and displacement volume 21.222 m3; it is assumed
that it is actuated by one rudder and a forward thrust
propeller. Let

η = [n, e, ψ]T (1)

denote the North-East positions and the yaw angle,
and

ν = [u, v, r]T (2)

be the velocity vector in the body frame. The kinemat-
ics equation is then

d

dt
η = R(ψ)ν, ν = R(ψ)T

d

dt
η (3)

with

R(ψ) =

⎡
⎣ cosψ − sinψ 0

sin ψ cosψ 0
0 0 1

⎤
⎦

being the rotation matrix in yaw. The surge speed
equation and the steering equations (sway and yaw)
are assumed to be decoupled. The ship dynamics
written in body frame is then

Mν̇ + N(ν)ν = B(ν)τ + R(ψ)T w (4)

where τ = [T, δ]T is the control inputs with T being
the propeller forward thrust and δ is the angle of the
rudder; w is the vector of environmental disturbances;
the matrix functions M , N , and B look as

3 This does not reduce the generality or difficulty of the problem,
but rather gives the reader a taste of a real practical example.

M =
[

m − Xu̇ 01×2

02×1 I2×2

]
(5)

N(ν) =

⎡
⎢⎣
−Xu − |u|X|u|u 01×2

02×1 −U

L

[
a11 La12
a21

L
a22

]⎤⎥⎦(6)

B(ν) =

⎡
⎢⎢⎢⎣

(1 − td) 0

0
U2

L
b11

0
U2

L2
b21

⎤
⎥⎥⎥⎦ (7)

Here X(·), aij , and bij are the hydrodynamic coeffi-
cients 4 ; td is the thrust deduction number, td ∈ (0, 1)
and U =

√
u2 + v2 is the total speed.

It will be assumed that the vector w of environmental
disturbance in (4) is constant. Next statement shows
the way how all motions of the ship could be found
provided its control inputs T and δ are chosen to
preserve a given path invariant for ship movements.

Theorem 1. Given a path and the yaw angle as C2-
smooth functions of the new independent variable θ

n = φ1(θ), e = φ2(θ), ψ = φ3(θ), (8)

suppose that there exists a control input τ∗ =
[T ∗, δ∗]T , which makes the relations (8) invariant for
the ship dynamics (4), then the variable θ is one of the
solutions of the dynamical system

α(θ)θ̈ + β1(θ)θ̇2 + β2(θ)θ̇|θ̇| + γ(θ) = 0 (9)

The explicit forms of the functions α(θ), β1(θ), β2(θ),
and γ(θ) are given in the proof.

Proof. The relations (8) imply that
dn

dt
= φ′

1(θ)
dθ

dt
,

de

dt
= φ′

2(θ)
dθ

dt
,

dψ

dt
= φ′

3(θ)
dθ

dt
and

d2n

dt2
= φ′

1(θ)
d2θ

dt2
+ φ′′

1 (θ)θ̇2,

d2e

dt2
= φ′

2(θ)
d2θ

dt2
+ φ′′

2 (θ)θ̇2,

d2ψ

dt2
= φ′

3(θ)
d2θ

dt2
+ φ′′

3 (θ)θ̇2.

The last differential relations in matrix form look as

η̇ = Φ′(θ)θ̇, η̈ = Φ′(θ)θ̈ + Φ′′(θ)θ̇2 (10)

where the vector functions Φ′ and Φ′′ are given by

Φ′(θ) = [φ′
1(θ), φ

′
2(θ), φ

′
3(θ)]

T

Φ′′(θ) = [φ′′
1 (θ), φ′′

2 (θ), φ′′
3 (θ)]T

The dynamics of the ship (4) takes the form

M
[
R(ψ)T η̈ + Ṙ(ψ)T η̇

]
+N(R(ψ)η̇)R(ψ)η̇ =
= B(R(ψ)η̇)τ∗ + R(ψ)T w

4 The numerical values for the example are m = 21.2·106, Xu̇ =
−6.38 · 105, a11 = −0.7072, a12 = −0.286, a21 = −4.1078,
a22 = −2.6619, b11 = −0.2081, b21 = −1.5238.



The differential relations (10) allow us to rewrite the
last equations as equations with respect to the θ-
variable

MR(φ3(θ))T

[
Φ′(θ)θ̈ + Φ′′(θ)θ̇2

]
+

+M
d

dθ

[
R(φ3(θ))T

]
Φ′(θ)θ̇2+

+N
[
R(φ3(θ))T Φ′(θ)θ̇

]
R(φ3(θ))T Φ′(θ) θ̇ =

= B
[
R(φ3(θ))T Φ′(θ)θ̇

]
τ∗ + R(φ3(θ))T w

(11)
It is readily seen that the matrix

B⊥ =
[
0, − 1

L
b21, b11

]
(12)

is the orthogonal complement of B(·), that is

B⊥B(ν) = 01×2

Hence B⊥B(ν)τ∗ = 0 irrespective of the choice of
control input τ∗. Premultiplying both sides of Eq. (11)
by B⊥ gives us system (9) with

α(θ) = B⊥MR(φ3(θ))T Φ′(θ) (13)

β1(θ) = B⊥MR(φ3(θ))T Φ′′(θ) +

+ B⊥M
d

dθ

[
R(φ3(θ))T

]
Φ′(θ) (14)

β2(θ) = B⊥N
[
R(φ3(θ))T Φ′(θ)

]
R(φ3(θ))TΦ′(θ)(15)

γ(θ) =−B⊥R(φ3(θ))T w (16)

The computation of the function β2 is of special inter-
est. As seen, the friction forces in surge do not con-
tribute at all to the dynamics of the θ-variable. This is
due to the fact that the vector B⊥ is orthogonal to the
surge direction and that the surge speed equation and
the steering equations (sway and yaw) are assumed to
be decoupled. This finishes the proof.

The dynamics of (9) does not possess a term lin-
ear in velocity, furthermore it has a switching line{
[θ, θ̇] : θ̇ = 0

}
that could lead to presence of slid-

ing modes and non uniqueness of its solutions. These
features make the stability analysis of its equilibria
nontrivial. The statement below suggests a simple test
of asymptotic stability and instability of its equilibria.

Theorem 2. Let θ0 be an equilibrium of the system
(9), that is the point where γ(θ0) = 0. Suppose that
the functions α(θ), β1(θ), β2(θ), and γ(θ) are so that
the following constant

ω0 =
d

dt

[
γ(θ)
α(θ)

]∣∣∣∣
θ=θ0

(17)

is positive, i.e., ω0 > 0, and that the inequality
β1(θ0) + β2(θ0)

α(θ0)
>

β1(θ0) − β2(θ0)
α(θ0)

(18)

holds. Then the equilibrium θ0 of (9) is asymptotically
stable. In turn, if the sign of inequality (18) is opposite,
then the equilibrium θ0 of (9) is unstable.

3. CONTROLLER DESIGN

3.1 Partial Feedback Linearization

Given 3 scalar C2-smooth functions φ1(θ)–φ3(θ) de-
scribing the desired path specification, introduce new
coordinates

y1 =n−φ1(θ), y2 =e−φ2(θ), y3 =ψ−φ3(θ) (19)

These coordinates, y1–y3, together with the scalar
variable θ constitute excessive coordinates for (4).
Therefore, one of them could always be locally re-
solved as a function of the others. Suppose that this
is the case for y3, that is, we have found a smooth
function h so that

y3 = h(y1, y2, θ).

Then the vector of velocities in body frame for the new
coordinates looks as follows

ν = R(ψ)T η̇ = R
(
φ3(θ) + h(y1, y2, θ)

)T

×

×

⎡
⎢⎢⎣

1 0 φ′
1(θ)

0 1 φ′
2(θ)

∂h

∂y1

∂h

∂y2

{
∂h

∂θ
+ φ′

3(θ)
}

⎤
⎥⎥⎦

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦

= L(y1, y2, θ)

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦ (20)

where L in (20) is a 3× 3 matrix function. In turn, the
time derivative of ν takes the form

ν̇ =L(y1, y2, θ)

⎡
⎣ ÿ1

ÿ2

θ̈

⎤
⎦+S(y1, y2, θ, ẏ1, ẏ2, θ̇), (21)

where S is the vector function quadratically dependent
on velocities. Substituting expressions (19)-(21) into
the dynamics (4) gives us the ship model written in
y1, y2, and θ as follows

M

⎡
⎣L

⎡
⎣ ÿ1

ÿ2

θ̈

⎤
⎦ + S

⎤
⎦+N

⎛
⎝L

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦

⎞
⎠L

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦ =

=B

⎛
⎝L

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦
⎞
⎠

[
T

δ

]
+ R (φ3(θ) + h)T

w (22)

where the arguments of the L, S, and h are suppressed.

If one assumes that the 3 × 3 matrix

ML(y1, y2, θ) (23)

has full rank in a vicinity of (8), then premultiplying
both sides of the system (22) by the 2 × 3 matrix

G(y1, y2, θ) =
[
I2, 02×1

] (
ML(y1, y2, θ)

)−1

results in equations resolved w.r.t. ÿ1 and ÿ2[
ÿ1

ÿ2

]
= K

[
T
δ

]
+ Q (24)

where Q is a function independent on τ and



K = G(y1, y2, θ)B

⎛
⎝L(y1, y2, θ)

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦
⎞
⎠ (25)

Let us assume, in addition to invertability of the 3 × 3
matrix in (23), the full rank of the 2 × 2 matrix K
in some vicinity of the path (8). Such assumptions
immediately allow to rewrite the nonlinear equations
(24) into a linear one. Indeed, the feedback transform[

T
δ

]
= K−1

([
v1

v2

]
− Q

)
(26)

from the control inputs T and δ to the new one v will
then give the linear system

ÿ1 = v1, ÿ2 = v2 (27)

of two double integrators.

As expected not all dynamical equations of an under-
actuated ship model could be feedback linearized. It is
readily to check that the rest (nonlinear equation that
complements the linear part (27) to an equivalent ship
model) is represented by the equation

B⊥M

⎡
⎣L

⎡
⎣ ÿ1

ÿ2

θ̈

⎤
⎦ + S

⎤
⎦+B⊥N

⎛
⎝L

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦
⎞
⎠ L

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦ =

=B⊥B

⎛
⎝L

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦
⎞
⎠[

T
δ

]
+ B⊥R (φ3(θ) + h)Tw

=B⊥R (φ3(θ) + h)T
w (28)

Here B⊥ is the orthogonal complement matrix from
(12). The Eqn. (27) allows to eliminate ÿ1 and ÿ2 from
(28)

B⊥M

⎡
⎣L

⎡
⎣ v1

v2

θ̈

⎤
⎦ + S

⎤
⎦+B⊥N

⎛
⎝L

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦
⎞
⎠ L

⎡
⎣ ẏ1

ẏ2

θ̇

⎤
⎦ =

=B⊥R (φ3(θ) + h)T
w (29)

so that (29) is a scalar differential equation w.r.t. θ̈.

The reader could easily check that Equation (29) be-
comes system (9) provided the values of

y1, ẏ1, y2, ẏ2, v1, v2

are all taken as zeros. The next statement summarizes
the arguments.

Theorem 3. Given the path (8), suppose that the matri-
ces (23) and (25) both have full rank in some vicinity
of this path, then the ship dynamical model could be
rewritten in some vicinity of the path as follows

α(θ)θ̈+β1(θ)θ̇2+β2(θ)θ̇|θ̇|+γ(θ) =

= gy

[
y1

y2

]
+ gẏ

[
ẏ1

ẏ2

]
+ gv

[
v1

v2

]
(30)

ÿ1 = v1 (31)

ÿ2 = v2 (32)

where

gy = gy

(
θ, y1, y2, θ̇, ẏ1, ẏ2, θ̈, w

)
gẏ = gẏ

(
θ, y1, y2, θ̇, ẏ1, ẏ2, θ̈, w

)
gv = gv

(
θ, y1, y2, θ̇, ẏ1, ẏ2, w

) (33)

are bounded vector functions of their arguments.

3.2 Control Design for the Case of Friction Dominance
in Dynamics of Eq. (9)

As shown above, the motion of the underactuated
ship along the prescribed path (8) is determined by
the dynamics of the scalar non-smooth differential
equation (9). Each term in the dynamics — β1(θ)θ̇2,
β2(θ)θ̇|θ̇|, γ(θ) — has clear physical interpretation:
γ(θ) comes due to an effect of environmental distur-
bances; β2(θ)θ̇|θ̇| represents friction effect; β1(θ)θ̇2 is
due to chosen path profile, see (13)–(16).

Let us consider the practically important case when
the dynamics of (9) is damped due to the friction to
one of equilibria formed by the environmental distur-
bances, i.e., that there is an equilibrium θ0 of the sys-
tem (9) 5 and that this equilibrium is asymptotically
stable. As shown below for this case the nonlinear PD-
controller stabilizes such equilibrium 6 .

Theorem 4. Given geometrical constraints (8) de-
scribing a pre-described path for the ship in the inertial
frame, suppose that

(1) The system (9) has an asymptotically stable equi-
librium at θ0

7 ;
(2) The matrices (23) and (25) both have full rank in

some vicinity of the path (8).

Then the feedback controller[
v1

v2

]
= −Kp

[
y1

y2

]
− Kd

[
ẏ1

ẏ2

]
(34)

with 2 × 2 matrices Kp, Kd that stabilizes the double
integrator (31)-(32), renders the equilibrium

n0 = φ1(θ0), e0 = φ2(θ0), ψ0 = φ3(θ0) (35)

of the closed loop system (3), (4), (19), (26) and (34)
asymptotically stable.

Proof follows from the fact that the zero dynamics
of the closed loop system is asymptotically stable.
Therefore, a feedback stabilization of regulated out-
puts y1 and y2 implies local asymptotic stability of the
equilibrium (35).

5 θ0 is determined as a solution of the equation γ(θ0) = 0
6 Such result is closely related to the Weather Optimal Control
algorithm suggested in (Fossen and Strand, 2001) for the case of
fully actuated ship model, but the found controller and the closed-
loop stability analysis are different.
7 Conditions for this are discussed in Theorem 2.



4. EXAMPLE

Consider the following desired path given in the iner-
tial frame ψ(θ) = −θ − π/2 and

n(θ) = 1000(1 + 0.5 cos(θ) − 0.15 cos(2θ)) sin(θ),

e(θ) = 1000(1 + 0.5 cos(θ) − 0.15 cos(2θ)) cos(θ)

The results of the computer simulations are depicted
on Fig. 1. In both plots the desired path in the North-
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Fig. 1. (a) The solution of the closed loop system with
the vector of the environmental disturbance w
(37), i.e., to east, which originates in the point
(36). (b) The same simulation with a substantial
level of white noise is added to all signal mea-
surements.

East (n-e) coordinates is shown in red. The true mo-
tion of the center of mass of the ship is shown in green,
and the ship frame is depicted in blue.

The PD-controller gains Kd and Kp, see (34), were
chosen in the simulations as indentity matrices. The
initial conditions were

n(0) = −100, e(0) = −250, ψ(0) = −0.1
u(0) = 0.1, v(0) = −0.01, r(0) = 0 (36)

The vector w of the enviromental disturbance was

w = [0, 1, 0]T , (37)

of direction to east. It is shown in red on both plots.

5. CONCLUSIONS

In this paper we discuss the problem of motion plan-
ning and feedback control design for an underactuated
ship model taken from (Fossen, 2002). It is shown that
underactuation in the ship dynamics naturally leads to
investigation of a particular dynamical system of sec-
ond order. The detailed investigation of such system is
done. This allows to provide some modifications and
insights for the weather optimal positioning control
design introduced in (Fossen and Strand, 2001) for a
fully actuated ship model.
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Appendix A. PROOF OF THEOREM 2

The sliding surface of (9) is Γ =
{

[θ, θ̇] : θ̇ = 0
}

. The vector field
of (9) on the sliding surface Γ is transversal to Γ except for points
where γ(θ) = 0. However, these points are isolated equilibria
of (9), see (16). Hence, any solution of (9), if exists, is unique.
Introduce two dynamical systems

α(θ)θ̈ +

[
β1(θ) + β2(θ)

]
θ̇2 + γ(θ) = 0 (A.1)

α(θ)θ̈ +

[
β1(θ) − β2(θ)

]
θ̇2 + γ(θ) = 0 (A.2)

The lack of nontrivial sliding motions on Γ allows us to state that
the phase plane is a union of two sets U1 and U2 defined by



U1 =
{

[θ, θ̇] : a solution of (9) with origin at[θ0, θ̇0] locally

coincides with a solution of (A.1) originated from[θ0, θ̇0]

}
U2 =

{
[θ, θ̇] : a solution of (9) with origin at[θ0, θ̇0] locally

coincides with a solution of (A.2) originated from[θ0, θ̇0]

}
Roughly speaking the set U1 is a union of an open upper half plane
of the phase plane, i.e.,

{
[θ, θ̇] : θ̇ > 0

}
, and some subintervals of

the sliding line Γ, while the set U2, in opposite, consists of an open
lower half plane, i.e.

{
[θ, θ̇] : θ̇ < 0

}
, and complementary parts of

the sliding surface Γ.

The condition (17) implies that both systems (A.1) and (A.2) have
centers at the equilibrium point θ0, see (Shiriaev et. al., 2004).
Figure A.1(a) and (b) give examples of the phase portraits of (A.1)
and (A.2) around their corresponding equilibrium.
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Fig. A.1. (a) An example of the phase portrait of the system (A.1);
(b) An example of the phase portrait of the system (A.2). Both
systems have the centers around the equilibrium θ0 ≈ 4.7.

Knowing the solutions of the systems (A.1) and (A.2), one could
obtain the solution of the original non-smooth system (9). For
example, if a solution starts in U1 then it coincides with the solution
of (A.1) with the same origin until it attains the switching surface
Γ. Then it enters into the area U2 and follows the solution of the
system (A.1), and so on. This behaviour is illustrated in Figure A.2.
As seen in Figure A.2, even if systems (A.1) and (A.2) have centers
at the equilibrium θ0, the non-smooth system (9) would have this
equilibrium either asymptotically stable or unstable dependent on
the character of the periodic motions of (A.1) and (A.2).

Figure A.2(a) shows an example where the dynamics of (9) in the
area U1 coincides with the one shown on Figure A.1(a); and in
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Fig. A.2. Examples of phase portraits of the non-smooth sys-
tem (9): (a) Here the dynamics on U1 coincides with shown
on Figure A.1(a), and on U2 coincides with shown on Fig-
ure A.1(b); (b) An opposite situation: the dynamics on U1

coincides with shown on Figure A.1(b), and on U2 coincides
with shown on Figure A.1(a). As seen, the plots show two
qualitatively different behaviours: asymptotic stability of the
equilibrium for the case (a) and instability for the case (b).

the area U2 coincides with the one shown on Figure A.1(b). As
seen, for such a non-smooth dynamical system the equilibrium at
θ0 is asymptotically stable. If one changes the dynamics on U1 to
coincide with the one shown on Figure A.1(b) and on U2 to coincide
with the one shown on Figure A.1(a), then the equilibrium becomes
unstable.

To prove Theorem 2 we need to show that the validity of condition
(18) implies that the non-smooth system (9) has the phase portrait
of the form shown on Figure A.2(a). It is easy to check that the case
shown on Figure A.2 takes place only if the next statement is true.

Statement 1. Let θ0 be an equilibrium of (9) and the inequality (17)
be valid. Consider a solution θ+(t) of (A.1) and a solution θ−(t)
of (A.2) both with origin at[

θ±(0), θ̇±(0)
]

= [θ0 − ε, 0]

where ε > 0. Denote T+ the smallest positive time instant when
θ̇+(T+) = 0 and T− the smallest positive time instant when
θ̇−(T) = 0. Both T+ and T− are the functions of the parameter
ε, T+ = T+(ε), T− = T−(ε) . Then the equilibrium θ0 is
asymptotically stable if and only if for all sufficiently small positive
ε the inequality

θ+(T+(ε)) < θ−(T−(ε)) (A.3)

is valid. Furthermore, the inequality (A.3) takes place for all suffi-
ciently small positive ε provided that the inequality (18) holds.


