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Abstract: We develop an interval observer working in closed loop, for the state
variables estimation of systems whose modelling is uncertain, as it is generally the
case for bioprocess models. The considered class of systems consists in a linear
component and a nonlinear part. The nonlinear part contains the uncertainty
but does not necessarily fulfil the monotonicity conditions required to design
an interval observer. We rewrite this term as the sum of an increasing and of
a decreasing function, and then propose a closed loop interval observer whose
error dynamics is a cooperative system. A bundle of observers is then generated
by appropriately varying the observer gains. A reinitialisation procedure allows to
improve the interval estimation and convergence rate. The observer performance
is illustrated with a two dimensional model for a wastewater treatment process.
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1. INTRODUCTION

Biotechnological processes play an important role
in the nowadays industry. Applications of biotech-
nology can be found e.g. in food industry, pharma-
ceutical, depollution processes (Stephanopoulos
et al., 1998). In contrast with other kinds of
processes that are perfectly described by phys-
ical laws -like mechanical or electrical systems-
biotechnological processes are dealing with living
organism. As a consequence, their mathematical
models are uncertain and are known to have a
lower aptitude to accurately match experimental
results.
On the other hand, online monitoring of biotech-
nological processes is a very difficult task. The
general difficulty to measure chemical and bio-
logical variables is one of the main limitations in
the improvement of monitoring and optimisation

of bioreactors (Bernard and Gouzé, 2002). The
lack of hardware sensors to perform monitoring
tasks has forced the implementation of compli-
cated, and not reliable methods. This problem
becomes of great importance in more complex sys-
tems like anaerobic wastewater treatment plants,
where critical instability of the process must be
avoided, making the monitoring of the system
variables an important issue (Dochain and Van-
rolleghem, 2001; Mailleret et al., 2004).
As an efficient solution for the inherent problem
of monitoring in biotechnological processes, the
internal state reconstruction can be achieved by
formulating observers, also called software sen-
sors.
Many types of observers have been proposed and
extensively studied, even for nonlinear biological
systems (Bastin and Dochain, 1990; Bernard and



Gouzé, 2002) and the choice of the design method
depends on the kind of available models. Indeed,
the quality of the used model is a factor of great
importance when choosing an observation strat-
egy. For instance, if a good model is available
(a correctly identified and validated model), a
high gain observer (Gauthier et al., 1992) may
perform good estimations of the internal state. If
we have to deal with large uncertainties in model
parameters, inputs and measurements, interval
estimations should give us the best approach
(Gouzé J.L. and Hadj-Sadok, 2000; Rapaport and
Gouzé, 2003), since it provides an estimate of the
quality of the estimate.
Interval Observers work under the formulation of
two observers: An upper observer, which produces
an upper bound of the state vector, and a lower
observer producing a lower bound, providing by
this way a bounded interval in which the state
vector is guaranteed to lye. For the formulation
of the interval observer, it is necessary to know
bounds of the uncertainties in the model (i.e. un-
certainties in model parameters, input variables,
etc.). The theoretical basement of an interval ob-
server is based on theory of cooperative systems
(Smith, 1995). Such cooperative systems have the
property to keep the order between 2 trajecto-
ries, and they can thus provide bounds of the
behaviour of the state vector, depending on the
bounds of the uncertainties in the model.
The design of such observers for non monotone
systems is much less straightforward. The goal
of this paper is thus to extend the classical ap-
proaches to derive interval observers even when
the initial system is not cooperative. Then, taking
benefit of the available measurements to close the
loop, we propose a guaranteed interval estimation
involving an observation gain. We run then several
observers in parallel, obtaining a bundle of ob-
servers (Bernard and Gouzé, 2004), and we take
the best estimate provided by the bundle. This
concept has been successfully applied in (Bernard
and Gouzé, 2004) and basically takes advantage
of the various interval observers behaviours asso-
ciated to appropriate gain values.
This paper is organised as follows. In section 2 the
considered system is presented, and the proposed
strategy to design the closed loop interval observer
is described. Section 3 is devoted to running many
observers in parallel to obtain the observer bundle.
The example of the anaerobic wastewater treat-
ment process is studied in Section 4 where an
observer for this system is derived and simulation
results are shown and discussed.

2. INTERVAL OBSERVERS: CLOSED LOOP
APPROACH

We consider a class of nonlinear systems whose
dynamics are expressed as follows (Rapaport and
Gouzé, 2003):

(S2) :

{

Ẋ(t) = AX(t) + ψ(X, y);X(0) = X0
y = CX(t)

(1)
where X ∈ Ω ⊂ Rn is the state vector of the
system, A ∈ Mn×n, C ∈ M1×n and y ∈ R
is the system output. This specific mathematical
structure is composed by a linear term and an
uncertain nonlinear function ψ(X, y). We will as-
sume in the sequel that ψ(X, y) is a C1 Lipschitz
function.
Note that the same principle of observer design
straightforwardly applies to a system output of
dimension p. For sake of simplicity we focus here
on the single output case.
An example of such a structure can be found in
the classical mass balance models for bioprocesses
as proposed by (Bastin and Dochain, 1990). In-
deed the general model of a bioreactor working in
continuous or chemostat mode can be written as
follows:

Ẋ = −DHX +Kr(X) +DXin −Q(X) (2)

In this model, the state vector X = (X1, X2, . . . ,
Xn)

t is the vector of all the process concentra-
tions and biomasses. The matrix K contains the
stoichiometric coefficients, also known as yield
coefficients of the model. The vector r(X) =
(r1(X), r2(X), . . . , rk(X)) t is a vector of reac-
tion rates (or conversion rates) representing the
microbial activity. The diagonal matrix H stands
for the fraction of biomass or substrates in the
liquid phase. The influent feeding concentration
is represented by the positive vector Xin. The
dilution rate D > 0 is the ratio of the influent flow
rate and of the volume of the fermenter. Finally
Q(X) represents the gaseous exchange with the
outside of the fermenter.
With such a classical modelling we have e.g.:

A = −DH and ψ(X) = Kr(X) +DXin −Q(X)

The bacterial kinetics model (r(X)) is generally
a rough approximation and is highly uncertain.
Moreover, for wastewater treatment process where
the influent concentrations are generally not accu-
rately estimated, the vector Xin is not accurately
measured.
The objective of this paper is to derive an interval
observer for the class of systems (1). The idea
is to develop an interval observer based on the
cooperative system theory that we briefly recall
hereafter.

Definition 1. Cooperative Matrix (Smith, 1995).
A matrix P is said to be cooperative if and only if
all of the components out of its diagonal are non
negative.

P is cooperative ⇐⇒ pij ≥ 0 ∀i, j ≤ n, i 6= j

The main properties of a cooperative system de-
fined by



Ẋ = PX + b

where X, b ∈ Rn, is that it keeps the (partial)
order of the trajectories. If we consider two initial
conditions x1(0) and x2(0) such that x1(0) ≥
x2(0), then x1(t, x1(0)) ≥ x2(t, x2(0)),∀t ≥ 0
(note that the inequality x1 ≥ x2 means that for
all the components we have x1i ≥ x

2
i ).

An interval observer is proposed in (Rapaport and
Gouzé, 2003) for system (1) provided that ψ is a
monotone function. Here we want to extend these
results in the case where ψ is not monotone. For
this purpose we will use the following property.

Property 1. The Lipschitz function ψ can be
rewritten as the difference of f and g which are
two increasing functions of X:

ψ(X, y) = f(X, y)− g(X, y)

As a consequence

X− ≤ X ≤ X+ ⇒
ψ̄(X+, X−, y) ≤ ψ(X, y) ≤ ψ̄(X−, X+, y)

(3)

where ψ̄(X1, X2, y) = f(X2, y)− g(X1, y).

Proof : Let us consider f(X) = γX and g(X, y) =
γX − ψ(X, y), where γ ≥ 0 is the Lipschitz
constant. It is clear that g(X, y) is increasing
since:

∂g

∂Xi

= γ −
∂ψ

∂Xi

≥ 0

Remark that a more pragmatic way of decompos-
ing ψ for a broad range of classical functions is
illustrated in the example.

Hypothesis 1. We assume that the imprecisely
known function ψ can be bounded by a lower
and an upper Lipschitz function. As a conse-
quence, from Property 1 there exists two known
functions ψ+(X1, X2, y) and ψ−(X1, X2, y), in-
creasing with respect to X1 and decreasing with
respect to X2 such that ∀(X1, X2, y) ∈ Ω×Ω×R:

ψ−(X1, X1, y) ≤ ψ(X1, y) ≤ ψ+(X1, X1, y)

and

X1 ≤ X ≤ X2 ⇒
ψ−(X1, X2, y) ≤ ψ(X, y) ≤ ψ+(X2, X1, y)

(4)

Now we can propose the interval observer for
system (1) in the same spirit as for the classical
Luenberger approach:

Lemma 1. (Closed Loop Interval Observer). If
there exists gain vectors Θ1 and Θ2 such that
matrix A+ΘC is cooperative, then the following
system is an interval observer for (1), provided
that X−(0) ≤ X(0) ≤ X+(0):

dζ

dt
=

(

A+Θ1C 0
0 A+Θ2C

)

ζ −

(

Θ1
Θ2

)

y + ψ̃(·)

(5)

where ζ = (X+, X−)t, ψ̃(X−, X+, y) = (ψ+(X+,
X−, y), ψ−(X−, X+, y))t and Θi = (θi1, ..., θ

i
n)

t

(for i = 1, 2) are two gain vectors.

The vectors X−, X+ ∈ Rn corresponds respec-
tively to the lower and upper bounds of the state
X. The gains Θ1 and Θ2 are the correcting gains
between the observer predictions and the real sys-
tem output.
Proof : Let us denote P the cooperative matrix

P =

(

A+Θ1C 0
0 A+Θ2C

)

. Let us denote ẽ =

(e+, e−)t the error vector, where e+ = X+ − X
and e− = X − X−. We have thus the following
dynamics for the error:

dẽ

dt
= P ẽ+ φ̃(X+, X−, y) (6)

Function φ̃(X+, X−, y) is defined as follows.

φ̃(X+, X−, y) =

(

ψ+(X+, X−, y)− ψ(X, y)
ψ(X, y)− ψ−(X−, X+, y)

)

(7)
By initial condition hypothesis, ẽ(0) ≥ 0.
Now let us apply the standard argues for positive
systems. Let us consider the first time instant t0
when one of the component of vector ẽ is equal
to zero (e.g. the kth component ẽk). We have for
this error component (the components of matrix
P are denoted ρij):

dẽk
dt

= ρkkẽk +

2n
∑

i6=k

ρkiẽi + φ̃k(X
+, X−, y)

and thus at time instant t0:

dẽk
dt

∣

∣

∣

∣

t=t0

=

2n
∑

i6=k

ρkiẽi + φ̃k(X
+, X−, y) ≥ 0

As a consequence ẽk will stay non negative and
finally ẽ will remain non negative for any time t.
Remark 1. The previous observer is an interval
observer in the sense that it provides bounds of
the state variables. However these bounds may
tend toward infinity. If we want to guarantee the
boundness of the interval provided by the ob-
server, we must then add some stability constraint
to matrix A+ΘC, together with some boundness
properties for ψ.
However, as it will be detailed in the sequel, we
will consider the best estimate among a set of in-
terval observers running in parallel. Thus a single
stable observer guarantees the bounding of the
observer envelope. In the example of section 3 we
use unstable observers to improve the transient
interval estimate.
Therefore we do not need all the observers pro-
vided by the various choices of Θ to be bounded,
but at least one of them. In other words, we will
consider a vector Θ for which A + ΘC is both
cooperative and stable such that the interval is
bounded (Rapaport and Gouzé, 2003).



In the general class of bioprocesses considered in
equation (2), we have A = −DH a diagonal ma-
trix. Therefore the choice Θ = 0 provides a matrix
P both stable and cooperative. Since bioprocesses
models as represented by the mass balance model
(2) are bounded for bounded inputs, this proves
the boundness of the trivial open loop interval
observer for Θ = 0.

3. BUNDLE OF OBSERVERS AND
REINITIALISATION

As we have seen, the cooperativity concept ap-
plied to the closed loop observer provides us with
a guaranteed interval for the state vector. It is
worth noting that the closed loop approach in-
troduces some degrees of freedom since the ob-
server convergence can be adjusted by tuning of
the observer gains. Taking advantage of this last
feature, now we run simultaneously several ob-
servers with different values for the gain vectors
Θ1 and Θ2, satisfying always the cooperativity
condition. Thus we use both stable and unstable
observers. In this way, some observers will provide
a better estimate during their transitory response
and other will have better estimated for the steady
state behaviour. Considering different upper [resp.
lower] estimations we will take the lower [resp.
upper] envelope provided by the minimum [resp.
maximum] values reached by this bundle of ob-
servers (Bernard and Gouzé, 2004).
The bundle can be even improved with a reini-
tialisation process. Reinitialisation consist in the
restarting of the whole bundle of observers with
the best estimation performed at the time of reini-
tialisation tr.

[X−0 (tr), X
+
0 (tr)] = [max{X−

Θi
}(tr),min{X+

Θi
}(tr)]

where X−
Θi
, X+

Θi
are the lower and upper en-

velopes, i.e. the best estimates at time tr of X−

and X+ respectively for the set of considered
gain vectors Θi. It is already investigated that
reinitialisation of the observers can dramatically
improve the interval of estimation (Bernard and
Gouzé, 2004).

4. APPLICATION TO AN ANAEROBIC
DIGESTION MODEL

4.1 Introduction

Anaerobic digestion is a wastewater treatment
process used to remove organic carbon from water
using a mixture of bacteria. We will here focus
on a very simple model where only a single bac-
terial population is considered, leading to a two
dimensional model (Mailleret et al., 2004) where
a biomass of bacteria x is growing in a bioreactor
consuming the polluting organic substrate s. A
part of the biomass is attached in the reactor

and thus we consider the fraction of biomass in
the liquid phase expressed by the heterogeneity
factor α ∈ [0, 1]. We assume that the biomass is
measured: y = x (it is worth noting that this case,
also a bit theoretical, is much more interesting to
illustrate our method than the classical case when
substrate is measured).
The associated model is then the following:

{

ẋ = r(X, t)− αDx
ṡ = k1r(X, t) +D(sin − s)

(8)

where sin is the influent substrate, and k1 is a
yield coefficient.
This model has the form (2) with:

H =

(

−α 0
0 −1

)

, K =

(

1
k1

)

,

Xin =

(

0
sin

)

, Q =

(

0
0

)

(9)

As most of the time in biotechnology, the bacterial
growth rate r(X) is a complex function of the
state which is generally badly known. We have to
define an analytical expression for this term. We
consider r(s, x) = µ(s)x, where µ(s) corresponds
to the growth rate function. In particular we will
use the classical Haldane expression which is a non
monotone function of the substrate.

4.2 The Haldane model

The Haldane growth rate model is defined by the
following equation:

µH(s) = µ0
s

s+ ks + s2/ki
(10)

This model assumes that the growth is enhanced
by the substrate until a maximum growth rate
value µmax is reached

µmax = µ(
√

kski)

Then, for higher substrate values, the growth is
inhibited and µH(s) is decreasing. The parameters
ks and ki represent respectively the saturation and
inhibition constants.

4.3 Considered uncertainty

• The Haldane kinetics is uncertain, and thus
we consider that µ−0 ≤ µ0 ≤ µ

+
0

• The influent substrate concentration to be
processed in the bioreactor is not accurately
measured and thus: s−in ≤ sin ≤ s

+
in.

Now the uncertainty can be considered in the
vector ψ, with the same notations than for system
(1):

ψ(s, x) =

(

µ(s)x
Dsin − kµ(s)x

)

(11)

Remark 2. Since the system is not monotone the
design of even a classical high gain observer is not
straightforward.



4.4 Observer design

Since the function µ(s) is non monotone with
respect to s we will first propose to bound it with a
function of two variables, which is monotone with
respect to the two variables. Several mathematical
expressions for the upper and lower bounds of the
function ψ(s, x) could be proposed. We propose
an expression which is not too conservative in
order to keep a good accuracy for the interval
observer. Here we use the following bounding for
the Haldane non monotone growth rate (for s− ≤
s ≤ s+):

µ0ρ̄(s
−, s+) ≤ µ(s) ≤ µ0ρ̄(s

+, s−)

where

ρ̄(s−, s+) =
s−

s− + ks + s−s+/ki

Then we derive ψ+(s+, s−, x) and ψ−(s−, s+, x)

ψ+(s, x) =

(

µ+0 ρ̄(s
+, s−)x

−µ−0 ρ̄(s
−, s+)x+Ds+in

)

ψ−(s, x) =

(

µ−0 ρ̄(s
−, s+)x

−µ+0 ρ̄(s
+, s−)x+Ds−in

)

(12)

The observer gain is Θ = (θ1, θ2)
t and since

biomass is measured C = (1, 0).
The matrix A+ΘC is expressed by:

A+ΘC =

(

−αD + θ1 0
θ2 −D

)

Cooperativity condition of matrix P is fulfilled for
θ2 ≥ 0. The eigenvalues of matrix A + ΘC are
λ1 = −αD+θ1 and λ2 = −D. Since ψ is bounded
for a bounded sin, the boundness of the observer
is guaranteed for θ1 < αD. The interval observer
equations can be written as follows:






































ds+

dt
= D(s+

in
− s+) +

−kµ−
0
s−x

s− + ks + s+s−/ki

+ θ2(x+
− x)

ds−

dt
= D(s−

in
− s−) +

−kµ+

0
s+x

s+ + ks + s+s−/ki

+ θ2(x− − x)

dx+

dt
= −αDx+ +

−kµ−
0
s−x

s− + ks + s+s−/ki

+ θ1(x+
− x)

dx−

dt
= −αDx− +

−kµ+

0
s+x

s+ + ks + s+s−/ki

+ θ1(x− − x)

(13)

4.5 Observer positivity

Now we will slightly modify our observer in order
to keep a positive lower bound of the estimate. In-
deed, the variables of the original system (13) (and
more generally of the biotechnological model vari-
ables (Bernard, 2002)) stay positive, and therefore
a natural trivial bound is X ≥ 0. As we can see
from the observer equation for s− = 0:

ds−

dt

∣

∣

∣

∣

s−=0

= Ds−in −
kµ0s

+x

s+ + k0
+ θ2(x

− − x)

which can be of any sign, showing thus that the
face s− = 0 is not repulsive. Assuring positive

values of s− will be useful to avoid division by
zero in the upper observer equation and also to
improve the final interval of estimation (because
of the positivity of s). To do this, we first remark
that there exists a positive real ε such that s is
always much larger than ε. Indeed, we can find
any ε such that ds/dt|s=ε is as close as wanted to
Dsin > 0, proving that we will never go under the
value ε (we assume that initial conditions verify
s(0) > ε).
As a consequence, the real system verifies ε <
s < s+. We could then take ε into account in the
set of lower observer when computing the upper
envelope. However it is even more convenient
to have a meaningful behaviour of each lower
observer, and therefore we introduce the term
g(s) = s

s+ε
in the equation of the lower bound,

obtaining then the following equations:










ds−

dt
= D(s−

in
− s−) + ...

...g(s−)

(

−kµ+

0
s+x

s+ + ks + s+s−/ki

+ θ2(x− − x)

)

(14)

This new equation does exactly match the previ-
ous observer for s− À ε since g(s−) ' 1. When
s− → 0 then it ensures that s− stays positive
(since g(0) = 0).

4.6 Numerical Application

A bundle of estimations with reinitialisation is
obtained, by considering in parallel 77 observers
working with various gains. Specifically, we run
the observers considering −10 ≤ θ1 ≤ 2 and
0 ≤ θ2 ≤ 100.
Figure 1 shows the dilution input and the influent
substrate with the considered uncertainties for
this input. Bounds for sin and µ0 have been fixed
in a ±5% of their real values. Observer initial
conditions have been fixed in a very large interval
in order to fulfil the initial condition hypothesis
(s+(0) = 100 and s−(0) = 0).
Figure 2 presents the estimates for the substrate.
Parameters of the system considered in this ap-
plication are: k = 42.14, µ0 = 0.74, ks =
9.28mmol/l, ki = 256mmol/l and α = 0.5.
The observers were reinitialised more frequently
(each 0.5 days) after a change of value of the dilu-
tion input, reinitialising every 2.5 days in steady
state conditions.

5. CONCLUSIONS

A closed loop observer has been proposed espe-
cially for non monotone systems. The main idea
consists in transforming the n dimensional non
monotone mapping ψ in a 2n monotone mapping.
Then the observer is such that the equation error
is cooperative, guarantying the bounding of the
state variables.
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Fig. 1. (a) Dilution Input. (b) Input substrate and
bounds .
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Fig. 2. (a) Bundle of estimations with reinitiali-
sation. (b) Final upper and lower envelopes.

We remark that function ψ is computed using
both values of the upper and lower observers.
This way, the observer involves a strong coupling
between the upper bound and the lower bound.
The performance of the observer may then rapidly
be degraded if one of these bounds turns out to
be too loose. This is the reason why considering
the observer bundle with regular reinitialisation
maintains both bounds in a reasonable range.
Note that we could consider a bundle of observers
issued from several observers based on various

bounding functions ψ+ and ψ−. Thus we take
benefit from the fact that in some regions some
bounding are betters than others, and that it may
change with respect to the regions. On the other
hand, noise in the measurements can be faced with
a straightforward bounding - interval analysis.
The approach here developed is illustrated with a
model of an anaerobic digestion process where the
Haldane function is a classical function that repre-
sents growth rate inhibition at high concentration,
and for which the design of a classical observer is
still an open problem.

Acknowledgements: This work has been carried out

with the support provided by the European commission,

Information Society Technologies program, Key action I

Systems & Services for the Citizen, contract TELEMAC

number IST-2000- 28256.

REFERENCES

Bastin, G. and D. Dochain (1990). On-line esti-
mation and adaptive control of bioreactors.
Elsevier.

Bernard, O. (2002). Mass balance modelling of
bioprocesses. Mathematical Control Theory.

ICTP lecture notes.
Bernard, O. and J. L. Gouzé (2002). State esti-
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