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Abstract: A physically parameterized continuous-time velocity-scheduled LPV
state-space model of a heavy-truck is identified from measurement data. The
aim is to develop a model for controller which steers the vehicle by braking
either the one or the other front wheel. It can be applied in many vehicles,
where the sole possibility to automate the steering in emergency situations,
like e.g. unintended lane departure, is the application of the electronic brake
system. Such steering controllers usually require the prediction of the yaw rate
and the steering angle on every possible velocity. This problem defines the
requirements for the model. Four different order model structures are derived
from a certain physical description. Assuming state and output noise, all of them
are identified in parameter-varying observer form using prediction error method.
The quadratic criterion function is composed from measurement data of several
different experiments. Each experiments are carried out on constant velocities
but the cost is constituted from different velocity experiments. That structure is
selected for controller design which has the best cost on test data out of those the
poles of which are in the control bandwidth. The poles are defined on constant
velocity. The resulted nominal model consists of the feedback connection of the yaw
dynamics with one state-variable and the steering system dynamics with two states
and of a first order actuator dynamics with time-delay. The predicted outputs show
a good fit to the measurements. Copyright c©2005 IFAC.
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1. INTRODUCTION

In the most common vehicles, where no elec-
tronic steering system is available but the brak-
ing is controlled by onboard computers, the only
way to automate or assist steering is the use
of the electronic brake system, the application
of individual or unilateral wheel brakes. There
are many papers concerning different approaches

that develop steering by the braking systems. In
(Ackermann et al. 1998) active steering and in-
dividual wheel braking is compared in yaw and
roll control point of view. A method for unilat-
eral braking for rollover avoidance can be found
in (Gáspár et al. 2003a, Gáspár et al. 2003b),
for avoiding unintended lane departure in e.g.
(Kovács et al. 1998, Pilutti et al. 1995). The model



presented in this paper is designed for this latter
application. In the latter two works local linear
models valid on a single constant velocity were ap-
plied for control design. In both works the steering
effect was caused by the moment due to the brake
forces and half width of the vehicle as force arm.
But in case of some trucks (and load distribution)
this has little effect and in general requires heavy
braking.

In the present paper only the first wheels are
braked by small (≤ 1.2bar) pressure in order to
turn aside the steering system. The goal of a
steering controller and its performance can be
expressed for example in terms of the yaw rate
and the steering angle. Thus the requirements for
the model are given: it has to estimate the yaw
rate and the steering angle on the whole range of
velocities when applying asymmetric front wheel
braking.
The dynamics of a vehicle is nonlinear in general,
but steering dynamics is well captured in nor-
mal driving situations by linear models that de-
pend on the velocity (Mitschke 1990, Kiencke and
Nielsen 2000). For these models linear parameter-
varying (LPV) controllers can be designed by solv-
ing linear matrix inequalities guaranteing stability
and performance for the closed-loop on the whole
operating region of the scheduling parameters.
Our aim in this paper is to identify an LPV model,
where the scheduling parameter is the velocity.
The paper is organized as follows. After explain-
ing the experimental conditions the derivation of
the physical model of the vehicle is presented
in section 3. Then the steps of identification are
detailed in separate sections: choice of model set
and parameterization, identification method and
model validation.

2. EXPERIMENTAL CONDITIONS

The experimental vehicle is an MAN truck (F2000
26.403 Silent), the third axle is lifted up. The front
axle is equipped with disk breaks. The electronic
brake system is EBS 2.3. The steering gear of
the vehicle is hydraulic power assisted ball and
nut type of ZF-Servocom 8098. During the data
acquisition the vehicle is driven on a 10m wide
dry asphalt road with constant velocity. The front
wheels are braked alternately by an operator at a
computer connected to the EBS system through
Controller Area Network (CAN) bus. The oper-
ator tries to produce a pseudo random binary
(PRBS) signal, ∆pc (for commanded brake pres-
sure difference), in order to have a large energy
excitation on wide bandwidth. The experiments
are repeated on different velocities. The brake
pressures (pl for front left, pr for front right and
∆p := pr−pl) in the brake cylinders are measured

by sensors. The threshold pressure required the
brake pad to be in contact with the disk is about
0.08 bar. The driver releases the handwheel so the
handwheel is turning according to the turning of
the steered wheels. The handwheel angle (δm) is
measured by a sensor mounted onto the upper
steering column. The handwheel angle is scaled
with the steer-transmission factor is: δm := δm

is
and is redefined in this way in the following. The
yaw rate r is also measured. The forward velocity
v is computed as the average of the rotational
equivalent velocities of the driven rear wheels. The
difference of the rotational equivalent velocities of
the braked front wheels is denoted by ∆vR. The
sampling-time is given: Ts = 10ms.

3. MODELLING

The system from the commanded pressure dif-
ference ∆pc to the measurable outputs y =
[

r δm ∆vR
]T

is described as a serial connection
of two systems

∆p=G1∆pc + ν1

y =G2∆p+ ν2,

where ν1 and ν2 are some disturbances. The first
system G1, can be considered as actuator dynam-
ics, consist of some delay due to the software tim-
ings in the computer, CAN and EBS and an un-
known and complex software-controlled mechanic-
pneumatic dynamics of the brake system.

The dynamic equations of the second system G2

can be derived as follows. First nonlinear equa-
tions are written from force and torque balance
equations for the chassis, the steering system and
the wheels. The following modelling paradigm is
applied. The center of gravity of the vehicle is
sunk down onto the surface of the road. Thus the
variation of tire load, the suspension dynamics,
the coupled roll, pitch and heave motions are not
modelled. The plain of wheels are vertical. The
wheel casters nRK = nR + nK are negligible
as compared to the distance between the wheels
and the center of gravity (CG), but significant
as the force arm of the aligning torque nRKFy

(Fy denotes the lateral wheel force). The tire-road
adhesion model is static and empirical. The rolling
resistance and drag are neglected.

The brake-steering controllers are designed for
normal driving situations with lateral acceleration
less then 0.4g, so linearized models are appro-
priate (Mitschke 1990). The next step is the lin-
earization of equations around the straight driving
state using first order Taylor-series approxima-
tion. During the brake-steering just small brake
pressure of about 1 bar is applied. Therefore the
direct turning effort of the brake force (through



the half vehicle width as force arm) to the chassis
can also be neglected and the adhesion function
µ(s) can be approximated in the region of small
slip values s as µ(s) ≈ µ̄s. For the driver releases
the handwheel (driver torque Td is zero), the fast
dynamics of the upper steering column and hand-
wheel is replaced with its DC component.

The block scheme of the linearized vehicle model
can be seen on Figure 1. The final equations can
be written as

ẋ=A0x+B0u+ w,

y =C0x+ ν2 (1)

x=
[

β r δ δ̇ ∆vR
]T

,

u=∆p,
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where w is the effect of exogenous disturbances
and neglected dynamics and

a11 = −
cf +cr

m
, a12 =

crlr−cf lf
m

,

a13 =
cf

m
, a21 =

crlr−cf lf
Jz

,

a22 = −
crl2r+cf l2

f

Jz
, a23 =

cf lf
Jz

,

a41 =
nRKcf

Js
, a42 =

nRKcf lf−0.5rscf lw

Js
,

a43 = −
nRKcf

Js
, a44 = −

ks

Js
,

a45 =
0.5rscf

Js
, a52 =

0.5cf r2

eff
lw

Jw
,

a55 = −
0.5cf r2

eff

Jw
b1 = −

CpT reff

Jw
.

The physical parameters are lf , lr distances be-
tween CG and axles; cf , cr front and rear cor-
nering stiffness; m total mass; Jz mass moment
of inertia of the vehicle around the vertical axis;
nRK = nR + nK longitudinal caster + caster; rs
force arm of the brake forces; Js, Cs, ks resultant
mass moment of inertia, spring and damping co-
efficients, resp. of the steering system below the
torsion bar; reff effective wheel radius; Jw mass
moment of inertia of a front wheel; CpT brake
transmission factor;

4. CHOICE OF MODEL SET

The systems G1 and G2 are independently iden-
tified. For G1 linear discrete-time black-box mod-
els are chosen in elementary subsystem (ESS)
representation. The structure estimation method
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Fig. 1. The three components of the physical
model of G2. Chassis described by single-
track model (top right gray box), differential
wheel model (bottom) and steering system
(top left).

developed by (Keviczky et al. 1979) and the re-
cursive algorithm by (Bokor and Keviczky 1985)
starts from an overestimated structure and using
prediction error method a maximum likelihood
estimator finds the smallest required structure
and its parameters, and converges with numeri-
cally advantageous properties. In case of output-
error estimation we have the following discrete-
time model set

y(t) =

nr
∑

i=1

biz
−1

1 + aiz−1
u(t− d) +

+

nc
∑

i=1

q1iz
−1 + q2iz

−2

1 + p1iz−1 + p2iz−2
u(t− d) + e(t),

where the wanted parameters are nr, nc for the
number of real poles and complex pairs, resp., d
for time delay, furthermore ai, bi, qij and pij .

Concerning G2, physically parameterized continuous-
time LPV state-space family is chosen in predictor
form

˙̂x(t) =A(θ, ρ)x̂(t) +B(θ, ρ)u(t) + L(θ)e(t),

ŷ(t) =C(θ, ρ)x̂(t) +D(θ, ρ)u(t), (2)

e(t) = y(t)− ŷ(t).

Advantages of physical parameterization:

• Known dependence on the scheduling vari-
able avoids searching in an infinite function
space.

• Less parameters then in case of black-box
models.

• Physical insight into the relevance of the
model components.

• Initialization for higher fidelity nonlinear
models.



• Physical insight into the role of parameters
helps to estimate parametric uncertainty to
the nominal model. (E.g. the change of load,
load distribution and cornering stiffness.)

A disadvantage is that the parameters in canon-
ical forms tend to be ill-conditioned, criterion
function may be quasi-convex. Let the system (1)
be denoted by M0. This is in LPV form with
scheduling parameter v. From M0 four different
LPV model structures can be derived by applying
the following simplification assumptions.

• A1. In simulations the sideslip angle and yaw
rate appeared to be approximately propor-

tional. Therefore state β is omitted and β(t)
r(t)

approximated as

β(s)

r(s)

∣

∣

∣

∣

s=0

=
lr
v
−

mlf
crl

v

is inserted in the expression for ṙ.
• A2. The wheel model is assumed to be fast

for the excitation bandwidth and ∆vR(t) is
replaced by the DC component of its Laplace-
transform:

∆vR(s)|s=0 = lwr − 2
CpT v

cfreff
∆p.

• A3. The steering system is assumed to be fast
for the excitation bandwidth,

δ(t) ≈ δ(s)|s=0 = (
l

v
−

rslw

2nRKv
−

mlf

crl
v)r +

+
rs

2nRKv
∆vR.

Applying the simplifications from A1 to A3, the
model graph on figure 2 is generated. Here the
model M2 is stated in details.
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[
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δ
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,
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Fig. 2. Structure graph generated from M0 by
assumptions A1-A3
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The noise model due to the filter gain L was di-
rectly parameterized. Because of the ill-conditioned
parameterization of the canonical structure, in
case of full-parameterized 3x2 L matrix the crite-
rion function became almost quasi-convex and the
parameter vector θ did not converge. A sufficient

parameterization was found as L =

[

0 0 0
0 0 p7

]T

,

so θ =
[

p1 · · · p7

]

, i.e. feeding back the steering
angle error.

5. IDENTIFICATION METHOD

The ESS structure and parameter estimation
method for G1 starts from an overestimated struc-
ture. The prediction error optimization problem
is solved with constraints on the poles and nu-
merator coefficients. The absolute value of a pole
is bounded between the bandwidth of the input
(or the Nyquist-frequency) and the frequency ac-
cording to the observation time. The angle of a
complex pole pair is constrained in order to avoid
rare sampling and to make distinction between
a large time constant and a low frequency sine
wave during the observation time. The numera-
tor coefficients should be positive real numbers.
When the procedure idles over local minima, the
values of the parameters should be considered.
If all bi and q1i are nonsignificant, the delay is
increased. Vanishing numerator coefficients or too
small poles indicate the presence of too much
poles. If a complex pair achieves the real axis, it
is changed to two real poles. Then the search is
continued.

The system G2 is identified with prediction error
method with the criterion

V (θ) =

nv
∑

i=1

1

Ni

Ni
∑

k=1

εi(kTs, θ)
TΛ−1

i εi(kTs, θ),

Λ−1
i = diag

[

w1

a1,i
, . . . ,

wny

any,i

]

, (3)

ap,i =
1

Ni

Ni
∑

k=1

y2
p,i(kTs), p = 1, 2, . . . , ny,

where εi(kTs, θ) = yi(kTs) − ŷi(kTs, θ) is the
prediction error vector at time t = kTs, Ni is the
number of data-points in the ith experiment. The
velocity vi is constant over each experiments. The
ny is the number of outputs, nv is the number
of experiments composing the criterion function.
The model outputs ŷi(kTs, θ) are computed by
transforming the continuous-time linear models



(2) with ρ = vi into the discrete time-domain
assuming zero-order-holder as follows

ξ(k + 1) = F (θ, vi)ξ(k) +G(θ, vi)u(k) +H(θ)ν2(k)

z(k) =C(θ, vi)ξ(k) +D(θ, vi)u(k),

ξ(0) = x̂(0) = 0,

F (θ, vi) = eA(θ,vi)Ts ,

G(θ, vi) =

∫ Ts

0

eA(θ,vi)(Ts−τ)B(θ, vi)dτ,

H(θ) =

∫ Ts

0

eA(θ,vi)(Ts−τ)L(θ)dτ,

then ŷ(kTs) := z(k), k = 1, . . . , Ni. This trans-
formation is required because the inputs of G2

are sampled, measured and therefore noisy. Us-
ing integration methods - e.g. Runge-Kutta - the
computation error would be larger. This is the
reason of fixing the scheduling parameter during
the experiments.
The optimization was first run with Λ being the
covariance matrix of the innovations. This as-
sumes Gaussian distribution of the innovation e.
The results were very similar when L was zero (OE
model). But with parameter p7 the criterion be-
come quasi-convex, therefore the constant weight-
ing (3) was applied where the wis set the relative
importance of the outputs in the matching.

6. RESULTS AND MODEL VALIDATION

Considering the actuator model G1 the algorithm
was started from (nr = 3, nc = 2) with delay d =
0. It was find that the most significant parameter
was the time-delay. With the best choice of the
delay d = 4Ts the worst - and also the simplest
- model structure (nr = 1, nc = 0) differs in
criterion value from the best (nr = 1, nc = 2) only
by 10%. Therefore the following model is selected
for G1:

∆̂p(t) = G1(q
−1)∆pc(t) =

0.1581q−1

1− 0.8362q−1
∆pc(t− 4Ts),

where q−1 is the backward-shift operator. On fig-
ure 3 the input ∆pc(t) generated on the standing
vehicle by a PRBS generator is plotted together
with the measured ∆p(t) and model output ∆̂p(t).
The static errors at the plateaus are due to the
about 0.025bar error tolerance of the pressure
controller in the cylinders.

The parameters of the G2 model structures are
initialized by least-square estimation (LSE): the
unmeasurable state variables and its first deriva-
tives are computed by numeric derivation of the
measured outputs by fitting a 3-order polynomial
to a moving window of length 15 points. Thus
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Fig. 3. Validation of model G1. ∆pc: dotted,
∆p measurement: solid, ∆̂p model output:
dashed.

(2) became a linear regression model in the pa-
rameters. The parameter in L was random gener-
ated. After this initialization the prediction error
method was used as presented in the previous
section. An additional time-delay of 2Ts for G2

was estimated.

First the resulted structures are validated. On
figure 4 the pole-location of the four LPV models
are pictured with fixed scheduling variable from
8m/s to 20m/s. The input bandwidth is also
plotted as a circle with radius of 8rad/s. The
bandwidth of the control will be below this value.
Those structures can be accepted of which poles
are placed inside the circle. Poles outside the circle
imply the presence of not excited, fast dynamics.
According to figure 4 it can be concluded that the
wheel dynamics is too fast. Since M2 is better
predictor then M4, M2 is selected as a candidate
for controller design.

On figure 5 M2 is validated on the time domain.
On the left side the velocity was 8.05 m/s during
the experiment, on the right it was 17.49m/s. The
measured input ∆p(t), the yaw rate r and the
steering angle δ are plotted. The outputs of the
predictor M2 (solid lines) fit the measurements
well-markedly. The achieved peak-to-peak predic-
tion error per measured output ratio is below 18%
for the yaw rate and below 32% for the steering
angle. In many control synthesis problems the role
of the filter L(θ) is redesigned, only the A(θ),
B(θ) and C(θ) matrices of the predictor are kept.
The outputs of the predictor without the filter
(L(θ) = 0) are plotted with dashed lines.

Connecting the models G1 and G2 into a single
model, the outputs are almost the same as on
figure 5, where the G2 was driven by the measured
∆p. Therefore the outputs are not plotted again.
This proves the sufficiency of the actuator model
G1. The resulted model structure is summarized
on figure 6, where G1 is rewritten as

G1(q
−1) =

0.1581q−1

1− 0.8362q−1
, (4)

and G2 =M2 with parameters given in table 1.



Table 1. Parameters of the resulted model G2.

p1 p2 p3 p4 p5 p6 p7

14.54 0.06 20.60 -0.25 -4.96 -0.32 38.87
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Fig. 4. Structure validation: the excitation band-
width and pole locations of A − LC from
v = 8m/s to 20m/s
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Fig. 5. Validation of the nominal model in time
domain. Measurements - dotted, predictor -
solid, with filter gain L = 0 - dashed.
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Fig. 6. The resulted model structure.

7. CONCLUSIONS

A linear velocity-varying model was identified
from measurement data for steering controller
which brakes the front wheels. The unknown con-
stant parameters of the LPV model and the struc-
ture selection by looking at the pole locations
were performed with the help of experiments with
fixed scheduling variable, i.e. keeping the velocity
constant. The parameters being functions of phys-
ical parameters allow the insight into the role of
them, so it will be possible to estimate parametric
uncertainty to the nominal model.

The resulted model is the feedback connection
of the yaw dynamics with one state-variable and
the steering system dynamics with to states. The
achieved noise-to-signal ratio promises sufficient
model performance for controller design.

Future work will include uncertainty modelling
from experimental data.

ACKNOWLEDGEMENT

This work has been supported by the Hungar-
ian National Science Foundation (OTKA) under
grant number T043111, and by the the Hungar-
ian National office for Research and Technology
through the project "Advanced Vehicles and Ve-
hicle Control Knowledge Center" (No. OMFB-
01418/2004). The free run of the truck was given
by Knorr-Bremse Fékrendszerek Kft, which is
gratefully acknowledged by the authors.

REFERENCES

Ackermann, J., D. Odenthal and T. Bünte (1998).
Advantages of active steering for vehicle dy-
namics control. In Proc. 32nd International
Symposium on Automotive Technology and
Automation, Vienna ME, 263–270.

Bokor, J. and L. Keviczky (1985). Recursive struc-
ture, parameter and delay time estimation us-
ing ess representations. 7th IFAC Symposium
on Identification and System Parameter Es-
timation, York (UK) pp. 867–872.

Gáspár, P., I. Szászi and J. Bokor (2003a). Fault-
tolerant control structure to prevent the
rollover of heavy vehicles. Safeprocess, Wash-
ington.

Gáspár, P., I. Szászi and J. Bokor (2003b).
Rollover avoidance for steer-by-wire vehicles
by using linear parameter varying methods.
Mediterranean Conference on Control and
Automation.

Keviczky, L., J. Bokor and Cs. Bányász (1979).
A new identification method with special
parametrization for model structure determi-
nation. 5th IFAC Symposium on Ident. and
Syst. Par. Est., Darmstadt pp. 561–568.

Kiencke, U. and L. Nielsen (2000). Automotive
control system - for engine, driveline and
vehicle. Springer. Berlin.

Kovács, G., J. Bokor, L. Palkovics, L. Gi-
anone, A. Semsey and P. Széll (1998). Lane-
departure detection and control system for
commercial vehicles. IEEE Int. Conference
on Intelligent Vehicles, Stuttgart pp. 46–50.

Mitschke, M. (1990). Dynamic der Kraft-
fahrzeuge, Band C. Springer. Berlin.

Pilutti, T., G. Ulsoy and D. Hrovat (1995). Ve-
hicle steering intervention through differen-
tial braking. American Control Conference,
Washington pp. 1667–1671.


