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Abstract: Starting from a continuous time linear time-invariant system, a linearly
similar variant of the Nagy–Foias model of the main operator of the system is
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1. INTRODUCTION

In many problems of the linear control theory,
the spectral analysis of the main operator of the
system is necessary. In particular, the spectral
theorem for self-adjoint and normal operators, the
theory of linear semigroups and other tools are
applied, see (Curtain and Zwart, 1995). However,
a comprehensive spectral theory of general linear
operators has not been constructed by now. The
Nagy–Foias theory of dissipative operators and
contractions has been recognized to be one of the
most useful tools for understanding the spectral
structure (we will comment later on this theory).

The close connection between the Nagy-Foias the-
ory and the linear control theory has been noted
long ago and is developed in many works. For
instance, there is an intimate connection between
the H∞ control, interpolation problems and the
commutant lifting by Nagy and Foias, see (Foias
and Frazho, 1990) and references therein.

In (Yakubovich, 2004), a linearly similar variant
of the Nagy-Foias model was constructed, which
differs from the original Nagy-Foias model in sev-
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eral points. Here this model will be described on
the language of the control theory. A comparison
between these two models will be made, and an
application to the spectrum assignment will be
given.

2. INPUT-SPACE AND SPACE-OUTPUT
MAPS. EXACT CONTROLLABILITY AND

EXACT OBSERVABILITY

Consider the linear system

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(2.1)

where A is a generator of a C0 semigroup on the
state space X, u(t) ∈ U is the input and y(t) ∈ Y
is the output. Spaces X, U , Y are supposed to
be Hilbert. Take any point λ0 /∈ σ(A). Define
formally a Hilbert space X−1(A) = (A − λ0)X,
equipped with the norm ‖(A−λ0)x‖−1 = ‖x‖X . It
is larger than X and contains X as a dense subset.
Assume that B is a bounded linear operator from
U to X−1(A) (or equivalently, that (A−λ0)−1B is
bounded from U to X). It will be assumed that C
is bounded from D(A) (with the graph norm) to
Y . This setting is close to the theory of well-posed
systems, see (Staffans, 2005).



For a real γ, put

Πγ
− = {z : Re z < γ}, Πγ

+ = {z : Re z > γ}.
Let some γ such that the spectrum σ(A) is con-
tained in closΠγ

− be fixed. Consider weighted
spaces

L2
γ(R±, U) = {f = f(t) = e−tγg(t) : g ∈ L2(R±, U)}.

Introduce the input-state map

u ∈ L2
γ(R−, U) 7→ CA, Bu

def= x(0) ∈ X, (2.2)

and the state-output map

a = x(0) ∈ X 7→ OA, C a
def= y|[0, +∞) ∈ L2

γ(R+, Y ).
(2.3)

The control system (A,B) is called γ-admissible if
the input-state map (defined initially for smooth
functions u with compact support) extends con-
tinuously to L2

γ(R−, U). If the extended map CA, B

is onto, then the system (A,B) is called infinite
time γ-exactly controllable. These notions depend
on γ, but sometimes in these expressions, γ will
be omitted.

The observation system (A,C) is called γ-admissible
if the state-output map is continuous. If for some
positive constants c1, c2, the inequality

c1‖a‖ ≤ ‖OA,Ca‖L2 ≤ c2‖a‖, a ∈ X

holds, then system (A,C) is called exactly observ-
able.

Exact controllability and exact observability have
been studied in detail for many classes of lin-
ear systems, arising in mathematical physics, see
(Zuazua, 1998).

3. TWO FUNCTIONAL MODELS

3.1 Control model

The Laplace transform

û(z) = Lu(z) =
1√
2π

∫
e−tzu(t) dt

maps (isometrically) L2
γ(R) onto L2(∂Πγ

−), and
maps the corresponding subspaces L2

γ(R±) onto
the Hardy spaces H2

± = H2(Πγ
±) of functions,

analytic in Πγ
±. The same is true for vector valued

spaces L2
γ(R±, Y ) and H2

±(Y ) with values in a
Hilbert space Y .

For an admissible system, define the controllabil-
ity map

ĈA, B : H2
−(U) → X

by taking the composition map in the diagram

H2
−(U) −→

L−1
L2

γ(R−) −→
CA, B

X.

It is easy to see that ĈA, B transforms the multipli-
cation operator by z on H2

−(U) into the operator
A; more exactly,

ĈA, B [q(z)û(z)] = q(A)
(ĈA, Bû

)
(3.4)

for any rational scalar function q ∈ H∞
− =

H∞(Πγ
−) (for these functions, q(A) is bounded).

Denote by B(H, H ′) the set of all bounded linear
operators between Hilbert spaces H and H ′, and
put B(H) = B(H,H).

Definitions. An operator-valued function δ ∈
H∞
−

(L(Y, U)
)

is called admissible if there is some
constant c > 0 such that for a.e. z ∈ iR,
the inequality δ(z) is invertible and ‖δ(z)y‖ ≥
c‖y‖ holds for all y ∈ Y . It is called two-sided
admissible if there is some constant c > 0 such
that for a.e. z ∈ ∂Πγ

−, δ(z) is invertible and
‖δ(z)−1‖ ≤ c.

Function δ is called two-sided inner if δ(z) is
an isometric isomorphism of Y onto U for a.e.
z ∈ ∂Πγ

−.

We make the following simplifying assumption:

(*) the set σ(A) ∩ ∂Πγ
− has zero length.

By applying (3.4) and the Beurling-Lax-Halmos
theorem, see for instance (Nikolski, 2002), one gets
that

ker ĈA, B = δH2
−(Y ) (3.5)

for a Hilbert space Y and an admissible function
δ. It may happen, in particular, that ker ĈA, B = 0.

Definition. Suppose that the system (A, B) is
infinite time exactly controllable and (3.5) holds.
Then δ will be called a generalized characteristic
function (G. Ch. F.) of the system (A, B) (and of
the operator A).

Theorem 1. (Yakubovich, 2004),
see also (Grabowski and Callier, 1986), (Staffans
and Weiss, 2002) Suppose that the system (A,B)
is infinite time exactly controllable and that (*)
holds. Let δ be a generalized characteristic func-
tion of system (A,B). Then δ is two-sided admis-
sible, and A is similar to the (possibly, unbounded)
operator of multiplication by the independent vari-
able on the quotient space H2

−(U)/δH2
−(Y ). This

operator is given by the formula

f + δH2
−(Y ) 7→ zf + δH2

−(Y ),

and it domain is D =
{
f + δH2

−(Y ):

f = f(z) ∈ H2
−(U), zf ∈ H2

−(U)
}
.

If δ is a generalized characteristic function of the
system (A,B), then δψ also is, whenever ψ, ψ−1 ∈
H∞
−

(
B(Y )

)
.



The model operator obtained is exactly the Sz.-
Nagy–Foias model operator (Sz.-Nagy and Foias,
1970) in the case of a semiplane. Therefore every
exactly controllable system gives rise to a Nagy–
Foias type functional model of A up to simi-
larity, and all the techniques of the Nagy–Foias
functional model can be applied. This fact was
discussed in detail in (Yakubovich, 2004). The
original Nagy–Foias model is up to the unitary
isomorphism.

3.2 Observation model

For an admissible observation system (A,C), de-
fine the controllability map

ÔA, C : X → H2
+(Y )

by taking the composition map in the diagram

X −→
OA, C

L2
γ(R+) −→

L
H2

+(Y ).

Suppose that δ is a two-sided admissible H∞

function on Πγ
− with values in B(Y,U). Consider

the observation model space:

H(δ) def=
{
f ∈ H2

+(Y ) : δ · f
∣∣∂Π− ∈ H2

−(U)
}
.

Theorem 2. (observation model). If the system
(A,C) is exactly observable then there exists an
auxiliary Hilbert space U and a two-sided admis-
sible function δ on Πγ

− with values in B(Y, U) such
that ÔA, C is an isomorphism from X onto H(δ)
that transforms A into the “backward shift” MT

z

on H(δ)

MT
z : f ∈ H(δ) 7→ zf − (zf)(∞).

Remarks. If the conclusion of the Theorem
holds, then δ will be called the generalized charac-
teristic function of the observation system (A,C).
Operator MT

z can be called the main operator in
the observation model. It is unbounded, and its
domain is

D(MT
z ) =

{
f ∈ H(δ) : ∃ c ∈ Y : zf − c ∈ H(δ)

}
.

The converse statement to the assertion of the
Theorem also is true: if ÔA, C is an isomorphism
that transforms A into MT

z , then the system
(A,C) is exactly observable.

3.3 Isomorphism between the two models

Suppose a two-sided admissible B(Y, U)-valued
function δ on Πγ

− is given. Then the control model
space H2

−(U)/δH2
−(Y ) and the observation model

space H(δ) , as well as the corresponding model
quotient operator Mz and model operator MT

z are

defined. These two model operators are always
similar.
Definition. An operator A generates a Nagy–
Foias type semigroup if it generates a C0 semi-
group T (t), t ≥ 0, such that for some real γ, the
semigroup

{
e−γtT (t)

}
is similar to a contractive

semigroup and has the property that e−γtT (t) and
e−γtT ∗(t) strongly tend to 0 as t →∞.

The results by Jacob, Zwart and Le Merdy, see
(Le Merdy, 2000) show that there exist Hilbert
space C0 semigroups that are not of Nagy–Foias
type.
Proposition 1. Suppose condition (*) for oper-
ator A holds. Then the following are equivalent.

1) A generates a Nagy–Foias type semigroup;

2) There exists B such that (A, B) is exactly
controllable;

3) There exists C such that (A,C) is exactly
observable.

For any two-sided admissible function
δ ∈ H∞

− (B(Y, U)), its spectrum σ(δ) can be de-
fined, see (Nikolski, 2002).
Proposition 2. (see (Nikolski, 2002)). If A gen-
erates a Nagy–Foias type semigroup and A is sim-
ilar to its observation or control model with gener-
alized characteristic function δ, then the spectrum
of A coincides with the spectrum of δ.

In the hypotheses of this Proposition, if A has a
compact resolvent, then the spectrum of δ is just
the set of points λ ∈ Πγ

− such that δ(λ) is not
invertible.

4. THE NAGY-FOIAS CASE

Suppose 1
i A is a maximal dissipative operator.

Then A is a generator of a C0 semigroup (Sz.-
Nagy and Foias, 1970). Assume for simplicity that
A = −Ar + iAi, where Ar and Ai are self-adjoint,
Ar ≥ 0, Ai ≥ 0, and D(Ar) ⊂ D(Ai). Put C =
(2Ar)1/2, Y = Range C, and γ = 0. More general
cases can be treated by applying the results of
(Solomyak, 1992), (Arov and Nudelman, 1996).
Proposition 3. 1) The control system (A,C) is
exact; moreover, ‖ĈA, Cx‖ = ‖x‖ for all x in X.

2) If Theorem 1 is applied to the control system
(A,C), then one of the generalized characteristic
functions obtained coincides with the characteris-
tic function in the sense of Nagy and Foias.

5. EXAMPLES OF OPERATORS
ADMITTING FUNCTIONAL MODELS

Apart from dissipative operators, the following
examples were given in (Yakubovich, 2004).



1) Any generator A of a C0 group is a generator
of a Nagy–Foias type semigroup;

2) Any differentiation operator A on an interval
[0, L] with non-dissipative boundary conditions:

Aϕ = −ϕ′,

D(A) def=
{
ϕ ∈ W 1,2

(
[0, L],Cn

)
:

ϕ(0)−
∫

dβ(x)ϕ(x) = 0
}
.

(5.6)

Here W 1,2
(
[0, L],Cn

)
is the vector Sobolev class

of functions whose first derivative is in L2, and β
is any n×n matrix complex measure on [0, L] such
that β({0}) = 0. In this case, the model can be
deduced by considering the exact control operator

Cϕ = ϕ(0), ϕ ∈ D(A). (5.7)

One of generalized characteristic function of the
observation system (A,C) is

δ(z) = ezLIn×n−
∫

ez(L−x)dβ(x), z ∈ Πγ
−, (5.8)

where γ is a suitable real number depending on β.

3) Generators of C0 semigroups, related with
linear neutral systems, are generators of Nagy-
Foias type C0 semigroups and fit into this scheme,
see (Lunel and Yakubovich, 1997), (Yakubovich,
2004).

In all these examples, an exact control operator
B and exact observation operator C, as well as
an explicit formula for generalized characterictic
functions were given.

6. DISCUSSION

In the Nagy–Foias theory, the model of an opera-
tor is constructed up to the unitary equivalence
and is unique. In our setting, the model of an
operator A is far from unique.

One can restrict himself only to generalized char-
acteristic functions that are two-sided inner. Then
the uniqueness of δ will be restored both for the
observation model and for the control model.

There are many examples when one only has an
explicit expression for some generalized charac-
teristic function and no explicit expression for its
inner part.

A Nagy–Foias type model in a rather general
domain in C, and not only in a half-plane was
constructed in (Yakubovich, 2004). For operators
A, close to self-adjoint ones, one can construct
such model in a suitable parabolic domain.

7. POLE PLACEMENT

7.1 Problem statement

Roughly speaking, the problem is as follows.

Consider a system with a feedback

ẋ(t) = Ax(t) + Ku(t) (7.9)

u(t) = Cx(t), (7.10)

where the main operator A and the output op-
erator C are fixed and the control operator K
is a parameter. The closed loop system (at least
formally) has the form

ẋ(t) = A1x(t), where A1 = A + KC. (7.11)

It is required to describe all possible closed loop
spectra σ(A1) in terms of operators A and C.

The answer for finite dimensional systems is a
well-known Rosenbrock theorem, see for instance
(Ball et al., 1990): if the system (A,C) is observ-
able (which is a necessary condition), the spec-
trum of A1 can be an arbitrary subset of the
complex plane of no more than dimX points. In
finite dimensions, the observability requirement is
very natural: if it is not fulfilled, there are parts
of the spectrum of A which cannot be moved.

Let us pass to the exact setting of the problem.

Assume (*) is fulfilled. The main hypothesis is

(∗∗) System (A,C) is exactly observable.

Definition. It will be said that operator K in the
control law (7.9) is admissible and gives rise to a
closed loop system (7.11) if the following holds:

1) operator A1 (as well as A) generates a C0

semigroup;

2) K is a continuous operator from U to X−1(A1);

3) for any x ∈ D(A), equality

A1x = Ax + KCx

understood as an equality in the Hilbert space
X−1(A1), holds.

In infinite dimensions, an answer to the pole
placement problem is known for the case when A
is a Riesz spectral operator, see (Russell, 1978),
(Xu and Sallet, 1996); in these papers condition
(∗∗) is not assumed.

The notion of admissibility of K permits one
to treat the internal stability of the closed loop
system. See (Oostveen, 2000), (Staffans, 2005) for
a modern treatment of strong stabilization.

This notion might seem to be complicated, but
it becomes natural if one considers a reciprocal
system to (A,K, C) in the sense of R. Curtain.



7.2 Sufficient condition for pole placement

Let G be a bounded function on ∂Πγ
−, whose

values are operators on Y . Define the vector
Toeplitz operator TG on H2

−(Y ) by

TGf = P−(G · f), f ∈ H2
−(Y ),

where P± stands for the orthogonal projection of
L2(∂Πγ

−, Y
)

onto H2
±(Y ).

Theorem 3. Suppose that A generates a Nagy–
Foias type C0 semigroup, and δ ∈ H∞(Πγ

−, B(Y,U))
is a generalized characteristic function of the
observation system (A,C). Suppose that δ1 ∈
H∞(Πγ

−, B(Y,U)) is another two-sided admissible
function. If δ1 is such that

Tδ∗1δ is an isomorphism, (7.12)

then there exists an admissible operator K, which
gives rise to a closed loop system ẋ(t) = A1x(t)
such that δ1 is a G. Ch. F. of A1. In this case, in
particular, σ(A1) = σ(δ1).

One has a similar formulation for the case when
K is fixed and C is varying.

Corollary 1. Suppose that ‖δ−1(z)‖ ≤ C1

for a.e. z ∈ ∂Πγ
−. Let α be any function in

H∞(Πγ
−, B(Y,U)) such that

‖α‖∞ = sup
z∈Πγ

−

‖α(z)‖ < C−1
1 ,

and put
δ1 = δ + α.

Then there exists an admissible feedback operator
K such that δ1 is a generalized characteristic
function of the closed loop operator A1 = A+KC.
Corollary 2. Let A, C be operators given by
(5.6), (5.7). Let A1 be another operator of the
form (5.6). Then operator A can be transformed
into an operator similar to A1 by applying a closed
loop control (7.9), (7.11).

See (Olbrot, 1978), (Watanabe, 1988), (Jugo and
de la Sen, 2002), and references therein for related
results.
Corollary 3. Suppose that in the hypotheses of
Theorem 3, Y is finite dimensional and for some

λ ∈ Πγ
+, zP+

( δ−1
1 δ

z − λ

)
c ∈ C + H2

+(Y ) for all

constant vectors c ∈ Y . Then the operator K can
be chosen to be bounded.

The proof of Theorem 3 consists in applying The-
orem 2 and the techniques of orthogonal projec-
tions of one coinvariant subspace onto another.
See (Hruščev et al., 1981) and (Nikolski, 2002),
Vol. 2, where these techniques were applied to
the classical problem about bases of exponential
functions over an interval.
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Fig. 1. Spectra of the open loop system (marked
with “o”) and the closed loop system (marked
with “*”). Only the spectrum with positive
imaginary part is shown.

Theorem 3 only gives a sufficient condition for
the possibility of the spectrum assignment. The
advantage of this theorem is that it deals with
rather general operators A. See (Assawinchaichote
and Nguang, 2004) for another approach to the
problem setting and (Ball and Vinnikov, 1999),
(Gurvits et al., 1991), (Hermida-Alonso, 2003) for
different algebraic settings. In fact, the literature
on the pole placement is very vast, and these
references cannot be complete.

7.3 Example

Just to illustrate the use of Corollary 1 of Theorem
3, consider a very particular case of operator (5.6)
with n = 1, L = 2 and with boundary conditions

ϕ(0)− ϕ(1) + 0.24 ϕ(2) = 0.

The generalized characteristic function of system
(A,C), obtained from (5.8) is

δ(z) = e2z − ez + 0.24 = (ez − 0.4)(ez − 0.6).

Operator A generates a Nagy–Foias type semi-
group with γ = 0, that is, it is a semigroup
similar to a contractive one. To shift the spec-
trum, one can take in Corollary 1 any function
α ∈ H∞(Π0

−) of norm less than 0.24. Figure 1
shows the spectra of the open-loop system (two
arithmetic progressions parallel to the imaginary
axis) and the results of computer calculation of
the closed-loop system for α(z) = −0.7/(z − 72).
For this choice of α, the feedback operator K is
bounded.



8. CONCLUSIONS

Nagy–Foias type C0 semigroups T (t), such that
for some real γ,

{
e−γtT (t)

}
is similar to a con-

tractive semigroup have been singled out. For this
class of semigroups, a notion of the generalized
characteristic function was discussed. In a series
of examples, this function can be computed ex-
plicitly. A pole placement criterion in terms of
generalized characteristic functions of the open
loop and the closed loop systems, as well as a
numerical example of the pole placement were
given.
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Basel etc.

Grabowski, P. and F. M. Callier (1986). Admissi-
ble observation operators. Semigroup criteria
of admissibility. Integral Eqs. Oper. Theory
25 no. 2, 182–198.

Gurvits, L., L. Rodman and I. Spitkovsky (1991).
Spectral assignment for Hilbert space opera-
tors. Houston J. Math. 17(4), 501–523.

Hermida-Alonso, J. A. (2003). On linear algebra
over commutative rings. In: Handbook of al-
gebra, Vol. 3. pp. 3–61. North-Holland. Ams-
terdam.
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