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1. INTRODUCTION

CPDP, which stands for Communicating Piece-
wise Deterministic Markov Processes, is a class of
automata that represent stochastic hybrid jump
processes of the PDP-type (for PDPs, see (Davis
1984, Davis 1993)). The CPDP framework (in-
troduced in (Strubbe et al. 2003)) was/is devel-
oped for compositional specification and analysis
of PDP-type systems. Because labelled transition
systems like automata can easily be composed
by means of a composition operator, we chose to
develop CPDP as an automata framework.

In (Everdij and Blom 2003) the Petri net formal-
ism DCPN (Dynamically Colored Petri Nets) is
developed for compositional specification of PDP
systems. However, we believe that from a com-
positional analysis point of view, automata are
more suitable than Petri nets. Furthermore, for
a rigorous proof of stochastic equivalence (which
we give in this paper in the case of CPDP) of
DCPN/CPDP and PDP, it seems to be more
convenient to use automata.

Compared to PDP, the CPDP framework can be
regarded as compositional in two different ways:
First, a CPDP has labelled transitions between
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the locations. With these labels communication
can be established with other CPDPs. This com-
munication mechanism is formalized in (Strubbe
et al. 2003) by defining a composition operator
(via structural operational rules). Thus, a complex
CPDP system can be built in a compositional
way as a network of CPDPs which are running
simultaneously and interact with each other.

Second, we could say that the transition mech-
anism (from one hybrid state to another) of the
PDP is for CPDPs decomposed into several tran-
sitions of different kinds and the PDP state space
is decomposed into different variables (having
there own state space). For example, in CPDP we
can specify several Poisson processes (via sponta-
neous transitions) which are running at the same
time and are in a race (concerning which pro-
cess generates the first point and will therewith
determine the next transition). For PDPs, this
race of Poisson processes cannot not be specified
compositionally (with the Poisson processes as
components), but should be specified as one Pois-
son process that expresses this race of different
Poisson processes.

It is clear that the advantage of a compositional
framework is present in the context of complex
systems. If a system is not very complex, it is
probably possible to specify the PDP directly.



However, if the system is complex (i.e. consists of
many interacting components), then it might be
hard to specify the PDP directly and specifying
the network of interacting CPDPs (representing
the same complex system) might be much easier
with a more comprehensive specification as result.
Related to PDPs are continuous time Markov
chains (CTMC). In (Hermanns 2002) a composi-
tional formalism called IMC (Interactive Markov
Chains) is developed for CTMCs. We can regard
CPDP more or less as a generalization of IMC.

The reason that we want to consider especially
PDP systems is that, first, almost all stochastic
hybrid processes that do not have diffusions can be
modelled as a PDP and second, the PDP process
has very nice properties (as the strong Markov
property) when it comes to stochastic analysis. (In
(Davis 1993) powerful analysis techniques have
been developed).

What we therefore want, is that the stochastic
behavior of the (composite) CPDP (with its mul-
tiple transitions and variables) is equivalent with
the stochastic behavior of the PDP. In this paper
we prove that this is the case for a notion of
equivalence that we call first jump equivalence
(from which will follow that execution/simulation
of first jump equivalent processes will show no
difference). This result is possible mainly because
of two facts. First, the class of Poisson processes
is closed under composition (in the sense of the
minimum of two processes). Second, Borel sets
in euclidean space behave very well on product
spaces (which come into play when we have differ-
ent variables simultaneously evolving): The Borel
sets of a (euclidean) product space are generated
by the products of Borel sets of the individual
spaces.

The paper is organized as follows. In Sections two
and three we give the definitions of the PDP and
the CPDP and we show (by means of stochastic
execution procedures) how they represent stochas-
tic processes. In this definition of CPDP we al-
low separate variables in one location, where the
CPDP model of (Strubbe et al. 2003) does not
consider variables with their own state spaces,
but considers (as it is done for PDPs) one com-
bined state space which is a subset of R

n. These
variables will ask some extra efforts from us for
the equivalence proof, but for specification and
composition purposes, this use of variables will
turn out to be more convenient because the set
of variables of a composite CPDP location is
then equal to the union of the sets of variables
of the corresponding locations of the component-
CPDPs. (This advantage in the context of compo-
sition can not be seen in this paper since we do not
treat composition here. See (Strubbe et al. 2003)
for composition of CPDPs).

Section four contains the main result of this paper.
We observe there that both the PDP and the
CPDP can also be characterized via the assign-
ment of so called ’first jump probability measures’
to each hybrid state. We then prove (by construc-
tion) that for each CPDP a corresponding PDP
can be found such that they define the same first
jump probabilities. This shows that executing a
CPDP is stochastically equivalent to executing its
corresponding PDP.

Section five closes the paper by drawing conclu-
sions and giving an outlook for future research
concerning CPDPs.

2. DEFINITION OF THE PDP

The state space and the dynamics of a PDP
are defined as follows: K is a countable set of
locations. For each ν ∈ K, d(ν) ∈ N denotes
the dimension of the continuous state space of
location ν. For each ν ∈ K, let Eν be an open
subset of R

d(ν) and let gν : R
d(ν) → R

d(ν) be
a locally Lipschitz continuous function on Eν .
The flow φν(t, ζ) is uniquely determined by the
differential equation ζ̇ = gν(ζ) and equals the
state at time t if the state equals ζ at time t = 0.
The hybrid state space of the PDP is now defined
as

E = {(ν, ζ)|ν ∈ K, ζ ∈ Eν}.

Remark 1. In fact, the state space E of the PDP
is in (Davis 1993) extended such that E also
contains the boundary points that are backward
reachable (via flow φ) but not forward reachable
from the interior of E.

For x = (ν, ζ) ∈ E define

t∗(x) =

{

inf{t > 0|φν(t, ζ) ∈ ∂Eν}
∞ if no such time exists.

,

where ∂Eν = Ēν\Eν is the boundary of Eν , Ēν is
the closure of Eν .

The jump mechanism of the PDP is determined by
a jump rate function λ and a transition measure
Q. The jump rate λ : E → R+ is a measurable
function such that for each x = (ν, ζ) ∈ E,
there exists ε(x) > 0 such that the function
s → λ(ν, φν(s, ζ)) is integrable on [0, ε(x)[. With
Γ∗ we denote the boundary of E that is reachable
from the interior of E. The transition measure
Q maps E ∪ Γ∗ into the set P(E) of probability
measures on the Borel space (E, E), where E is the
set containing all Borel sets of E (according to a
’natural’ topology, defined in (Davis 1993)), with
the properties that for each fixed A ∈ E the map
x → Q(A, x) is measurable, and Q({x}, x) = 0 for
all x ∈ E ∪ Γ∗.



A PDP process, starting from initial state x0 =
(ν0, ζ0), can be ’executed’ as follows: The dynam-
ics at t = 0 is determined by the vectorfield gν0

until either the boundary is hit at time t∗(x0) or
until a point is generated by the Poisson process
that has density λ(x). In either case, a jump takes
place and the target hybrid state is determined
by the probability measure Q(·, (ν0, φν0

(t̂, ζ0))),
where t̂ is the jump time. From the target state
this execution procedure can be repeated.

For a PDP it is assumed that there are no explo-
sions (i.e. |φν(t, ζ)| 6→ ∞ if t 6→ ∞) and that there
is no Zeno behavior (i.e. for every starting point
x ∈ E, ENt < ∞ for all t ∈ R+, where Nt is a
random variable ’counting’ the number of jumps
up to time t).

3. DEFINITION OF THE CPDP

A CPDP is a 10-tuple (L, V, v, Inv,G,Σ, A, P, S,C),
where

• L is a countable set of locations
• V is a set of variables. With d(y) for y ∈ V

we denote the dimension of variable y. y ∈ V

takes its values in R
d(y). We also say that

R
d(y) is the valuation space of y.

• v : L → 2V maps each location to a subset of
V , which is the set of active variables of the
corresponding location

• Inv assigns to each location l and each vari-
able y ∈ v(l) an open subset of R

d(y), i.e.
Inv(l, y) ⊂ R

d(y). With Invl we denote the
subset of the valuation space of v(l) that is
built from (or loosely speaking: is the product
of) the invariants of the individual variables.
With ∂Invl we denote the set of boundary
points of l, which is equal to the set of valu-
ations of v(l) where each y ∈ v(l) takes value
in Inv(l, y) and at least one y ∈ v(l) takes
value in ∂Inv(l, y) := Inv(l, y)\Inv(l, y).

• G assigns to each location l and each y ∈ v(l)
a locally Lipschitz continuous function from
R

d(y) to R
d(y), i.e. G(l, y) : R

d(y) → R
d(y).

This vectorfield uniquely determines a flow
φl,y(t, y0) along this vectorfield.

• Σ is the set of communication labels. Σ̄
denotes the ’passive’ mirror of Σ and is
defined as Σ̄ = {ā|a ∈ Σ}.

• B is a finite set of boundary hit transitions
and consists of 4-tuples (l, a, l′, R), denoting
a transition from location l ∈ L to location
l′ ∈ L with communication label a ∈ Σ
and reset map R. This reset map R assigns
to each boundary point of l for each active
variable y ∈ v(l′) a probability measure on
the invariant (and its Borel sets) of y for
location l′. We will denote the measure of R

for variable y at boundary point ζ by Ry(ζ).

• P is a finite set of passive transitions and
consists of 4-tuples (l, ā, l′, R), denoting a
transition from location l ∈ L to location
l′ ∈ L with passive communication label
ā ∈ Σ̄ and reset map R. R assigns to each
interior point of location l for each active
variable y ∈ v(l′) a probability measure on
the invariant (and its Borel sets) of y for
location l′.

• S is a finite set of spontaneous (also called
Poisson) transitions and consists of 5-tuples
(l, λ, a, l′, R), denoting a transition from loca-
tion l ∈ L to location l′ ∈ L with communi-
cation label a ∈ Σ, jump-rate function λ and
reset map R. The jump rate λ : Invl → R+

is a measurable function such that for each
ζ ∈ Invl, there exists ε(ζ) > 0 such that
the function s → λ(φl(s, ζ)) is integrable
on [0, ε(ζ)[, where φl denotes the flow of the
valuations of variables v(l) for location l. R

is defined on all interior points of l as it is
done for spontaneous transitions.

• C is the choice function. C assigns to each
boundary point (l, ζ) of the CPDP a proba-
bility measure on the set of outgoing bound-
ary hit transitions, i.e. C(l, ζ) (with ζ ∈
∂Invl) is a probability measure on Bl, where
Bl is the set of boundary hit transitions that
have l as origin location.

For a reset map R of either a boundary hit, a
passive or a spontaneous transition, we assume
that for any active variable y of the target location
and any fixed Borel set A of the invariant of y

of the target location, the map ζ → Ry(A, ζ)
is measurable. Measurability of ζ → Ry(A, ζ)
here means that for any B ∈ B[0, 1] the set
{(ζ1, ζ2, · · · , ζn)|R(A, {y1 = ζ1, y2 = ζ2, · · · , yn =
ζn}) ∈ B} is a Borel set of R

d(y1)+d(y2)+···+d(yn),
where y1, y2, · · · , yn are the active variables of the
origin location. (This fact does not depend on the
order of y1 till yn).

For reset maps of boundary hit and spontaneous
transitions that return to the same location (i.e.
origin and target location are the same), we as-
sume that the probability that all variables jump
to the same value as before the jump equals zero
(i.e. for every ζ in the invariant or on the boundary
of the invariant there exists an active variable y

such that Ry({ζ}, ζ) = 0).

We also assume that the choice function C is
such that for any fixed boundary transition α =
(l, a, l′, R) ∈ A we have that the map ζ →
C(l, ζ)(α) is measurable.

Finally we assume that the CPDP does not have
explosions and does not exhibit Zeno behavior (see
the PDP definition for the definition of explosions
and Zeno behavior).



Passive transitions are used to interact with the
environment (see (Strubbe et al. 2003) for an
explanation of the communication mechanism es-
tablished by the interplay of boundary hit, spon-
taneous and passive transitions). The environ-
ment can activate/trigger these passive transi-
tions. When a CPDP does not have passive tran-
sitions, then it can not be influenced by the envi-
ronment, which means that it is autonomous and
can be executed ’on its own’.

Execution of a CPDP (L, V, v, Inv,G,Σ, A, P, S,

C) without passive transitions (i.e. P = ∅), start-
ing from initial state x0 = (l0, ζ0), is done as
follows: The dynamics at t = 0 is determined
by the vectorfield G(l0) until either the bound-
ary (∂Inv(l0)) is hit at time t∗(x0) (which is
defined similarly as t∗ for the PDP) or until a
point is generated by a Poisson process of one of
the spontaneous transitions. For each spontaneous
transition α = (l0, λα, l′, Rα) a Poisson process
is ’running’ with density λα(ζ(t)). Note that the
jump-rate λα is not constant, but depends on the
current state of the process ζ(t). As soon as one of
these Poisson processes generates a point, the cor-
responding spontaneous transition will be taken.
If the first jump is caused by a boundary-hit at
boundary point ζ, a boundary hit transition will
be selected according to the probability measure
C(l0, ζ). The new continuous state in the target
location of the active transition, will be selected
according to the probability measures of the reset
map R of the boundary hit transition. If the first
jump is caused by one of the Poisson processes,
the reset map of the corresponding spontaneous
transition will select the new continuous state in
the target location. From the new hybrid state on,
this execution procedure can be repeated.

Example 1. In Figure 1 we see a CPDP automa-
ton, where we have between the locations (from
top to bottom) a boundary hit, a spontaneous
and another boundary hit transition. We specify
the reset maps Ri (i = 1, 2, 3) and the jump rate
function λ as: R1 and R3 assign to each boundary
point of location l1 and l2 respectively for variable
x a uniform distribution on the interval [0, 1]. R2

assigns the same uniform distribution for x to each
interior point of l1. R1 till R3 all reset the variable
y to zero (with probability one). Thus, all three
reset maps are ’the same’. We specify λ(x, y) = 1
(thus, constant on the interior of l1 and therefore
constant in time).

Execution of the CPDP from initial location l1
with the variables initially set as x = 0 and
y = 0, goes as follows: x grows exponentially
and y has a clock dynamics and has therefore as
value the amount of time elapsed. One Poisson
process is running with density λ = 1 (this
gives an exponential distribution). If this Poisson
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Fig. 1. Example of a CPDP automaton

process generates a point before 5 time units, then
the spontaneous transition is taken (and R2 will
stochastically reset x and y in the new location l2).
If the Poisson process does not generate the point
before 5 time units, then at t = 5 the boundary
of the invariant of y is hit, which means that a
boundary hit transition must be taken at t = 5.
Since there is only one boundary hit transition
from l1 (the one with R1), this one is taken (a
choice function is thus not necessary here) and
R1 resets x and y in the new location l2. In l2,
x will decrease exponentially and y monitors the
time spent in this location. A jump to l1 happens
only when y reaches the boundary after 5 time
units and then the boundary hit transition with
reset map R3 is taken. (The labels a and b above
the transition are used for communication with
other CPDPs and do not influence the stochastic
behavior here).

4. PDP-SEMANTICS FOR CPDPS

We can say that a PDP or a CPDP determines
for each hybrid state x ∈ E a probability measure
on R × E and its Borel sets (with R for the time
and with E the hybrid state space) for the next
jump time (starting at x) and the (target) hybrid
state at this jump time. With these probability
measures, an execution of a PDP or CPDP from
initial hybrid state x0 could also be done as fol-
lows: Select an element (t1, x1) of R×E according
to the probability measure of x0. The evolution of
the hybrid state between t0 and t1 is determined
by the differential equation of the initial location.
The state at time t1 is now set to x1 and from x1

we can draw a new sample from R × E according
to the probability measure of x1, etc.

We will see that this ’first jump’ probability
measure is well-defined (for all Borel sets of R×E)
for all hybrid states by the characteristics (jump
rates, reset maps) of a PDP or a CPDP.

We now look at how a PDP can represent (mimic)
the stochastic behavior of a CPDP. In order to
do that, we need a PDP-like representation of the
state space of a CPDP. For a PDP, the continuous
state space for a specific location l is an open
subset of R

d(l). For a CPDP this is the case for
a variable rather than for a location. To overcome



this difference, we assume a specific ordering of the
CPDP variables (i.e. V = {v1, v2, · · · , vn}). Then
the continuous state space of a CPDP location l

with active variables v̂1 till v̂m (in that order) can
be seen as Inv(l, v̂1)×Inv(l, v̂2)×· · ·×Inv(l, v̂m)
which is an open subset of R

d(v̂1)+d(v̂2)+···+d(v̂m).
We will call this the euclidean state space repre-
sentation of a CPDP.

Suppose we have a CPDP A = (L, V, v, Inv,G,Σ,

A, P, S,C) with P = ∅. We denote the hybrid
state space (in euclidean form) by E. With Sl→

(Sl→l′) we denote the subset of transitions of S

which have l as origin location (and l′ as target
location) etc. Functions, measures etc. that use
the valuation of variables as an argument, are
naturally transformed into functions, measures
etc. that use euclidean states as argument (e.g.
we write λ(ζ) for the value of λ for the valuation
that corresponds with ζ). We will now define a
transition measure Q on E ∪ ∂E and a jump rate
function λ on E as follows: For x = (l, ζ) ∈ E and
B ∈ B(E ↓ l′), where E ↓ l′ := {(l, ζ) ∈ E|l = l′},

λ(x) :=
∑

s∈Sl→

λs(ζ),

Q(B, x) :=
∑

s∈Sl→l′

(

λs(ζ)
∑

s′∈Sl→
λs′(ζ)

Rs(B, ζ)

)

if
∑

s′∈Sl→
λs′(ζ) 6= 0 and else Q(B, x) = P̃ (B)

with P̃ some arbitrary probability measure (this
P̃ (B) will not influence the stochastic behavior
of the process). Here we have written Rs(B, ζ)
for the probability of jumping into the set of the
valuations corresponding to B according to Rs(ζ)
(this probability is uniquely determined by R for
all B ∈ B(E ↓ l′), see the following paragraph).
For x = (l, ζ) ∈ ∂E and B ∈ B(E ↓ l′) we define

Q(B, x) :=
∑

s∈Al→l′

C(s, x)Rs(B, ζ).

Now, λ and Q, as defined above, are proper PDP
functions, i.e. they satisfy the PDP conditions
(measurability etc.): For λ it is evident from the
fact that it is a finite sum of proper PDP jump
rate functions. For Q it follows from the way it is
composed of proper jump rate functions (includ-
ing the fact that {ζ|

∑

s′∈Sl→
λs′(ζ) = 0} is a mea-

surable set) and from the fact that ζ → Rs(B, ζ)
is measurable for fixed B. The latter statement
follows from the fact that any B can be written
as a countable sum of products: B = ∪iB

y1

i ×
B

y2

i · · · × B
ym

i with y1 till ym the active variables
of l′ and B

yj

i ∈ B(Inv(l′, yj)). Then Rs(B, ζ) =
∪iR

y1

s (By1

i , ζ)Ry2

s (By2

i , ζ) · · ·Rym
s (Bym

i , ζ) and
measurability follows from measurability of all the
ζ → R

yj
s (B

yj

i , ζ).

We now calculate the first jump probability mea-
sures of the CPDP and of the PDP with the same

state space (and boundaries) and vector fields
as CPDP A and with transition measure Q and
jump rate function λ as defined above. (It can be
easily seen that locally Lipschitz continuity of the
vectorfields of the PDP follows from the locally
Lipschitz continuity of the CPDP vectorfields of
the individual variables). We denote this PDP by
Ã and call it the corresponding PDP of CPDP
A. We show that these first jump probability
measures of CPDP A and of the corresponding
PDP Ã are equal for all x ∈ E.

(The corresponding PDP of the CPDP of Figure
1, if we ignore the passive transition and order
the variables as {x, y}, has specifications: K =
{l1, l2}, El1 = El2 = R × [0, 5[, λ(x) = 1 for
x ∈ {(ν, ζ)|ν = l1} else λ(x) = 0. If A,B ∈ B(R)
then for all x ∈ E ∪ Γ∗, Q(A×B;x) equals l(A ∩
[0, 1]) if 0 ∈ B (where l is the Lebesgue measure)
and equals zero otherwise).

Take an arbitrary x = (l, ζ) ∈ E. We now first
look at the survivor functions of the Poisson pro-
cesses corresponding to the spontaneous transi-
tions of A. We denote the survivor function of
transition α at state x by Fα(t, x). Fα(t, x) de-
notes the probability that the Poisson process of
transition α does not generate a point before time
t when the CPDP starts at state x. We have that

Fα(t, x) = exp

(

−

∫ t

0

λα(φl(t, ζ))dt

)

.

It can be seen that the survivor function of the
process A at state x, which equals the probability
that no jump occurs up till time t, is then given
by FA(t, x) =

I(t<t∗(x)) exp

(

−

∫ t

0

∑

α∈Sl→

λα(φl(t, ζ))dt

)

, (1)

where t∗(x) is the boundary hitting time from
state x and IA is the indicator function which
equals one for points in A and zero for points
outside A. Now it can be seen that this survivor
function is equal to the survivor function of PDP
Ã.

We denote the first jump probability measure at

state x for A (and Ã) by PA
x (and P Ã

x ). Now, take
x = (l, ζ) ∈ E and l′ ∈ L arbitrary. Suppose we
have a set A = [0, t] × B, with t < t∗(x) and B

a Borel set contained in the invariant of location
l′. If we write Fα(τ) for Fα(φl(τ, ζ)), Rα(B, τ) for
Rα(B,φl(τ, ζ)), etc., then it can be seen that the
first jump probability for this set, PA

x (A) =

∑

α∈Sl→l′

∫ t

0





∏

α̃∈Sl→l′\α

Fα̃(τ)



Rα(B, τ)dFα(τ),

The above integrals are well-defined because
Fα(τ) is bounded and measurable (and therefore
integrable) and Rα(B, τ), which equals



Rα(B,φl(τ, ζ)), is bounded and is measurable be-
cause Rα(B, ζ) is measurable for fixed B and φl

is continuous and therefore measurable (dFα(τ) in
this integral means integrating over the measure
induced by Fα). Then we can derive from (1) that

PA
x (A) =

∫ t

0





∑

α∈Sl→l′

λα(τ)Rα(B, τ)



FA(τ)dτ,

which can be rewritten as

PA
x (A) =

∫ t

0

(
∑

α∈Sl→l′
λα(τ)

∑

α∈Sl→
λα(τ)

Rα(B, τ)

)

dFA(τ),

which equals
∫ t

0

Q(B, τ)dFÃ(τ),

which is exactly the expression for P Ã
x (A). There-

fore the first jump probabilities for sets of the form
A as above coincide for CPDP A and PDP Ã.

Now suppose we have a set of the form A =
[t∗(x), t] × B, with t ≥ t∗(x) and B a Borel set
contained in the invariant of l′. Then we can see
that

PA
x (A) = lim

s↑t∗
FA(s)

∑

α∈Al→l′

C(α, t∗)Rα(B, t∗),

which is equal to
∫

[t∗(x),t]

Q(B, τ)dFÃ(τ),

which is the expression for P Ã
x (A). Therefore the

first jump probabilities for sets of this form of A

also coincide for CPDP A and PDP Ã.

It is clear now, by combination of the two cases
above, that the first jump probability measures of
the CPDP and the PDP also agree on sets of the
form [0, t] × B with t ∈ R+ and B a Borel set
within the invariant of one location (as above).
It can easily be seen that they then also agree
when B has points in different locations (i.e. any
B ∈ B(E)). The collection of sets [0, t] × B (with
t ∈ R+ and B ∈ B(E)) is closed under finite
intersections and probability measures that agree
on such a collection of sets, also agree on the
σ-algebra generated by those sets. This means
that the first jump probability measures agree on
B(R+×E), because this is the σ-algebra generated
by sets of the form [0, t] × B.

Therefore, instead of executing (or simulating)
CPDP A, we could as well execute the PDP Ã.
This would make no difference. In (Davis 1993)
the stochastic process that is generated by a PDP
is formally defined. With the above observation,
it now makes sense to speak about the PDP-
semantics (or stochastic process semantics) of
CPDP A, expressed by the stochastic process that

is generated by the corresponding PDP. In this
way we formally defined the stochastic process
that is generated by a ’closed’ CPDP (i.e. a CPDP
that has no passive transitions).

5. CONCLUSIONS

In this paper we have shown that the stochastic
behavior of a CPDP automaton can be character-
ized by a PDP process. In the proof of this result
it is shown how such a PDP can be constructed
from the CPDP specification.

Stochastic analysis of CPDPs can now be done
by using the PDP analysis techniques by trans-
forming the CPDP into its corresponding PDP.
In that scenario, CPDPs are used mainly for the
compositional specification and as soon as the
specification is ready, the complex is transformed
into a PDP and can then be analyzed.

Another, more intriguing, scenario is composi-
tional analysis. A complex CPDP consists of mul-
tiple CPDPs that are connected via composition
operators. The composition structure of the com-
plex CPDP (together with PDP analysis tech-
niques) might then be used for analyzing specific
parts or specific behaviors of the CPDP. In this
scenario, bisimulation (which is for CPDPs de-
fined in (Strubbe and van der Schaft 2005)) can
also be an interesting concept.
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