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Abstract: This study concentrates on linear flow-shop whose organization is generally 
optimized for a well defined production in term of quantity and quality 
In front of the economic needs which require a constant adaptation of the product, an 
analytical evaluation of the robustness to the changes of the ratios of production is 
presented. This evaluation is based on the assumption of a cyclic operation, which allows 
the modeling of the system by a strongly connected event graph. A modular 
decomposition allows the insulation of the ratio indeterminism in module. It thus makes 
possible to convert the model into an event graph with associated constraints. The 
robustness to ware ratio changes is evaluated. It’s important to notice that during this 
study, we evolve in static mode (ratios do not change throughout the production) It is 
relevant information for piloting the workshop. 
Systems with time constraint usually not allow this quality degradation ensuing from 
specification violation. In this case, a study of mode transient remains to be developed. 
We will use a toy manufacturing flow-shop throughout the paper as an illustration. 
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1. INTRODUCTION 

 
Market requires constant adaptations of the production. 
However the need does not change radically in its nature 
and quantity. Consequently, it is important for a 
production system to be able to manufacture various 
categories of products, while having the ability to make 
adjust in a slight way the nature of a product or the 
production ratios. In the presented paper, small and local 
variations will be studied. Obviously, the flexibility of 
considered process is very restricted compared to the 
general notion of flexibility.  
 

The presented approach tries to study flow shops in 
order to prove and quantify a given degree of 
flexibility. On one hand, the constraints to be 
respected in order to maintain the initial 
performances of the workshop are established. On 
the other hand, the freedom degrees of the system 
are analytically characterized in order to define the 
quality and ratio changing possibilities.  
The global methodology provides some sufficient 
conditions for dynamic ratio changing. 
Nevertheless, these conditions may be decomposed 
into two subsets. The first ones derive from the 
reachable rate conditions (Campos 1991). The 
second ones are robustness properties for ratio 

 



changing from a cyclic functioning point to another. 
These last conditions will not be detailed in this paper. 
 
In a first section timed Petri Nets will be presented. Then 
the subclass of strongly connected event graph will be 
detailed. Then, a decomposition approach is introduced. 
Its main quality is to preserve the analysis capacities of 
the model. This allows applying the rate conditions 
(Campos 1991). A particular assumption is used: the 
bottleneck machine is supposed to be outside of the 
module where a variation is introduced.  A toy 
manufacturing workshop is used as an illustration 
throughout this paper. 
 
Approach presentation on an example: 
The workshop is composed of three working stations as 
well as two robots routing the parts in the various stations. 
The workshop carries out an assembling operation of two 
pieces of wood. Operations are:  loading of a part in the 
pallets, part position recognition, deposit of adhesive, 
positioning of a ware feet, and unloading. Let us point out 
that the sequencing of the pallets is fixed at the scheduling 
level. 

 
Fig. 1: Real representation of the workshop. 

 
The general procedure includes three steps: 
At first, the performance bounds are computed. They are 
used to make the assumption of a cyclic functioning. Then 
a subpart of the system is selected to contain a new 
variation. The bottleneck machine is assumed to be out of 
the considered sub-system. Finally, the ratio constraints 
which maintain the global production rate are established. 
The aim is to build a modular structure which is able to 
take decision concerning the ratio variations, without 
studying and without disturbing the global workshop. The 
transient mode problem is not studied in these lines. 
 
Timed Petri Nets 
Petri nets are graphic and mathematical tools able to 
model a broad variety of discrete systems. They are well 
fitted for descriptions and the studies of parallel systems. 
 
 
1.1 Definition 
 
A Petri net is a graph whose nodes are places and 
transitions, and in which the arcs connect places to 
transitions or transitions to places. A PN is often 
represented by a 4 – uple N = (P, T, I, O), where: 
- P = {P1, P2, ..., Pm} is the set of the places. 
- T = {T1, T2, ..., Tn} is the set of the transitions. 
- I is an input function type P × T→ N corresponding to 
the arcs who connect the place to the transition. I(p, t) > 0  
means that there is an arc going from the place p to the 
transition T; I(p, t) = 0 means that this arc does not exist. 

- O is an output function of type T × P → N and 
corresponds to the arcs going of a transition to a 
place. O(t, p) > 0 means that there is an arc going 
from the transition t to the place p; O(t, p) = 0 
indicates the non-existence of such an arc. 
 
A timed PN is a pair (R, Ө) where: 
R is a marked Petri net. 
Ө is a function which associates one duration of 
firing of each transition. This duration can be 
deterministic or random. 
 
 
1.2 Functioning of a timed Petri Net 
 
The conditions of t transition firing are the same 
ones as subjacent PN but the transition firing are 
not instantaneous and proceeds in three stages 
(Laftit91). 
The initialization, which begin when each input 
place p contains at least the same marks as the 
value of the arc (p, t). I(p, t) tokens is then removed 
from each place p of entry of the transition t. 
The execution, which spends Ө(t) units of time. 
During this time, tokens are frozen in transitions. 
End of firing, at the moment of end of execution. 
O(t,p) tokens is then added in each place of exit of 
the transition t. 
 
 
1.3 Events  Graphs and SCEG  
 
Definition 1: event graph is a particular PN in 
which each place has exactly an input transition and 
an output transition. In other words a graph of event 
is PN N = {P, T, I, O} such as: 

∀(t,p) ∈ P×T, |I(p,t)| = |O(p,t)| = 1 
 

Definition 2: an event graph is strongly connected if 
there is a directed path which connects any node (a 
place or a transition) to any other node. 
 
Theorem 1 (Chretienne 1983): The asymptotic 
behavior of SCEG who operate as soon as possible 
is K-periodical with a frequency of firing of the 
transitions equal to 1/Cmax. In other words, there is 
n and K such as for all, transition t, the t firing dates 
checks: 

St (n+K) = St (n)+K Cmax
St(n) is the nth firing of the transition t 
 
Definition 3: We call elementary circuit any 
directed path who connecting a node to itself 
without going more than one time through the same 
node. 
 
Theorem 2 (Ramamoorthy 1980): The minimal 
cycle time of a timed SCEG is given by Cmax, where 
Cmax is the maximum of the cycle times of the 
elementary circuits of the net. 
The cycle of the circuit Γ, noted C(Γ), is computed 
by: C(Γi) = µ(Γi)/M(Γi), where µ(Γi) is total 
duration of firing of the transitions from the circuit 
Γi. and M(Γi) is the number of tokens in the 
elementary circuit Γi. 
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The global cycle time of the SCEG is Cmax such as: 
 Cmax = max {C(Γi )}. 
 
Property 1 (Laftit 1991): For a given SCEG the marking 
of an optimal solution using one-periodic functioning 
constraints is also a marking of an optimal solution to the 
same system running in K-periodic mode.  
 
The global topology of the workshop is a about flow-shop 
one, where some operations have many alternatives. As 
there are no critical resources sharing, the general 
structure of the net is then a free choice net. In this case, 
in spite of the indeterminism introduced on the level of 
the choices, we can calculate a reachable upper bound of 
the performances (Campos 1991).  
 
Definition 4 : Free choice net (Diaz 2001) are such: 
∀(p,q)∈(P∩P×T), O(p,t)={q}∨ I(p,t)={p}. 
It is easy to see that SCEG are a subclass of free choice 
nets. 
 
 

2. DECOMPOSTION AND PERFORMANCES 
EVALUATION 

 
2.1 Introduction of a process flexibility  
 
We include now a new operation (station of varnishing). 
The type of flexibility introduced here is process 
flexibility.  

Fig.2: PN model of the process 
 

Indeed there is now the choice between two operations 
requiring different resources. In other words, a standard 
ware or a modified one can be produced (Fig 2). 
It’s easy to check that the PN model of the workshop 
before the addition of the new station is a SCEG. 
 
 
2.2 Decomposition procedure (Proth 1997) 
 
The introduction of a new procedure into the operating 
sequence makes that the obtained graph is no more an 
event graph or a state graph. Then it is no more possible 
to apply the theorem 2 on the modified model (fig2). 
It is necessary to apply a new approach to evaluate the 
performances of the system. Therefore, a modular 
decomposition of the process is proposed. 
The first step of decomposition consist in showing that 
our process has only one entry and one exit. 
All the manufacturing processes have the same input 
points and output points, this indicate that the PN model 
is controllable output PN (Proth 1997), then we determine 
the ranges of products contained in the process. 
 
Definition 5: 

Let W be a t-invariant of a PN named N. A PN 
named NW is W-derived from N, which contains 
output and input place if:  
The set of transition of NW is ||W||, 
∀ t ∈||W||,∀p ∈P,  I(p,t) and O(t,p) are the same for 
N and NW. 
 
Definition 6: 
Let us introduce W-CFIO of N, where W is a t-
invariant of N. NW is the PN W-derived from N 
when it verifies the following properties: 
Each place of NW has exactly one output transition. 
∃(t1, t2) ∈ ||W||× ||W|| | ∀p∈P, I(p,t1)=O(t2,p) = ∅. 
NW contains no elementary circuits. 
 
Definition 7: Output controllable Petri nets (Proth 
1997) 
A Petri Net  N = (P∪R, T, A, M0) where : 
P (resp. R) is a set of places known as process place 
(resources places); the sets P and R are disjoined. 
T is the whole of the transitions, 
A ⊂ ((P∪R) × T) ∪ (T × (P∪R)) is a set of arcs, 
M0 is initial marking, 
All the arcs values are equal to 1,  
There is a controllable output PN, if the following 
conditions are checked: 
(t, p) ∈ A ⇔ (p, t) ∈A, ∀t ∈ T et p ∈ R, 
M0(p) ≥ 1, ∀p ∈R 
The subnet N1 = (P, T, A1, M1) where : 
A1 is a restriction of A to (P × T) ∪ (T × P), M1 is 
a restriction of M0 to P, is a decomposable PN, Varnishing station 

N1 has transitions sources and transitions well, but 
does not have any place source or well, 

T10 P16 T9 
  P3 P2 P15 

There is a unit W = (W1..., Wk) of T-invariants of 
N1 such as the networks NWi Wi derived from N1 
are a Wi-CFIO which cover N1 and have only one 
transition well 
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P14 P6  T7 T6 P8 P7 T8 We can say that PN (fig. N°2) is an Output 
controllable Petri nets, and thus determine the 
transition sources (T1) and the well transition (T8), 
as well as the sets: P (places of process) and R 
(places of the resources). 
The sets are: P = {P2, P3, P4, P5, P6, P7, P8, P15, P16} 
R = {P9, P10, P11, P12, P13, P17} 
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Fig.3 : underlying-network N1 
 

Integration process  
 
Let us consider a system {N1, N2,…, Nn}of output 
controllable Petri nets. 
Ni = (Pi ∪ Ri, Ti, Ai, M0,i), let us denote Te

i (resp. 
Ts

i) the transitions sources (resp. well) from Ni. 

 



Ni; i = 1..., n are integrated by the intermediary of a Q unit 
of interfaces places and Γ unit of inter arcs modules. 
Resulting PN noted N is such as: 
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set of output places of t has at most one element (Proth 
1997). 
The following figure illustrates the integration process:  
 

 

 
Fig.5 : the submodules de N1 (N1’ et N1’’) 

Reduction
 several places: A pi place can be 

: 

 
Fig.4: Integrated model 

 
With Q = {P7} et Γ = {(T6, P7), (P7, T7)}. 
Let us recall that the aim of the modular decomposition is 
solving conflicts issue from the addition of a modified 
ware in the production. On figure 3, the P15 place has two 
output transitions T11 and T10. Each of the two path leads 
to a different manufacturing range. 
 
This conflict prevents an evaluation of performance since 
the PN graph is no more a graph of event. 
The modular decomposition enables us to isolate the 
conflict (in this case, it is the N3 module). By carrying out 
this decomposition we gathered all the actions which 
proceed before the conflict in the same module and the 
actions which proceed after the conflict in the same 
module too. We have at all three modules. By gathering 
them we obtain a macro model which does not present 
any more a conflict and whose temporal study will be 
simpler. 
 
Transformation from a macro model towards a SCEG 
 
The N1 module has several inputs and outputs; this 
property complicates the assembling the various modules. 
To solve this problem we carries out a decomposition of 
the module N1, we extracts two submodules which 
represent a controllable output PN according to definition 
6 (Proth 1997). 
 
Here two submodules N1’ et N1’’: 

 
 techniques 

Substitution of one or
substituted if it fulfilled some well known conditions 
presented in (David 1992).  
 

implification of the modulesS
 

Each module has a single input transition (source) 
and a single output transition (well). It was 
established that the PN model have a periodic 
cycle. Each transition from the PN model has a 
periodic firing instant. Let us consider ti, tj as two 
transitions and Sti, Stj their respective firing 
moments. According to the equation of Laftit which 
defines the transition firing moment (Laftit 1991): 
St(n)=  St(1)+(n-1)Cmax⇒Stj(n) - Sti(n)= Θ 
 
The last equation represents the sojourn time 
between the firing moment of the well transition ti 
and the output transition tj. If the PN model has a 
periodic cycle, Θ remains constant. 
 
It results that each module is represented by a timed 
place of duration Θ. This time is determined by the 
difference between the firing moments of the output 
and input transitions from each module, where Θ is 
called interfering time of transition (Campos 1991) 
 
General decomposition procedure: 
 
The objective of this procedure is to solve the 
conflicts which appear in the PN model after the 
insertion of the new product. This addition makes 
possible the modifying the manufacturing range. 
 
To solve the problem, the conflict part is isolated. 
All the parts which present a choice are integrated 
in only one module. This module has an input 
transition (source) and an output transition (well). 
To determine these transitions, the follows 
procedure is applied: 
For timed PN, we define:  
I(Pi): the set of the arcs entering the place pi,  
O(Pi): the set of the outgoing arcs of place pi. 
The symbols (°t) and (t°) respectively represent the 
set of upstream places of transition t, and the set of 
the output places of t. 
- If there exists ti° = Pi such as I(Pi) = 1 and O(Pi)> 
1 then ti is an input transition , 
- If there exists °tj = Pj such as I(Pj)>1 and O(Pj) = 1 
then tj is an output transition, 
- If I(Pi)= O(Pj) 
 
Then we integrate all the directed paths between ti 
and tj in only one timed place, the interfering time 
represents the temporization associated to the place. 
The functioning is assumed to be periodic into the 
new choice structure, which enables us to assimilate 
the module to a timed place and to calculate a 
general cycle time. When the cyclic conditions are 
fulfilled, according to the property of Laftit 
(property 1 and theorem 1), the integration 
procedure preserves the system optimality. 
 
Moreover, we can say that the graph resulting from 
the assembly of all the modules is an event graph 
with associated constraints ensuing from the cyclic 
functioning assumptions. 
 
 
2.3 Performance evaluation of the model 
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When an event graph is obtained, the performance 
evaluation is made using the theorem 2. It is necessary 
however to keep in mind that the model studied for the 
calculation of the cycle time is a meta model. This model 
is only correct for a given cyclic functioning. It is thus not 
planned to calculate transient states on this level of 
modelling. 

 

 
In the followed section, choice possibilities on the ratios 
of production defined inside the module is studied. A 
modelling based on the works of Hillion was removed 
because this last fixes the production ratios before 
building the PN (Hillion 1989). 
 
Study of the flexible part: 
 
Let us focus on the module containing the flexible part. 

 
Fig.6: PN including a choice of range of products 

 
The cycle time of the system is equal to: 

C1 = α Cmax1 + (1-α) Cmax2
 
C1 is the cycle time of a composite sequential process 
corresponding to a linear combination of the two possible 
sequential processes (Campos 1991).
Cmax1 corresponds to the cycle time of the sequential 
process associated to the normal product (which passes by 
T11). Cmax2 corresponds to the cycle time of the modified 
sequential process (passing by T9 and T10). α is the 
production ratio. It can be proved that there is no need to 
integrate other elementary circuits than the one of the new 
sequential process. The demonstration is based upon 
decomposition into a minimal base using the graph theory 
(Morioka 1991).  
 
The addition of a new operation in the industrial process 
may modify system functioning rate. The initial system is 
periodic and has a cycle time C0. It is a constraint to keep 
the same critical cycle, facing some modifications of the 
manufacturing process. Then, C0 must be greater than C1
There are two different scenarios: 
-  C0 ≥ Cmax2: System performances remain the same. 
- C0 < Cmax2: the system becomes slower than previously. 
Then the corresponding value of α is not allowed 
 
It is obvious that the first case does not introduce a 
problem. Consequently, the study focuses on the second 
case. We will try to establish criteria to be respected in 
order to guarantee the optimality of the new system. 
 
The assumption is made that the critical circuit which fix 
the maximum rate of the workshop is not included in the 
new considered model: 

Cmax2 > Cmax1 and C1=α Cmax1+(1-α)Cmax2
 
Obviously, the α value conditions system performances. 
The values of Cmax1 and Cmax2 are known. In order to set 

C1 lower than the olden critical time, a correct value 
of α has to be applied: 
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We define ∆, as a variation in the length of the 
corresponding circuit. 
α depends mainly on the value on ∆2. 
α is a ratio such as 0 ≤ α ≤ 1 T9 T10P3 
α =0⇒ Only the standard wares are manufactured.  

1-α α =1⇒ Only the varied wares are manufactured. 

 If
21

2

∆+∆
∆

=α  then 

0 max1 max2. (1 ).C C Cα α= + −  

α 
T11 P2 Ti P1 Tj 

⇒ In this case, performances are conserved. 
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Generalization 
 

Let us consider an integrated module, such as ti 
and tj are respectively its input and output 
transitions. 

 

t1

ti tj
t2

tn 

Fig.7: PN including N choice of ranges of products 
 

If AS(ti°) = AE(°tj) = n such as n > 1 
Then the cycle time of the system is equal to: 

... max1 max1 2 max2C C C Cn nα α α= + + +
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In this model there are “n” directed path of the place ti° 
towards the place °tj, which give the following equation 
system: 
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αj the ratio which corresponds to the manufacturing 
process which has the longest way between the place ti° 
towards the place °tj, Cmaxj > Cmaxi , for i ∈[0, n] i ≠ j. 
 
The presented inequation does not give the values of the 
process to be used to keep the same performances, 
because of couplings between the ratios αi. we propose in 
our paper a means to establish if the ratios employed 
degrade or improve the performances of the flow shop. 
 
The planning worker will have a mathematical tool which 
insures that the production of the necessary quantities of a 
specific product will be made within the deadlines, while 
respecting the initial global performances. 
 
 

3. CONCLUSION 
 
This study allows evaluating the impact of process 
flexibility on the flow-shop functioning on the system 
performances. 
 
The cycle time of the initial flow-shop has to be 
maintained. This property constitutes a good performance 
criterion. In fact, the production constancy is a kind 
quality of service. It simplifies the production 
management of the downstream productive entities. 
Nevertheless this quality of service is possible under some 
necessary conditions. The constraints to fulfill on the 
production ratios, in order to a constant cycle time have 
been analytically established according to the structure of 
the workshop. 
 

In the presented work, the nature of the flexibility is 
limited.  It is process flexibility. Also on the 
number of choices in a given module is limited to 
one. Our study field may become broader, by 
allowing shared resources between the various 
alternative paths. 

Where ∆2,…, ∆n are 
algebraic values 
 

 
The possibility of on-line ratio changing has not 
been studied. It is however a natural prospective 
work. This involves characterizing the existence of 
transient states according to the physical constraints 
of the process and its periodicity, using the 
operating margins. 
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