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Abstract: This paper addresses the issue of reliable satisfaction of customer
demand by unreliable production systems. Using a simple Production-Storage-
Customer model, we show that this can be accomplished by filtering out pro-
duction randomness. The filtering of randomness is ensured by finished goods
buffers (filtering in space) and shipping periods (filtering in time). The following
question is considered: How are filtering in space and in time interrelated? As
an answer, we show that there exists a conservation law: In lean manufacturing
systems, the amount of filtering in space multiplied by the amount of filtering in
time (both measured in appropriate dimensionless units) is practically constant.
Copyright c©2005 IFAC.
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1. INTRODUCTION

Manufacturing systems with unreliable machines
usually contain Finished Goods Buffers (FGB)
intended to filter out production randomness and,
thereby, ensure reliable satisfaction of customer
demand. “Filtering in space”, provided by FGBs,
is complemented by “filtering in time”, offered by
shipping periods. For a given shipping period and
shipment size, the smallest FGB capacity, which
ensures the desired level of customer demand
satisfaction, is referred to as lean. The question
addressed in this paper is: How are filtering in
time and space interrelated? As an answer to this
question, we show that there exists a conservation
law, which, roughly speaking, can be formulated
as follows: In manufacturing systems with lean

FGBs, the product of “filtering in time” and “fil-
tering in space” is practically constant.

Along with theoretical significance and insight
into the behavior of production systems, this law
offers practitioners a quantitative tool for manag-
ing lean FGBs. In particular, it shows how FGB
capacity should be adjusted, when the shipping
period is changed, so that neither the leanness of
FGB nor the level of customer demand satisfac-
tion are sacrificed.

The literature, related to the problem addressed
in this paper, consists of publications devoted
to production variability and customer demand
satisfaction. Due to space limitations, we mention
here only a few publications on these topics. More
references can be found in (Li et al., 2004a). The



study of production variability has been initiated
in (Miltenburg, 1987), and continued, for example,
in (Gershwin, 1993) and (Tan, 2000). Although
production variance is an important metric of
production variability, it does not, by itself, char-
acterize the level of customer demand satisfac-
tion. Therefore, to address this issue, references
(Jacobs and Meerkov, 1995) and (Li et al., 2004b),
introduced and analyzed the notion of due time
performance In the present paper, we use the
method developed in (Li et al., 2004b) for anal-
ysis of filtering of the production randomness in
manufacturing systems with unreliable machines
and finished goods buffers.

The outline of this paper is as follows: Section
2 introduces the model of the system under con-
sideration. In Section 3, this model is parameter-
ized in terms of three dimensionless parameters,
and the problem to be analyzed is formulated.
The method of analysis is outlined in Section 4,
and the main result, i.e., the conservation law
mentioned above, is described in Section 5. The
conclusions are given in Section 6.

2. MODEL

2.1 Assumptions

The manufacturing system analyzed in this paper
consists of three subsystems: Production, Storage,
and Customer. Each of them and their interac-
tions are formalized as follows:

Production Subsystem

(i) The production subsystem is intended to
produce one part during a fixed time inter-
val (referred to as the cycle time). Due to
machine breakdowns, this may or may not
happen, depending on the status of the last
machine in the system (up or down) and the
buffer occupancy in front of it (empty or
not). Therefore, the production subsystem
may be in one of two states: active or pas-
sive. When active, a part is produced during
each cycle time. When passive, no parts are
produced.

(ii) The time intervals, during which the pro-
duction subsystem is active or passive, are
exponentially distributed random variables
defined by parameters α and β, respectively.

Storage Subsystem
(iii) The storage subsystem consists of a finished

goods buffer with capacity 0 < N < ∞.
Parts produced by the production subsystem
are immediately transferred to the FGB.

Interaction between the Production and Storage
Subsystems
(iv) The production subsystem is blocked at time

t if the FGB is full at time t.

Customer Subsystem
(v) The customer requires D parts to be shipped

during each shipping period. The duration of
the shipping period is T cycles of time. To
avoid triviality, it is assumed that

D < Te. (1)

where e is the average production rate of the
production subsystem, i.e.,

e =
β

α + β
=

Tα

Tα + Tβ

. (2)

Here Tα = 1/α and Tβ = 1/β are the average
values of the active and passive periods,
respectively.

Interaction among the Production, Storage, and
Customer Subsystems
(vi) At the beginning of shipping period i, parts

are removed from the FGB in the amount
min{H(i − 1), D}, where H(i − 1) is the
number of parts in the FGB at the end
of the (i − 1)-st shipping period. If H(i −
1) ≥ D, the shipment is complete; if H(i −
1) < D, the balance of the shipment, i.e.,
D−H(i−1) parts, is to be produced by the
production subsystem during the shipping
period T . The parts produced are immedi-
ately removed from the FGB and prepared
for shipment, until the shipment is complete,
i.e., D parts are available. If the shipment
is complete before the end of the shipping
period, the production subsystem continues
operating, but with the parts being accu-
mulated in the FGB, either until the end of
the shipping period or until the production
system is blocked by the full FGB, whichever
occurs first. If the shipment is not complete
by the end of the shipping period, an incom-
plete shipment is sent to the customer. No
backlog is allowed.

Remarks:

• The production system defined by assump-
tion (i) may have an arbitrary topological
structure; it could be either a serial line, or
an assembly line, or even a re-entry line.

• The exponential distributions of active and
passive periods of the production subsystem
(assumption (ii)) are introduced to enable an
analytical approach to the problem at hand.
Similar results, using numerical simulations,
may be obtained for non-exponential distri-
butions as well, provided that their coeffi-
cients of variation are less than 1.

• A fixed shipping period T (assumption (v))
is typical in the automotive industry: usually,
assembly plants interact with the first-tier
suppliers on a fixed delivery schedule.

• A fixed shipment size D (assumption (v)) is
also a part of standard agreements among



assembly plants and their suppliers. In re-
ality, however, the shipment size may some-
times vary. The results, reported here, can
be extended to the case of a random demand
(using the analytical technique developed in
(Li et al., 2004b).

2.2 Demand Satisfaction Metric

The demand satisfaction metric, used in this work,
is the probability that D parts are shipped to
the customer during a shipping period T . We
refer to this metric as the Due Time Performance
(DTP) (Jacobs and Meerkov, 1995). To formalize
this metric in terms of the Production-Storage-
Customer system described above, we note that in
the time scale of the shipping period T , assump-
tions (i)-(vi) define a stationary, ergodic Markov
chain. Let t̂(i) be the random variable represent-
ing the number of parts produced by the produc-
tion subsystem during the i-th shipping period in
the steady state of this Markov chain. Then DTP
can be represented as follows:

DTP = Pr
(
H(i − 1) + t̂(i) ≥ D

)
, (3)

where, as before, H(i − 1) is the number of parts
in the FGB at the end of the (i − 1)-st shipping
period.

A method for calculating DTP has been developed
in (Li et al., 2004b). Using this method, it is easy
to show that DTP tends to 1 when either N or
T tend to infinity. In this sense, N and T provide
filtering of the production randomness in space
and time, respectively. In this paper, we investi-
gate how T and the smallest N , which results in
the desired value of DTP, are interrelated.

3. PARAMETERIZATION AND PROBLEM
FORMULATION

The Production-Storage-Customer system, de-
fined by assumptions (i)-(vi), is characterized by
five parameters: α, β, N , D, and T . None of
them, independently, define the regime, in which
the system is operating. For instance, the same D
could represent either a high or low demand on the
production system (depending on its average pro-
duction rate). Similarly, the same N (respectively,
T ) may represent either a high or low level of
filtering in space (respectively, in time). Therefore,
the five parameters must be normalized so that
the regimes of operation become explicit. This sit-
uation is similar to that of fluid mechanics, where
the Reynold’s number and other dimensionless pa-
rameters are introduced to quantify flow regimes.
Below, we introduce three parameters describing
regimes of manufacturing systems operation.

(a) Relative FGB capacity:

ν =
N

D
. (4)

Clearly, ν characterizes regimes of operation from
the point of view of filtering in space: ν � 1
implies that shipments are practically just-in-time
(even if N is large), while ν � 1 means that the
system operates in the regime with large space
filtering (even if N is small).

(b) Relative shipment period:

τ =
T

Tα + Tβ

. (5)

The parameter τ quantifies the shipping period in
units of what is referred to as the reliability cycle,
Tα + Tβ. When τ is large, the shipping period
offers significant filtering in time; small τ implies
a regime with insignificant time filtering.

(c) Load factor:

L =
D

Te
. (6)

Due to (1), L < 1. When L is close to 1,
the production system operates in a regime with
a heavy load. Often, manufacturing managers
view large L as a desirable regime. In Japanese
industry, however, small L seems to be preferred.

The smallest ν, which ensures the desired DTP, is
referred to as the lean relative FGB capacity; it is
denoted as νDTP .

The problem addressed in this paper is: Given
the Production-Storage-Customer system, defined
by assumptions (i)-(vi), and the desired DTP,
analyze the interrelationship between νDTP and τ ,
i.e., investigate how filtering in space can be traded
off against filtering in time.

A solution to this problem is given in Section 5,
while the approach of this research is outlined in
Section 4.

4. APPROACH

4.1 Calculation of DTP

A method for calculating DTP in manufacturing
systems defined by assumptions (i)-(vi) has been
developed in (Li et al., 2004b). Briefly, it can be
described as follows:

Let t(i) denote the number of parts produced
during shipping period i if no blocking occurs.
Introduce the following quantities:

P(x) = Pr
(
t(i) ≥ x

)
, x ∈ {0, 1, . . . , T},



rk,j = Pr
(
t(i) = D + k − j

)
, k = 1, . . . , N − 1,

j = 0, 1, . . . , N,

r̂N,j = Pr
(
t(i) ≥ D + N − j

)
, j = 0, 1, . . . , N.

These quantities can be calculated as follows: As
it has been shown in (Jacobs and Meerkov, 1995),

P(x) =
βe−αx

α + β

[
1 +

∞∑

j=2

(αx)j−1

(j − 1)!

(
1 − e−β(T−x)

j−2∑

k=0

[β(T − x)]k

k!

)]
+

αe−αx

α + β

∞∑

j=1

(αx)j−1

(j − 1)!

[
1 − e−β(T−x)

j−1∑

k=0

[β(T − x)]k

k!

]
. (7)

To calculate rk,j , the following expression can be
used:

rk,j = P(D + k − j) − P(D + k − j + 1). (8)

The r̂N,j can be calculated as

r̂N,j = P(D + N − j). (9)

Introduce matrix R and vector Z0 defined by

R =


r1,1 − r1,0 − 1 r1,2 − r1,0 . . . r1,N − r1,0

r2,1 − r2,0 r2,2 − r2,0 − 1 . . . r2,N − r2,0

. . . . . . . . . . . .

r̂N,1 − r̂N,0 r̂N,2 − r̂N,0 . . . r̂N,N − r̂N,0 − 1


 ,

Z0 =




r1,0

r2,0

· · ·

r̂N,0


 . (10)

Matrix R is nonsingular due to the uniqueness of
the stationary probability distribution defined by
system (i)-(vi).

The following Theorem is proved in (Li et al.,
2004b):

Theorem 1. Under assumptions (i)-(vi),

DTP =

N∑

k=0

P(D − k)zk, (11)

where zk = Pr
(
H(i − 1) = k

)
, k = 0, 1, . . . , N ,

and vector Z = [z1, z2, . . . , zN ]T is calculated
according to

Z = −R−1Z0. (12)

4.2 Evaluation of νDTP

For given α, β, D, and T , we first evaluate L and
τ . Then, assuming N = 0, we use Theorem 1 and

calculate DTP, i.e., DTP (N = 0). If it is larger
than the desired DTP, we assume that the lean
FGB capacity is 0. Otherwise, we assume N = 1,
calculate DTP (N = 1) and again compare it with
the desired DTP. We continue this procedure until
we arrive at the smallest N , denoted as NDTP ,
for which DTP (NDTP ) is larger than the desired
DTP. Then we evaluate νDTP as follows:

νDTP =
NνDT P

D
. (13)

Thus, for given L and τ , the value of νDTP is
determined.

Results, obtained using this approach, are de-
scribed below.

5. MAIN RESULTS

5.1 Typical Behavior

The typical behavior of νDTP as a function of τ ,
i.e., the function

νDTP = FDTP (τ), (14)

is illustrated in Figure 1.Three regimes of system
operation are presented: heavy load (L = 0.97),
medium load (L = 0.92), and light load (L =
0.71). These graphs are calculated, using the ap-
proach described above for the production system
characterized by e = 0.825 and Tα +Tβ = 25, i.e.,
Tα = 20.625, and Tβ = 4.375. Also, the desired
DTP is assumed to be 0.99, which is a typical
desired level of customer demand satisfaction in
the automotive industry.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

τ

ν

L=0.97
L=0.92
L=0.71

Fig. 1. Typical behavior of νDTP vs. τ

Clearly, the graphs of Figure 1 exhibit a tradeoff
between filtering in time and filtering in space. For
instance, in the heavy load regime, τ = 5 requires
νDTP

∼= 1, while for τ = 1, the νDTP
∼= 4.5

is necessary. Similar tradeoffs take place in the
medium and light load regimes. However, the
amount of filtering in space, necessary to achieve
the desired DTP, drops significantly when the load



is decreased. For example, in the light load regime
and τ = 5, no finished good buffer is necessary,
and the deliveries can be just-in-time, while this is
impossible for the medium and heavy loads. This
dramatic improvement in the acceptable leanness,
ensured by low loads, may be a justification of the
Japanese firms’ tendency to operate in light load
regimes: it allows them to maintain a high level
of customer demand satisfaction with a small (if
any) finished goods inventory.

5.2 Conservation Law

The nature of curves in Figure 1 suggests that
νDTP and τ may be related in a hyperbolic
manner, i.e.,

νDTP τ = const. (15)

This hypothesis is substantiated by the graphs of
Figure 2, while the value of the constant in the
right-hand side of (15) is also indicated.

These graphs correspond to DTP = 0.99; similar
results have been obtained for other values of DTP
as well (see (Li et al., 2004a)).

Expression (15) can be interpreted as a conser-
vation law: For a manufacturing system defined
by assumptions (i)-(vi), the amount of filtering in
space (in units of νDTP ) multiplied by the amount
of filtering in time (in units of τ), necessary to at-
tain the desired DTP, is constant. In other words,
filtering in space and filtering in time tradeoff one-
to-one.

The conservation law (15) can be written in the
form

νDTP τ = ΦDTP (L, e), (16)

which specifies the dependency of the constant in
(15) on the system parameters. For several values
of its arguments, function ΦDTP (L, e) is charac-
terized by the constants included in Figure 2. How
can this function be evaluated for other values of
its arguments? An answer to this question is as
follows:

For a given manufacturing system and given DTP,
calculate νDTP , using the approach of Section
4, for τ = 1. Then, according to (15), function
ΦDTP (L, e) can be defined as

ΦDTP (L, e) = FDTP (1). (17)

In other words, an approximation of the conser-
vation law (15) can be given as follows:

νDTP τ = FDTP (1). (18)

The behavior of this approximation is illustrated
in Figure 3. Similar graphs have been obtained

for other values of DTP as well (Li et al., 2004a).
Since the accuracy of this approximation is rela-
tively high, we conclude that the constant in the
right hand side of (15) can be defined as shown in
(18).

Relationships (15) and (16) are the main results of
this paper. In particular, they imply the following:

1) Changing the shipping period by a factor of k
requires a change in the lean FGB capacity by a
factor of 1/k.

2) The lean FGB capacity can be calculated as

NDTP = νDTP D =
FDTP (1)

τ
D

=
FDTP (1)

T
(Tα + Tβ)D, (19)

where Tα, Tβ, T and D are the manufacturing
system parameters and FDTP (1) is a function,
which is calculated using the procedure of Sub-
section 4.1.

6. CONCLUSIONS

For a simple Production-Storage-Customer sys-
tem, it is shown in this paper that there exists
a conservation law of filtering in space and time.
Along with providing an insight into the nature
of manufacturing systems, this law permits one
to evaluate the smallest, i.e., lean, finished goods
buffer capacity, which is necessary and sufficient
to ensure a reliable satisfaction of customer de-
mand by an unreliable production system.

The results reported here can be generalized in
at least two directions. First, random customer
demand can be considered. Preliminary results,
obtained in this direction, indicate that the con-
servation law still holds, however, its precise ex-
pression is a topic of future work.

The second generalization is in the direction of
more realistic assumptions on the distribution
of active and passive periods of the production
subsystem. Although there are no analytical tools
for calculating DTP for the non-exponential case,
the problem can be approached using discrete
event simulations. Preliminary results, derived in
this direction, also indicate that the conservation
law still holds. Finalizing these results is another
topic of future work.
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