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Abstract: Solving a tracking problem does not always give desired results even when the 
adaptive control methods are used. Some difficulties may occur when the apriori 
assumptions laid down for the problem solution are not satisfied. One of the serious 
issues is the existence of unmodeled dynamics in the tracking problem. The proposed 
solutions are mainly based on robustification of the adaptation law. In this paper we 
propose to reduce the effect of unmodeled dynamics using the MRAC control law 
modification so that the standard adaptation law ensures the sufficiently small tracking 
error. Copyright © 2005 IFAC 
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1. INTRODUCTION  

 
The model reference control structures can be 
successfully used to solve the tracking problem in 
case some ideal conditions regarding the controlled 
plant model are satisfied (Narendra and Annaswamy, 
1989). However, these ideal conditions are not often 
satisfied. A frequent violation of the ideal 
assumptions is an incorrect estimation of the plant 
model structure that leads to the existence of 
unmodeled dynamics in the tracking problem. The 
unmodeled dynamics influence in adaptive systems 
represents a serious problem. The unmodeled 
dynamics can significantly deteriorate the control 
parameters adaptation or it can even destabilize this 
process. Especially in case of MRAC structures the 
existence of the unmodeled dynamics reduces their 
applicability to real processes.  
 
An intensive research activity has been devoted to 
solve the problem of reducing the effect of 
unmodeled dynamics (Gonos, et al., 2004; Rohrs, et 
al., 1985; Sastry and Bodson, 1989) but it still has 
not led to satisfactory results. The majority of the 
unmodeled dynamics problem solutions are based on 

the adaptation law robustification (Sastry and 
Bodson, 1989; Ioannou and Sun, 1996).  
 
The aim of our paper is to demonstrate that the 
unmodeled dynamics problem in standard MRAC 
scheme can also be solved by the control law 
modification. The proposed approach is based on the 
general theory of stability in vector form (Šiljak, 
1978). 
 
 

2. PROBLEM FORMULATION 
 
The tracking problem is always a nonlinear task, 
because the adaptation error dynamics is nonlinear. 
The let the problem solution plain the tracking 
problem with the linear model of controlled system 
and the linear reference model has been chosen. 
 
Consider that the linear system with unmodeled 
dynamics is given by the state space equations in the 
form 
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where x ∈ Rp represents the plant state, y ∈ R is the 
plant output and u ∈ R denotes the control signal. 
The state variables of system (1) can be divided into 
two vectors: state variables of modeled dynamics 

n
1 Rx ∈  and state variables of unmodeled dynamics 

m
2 Rx ∈ , with m+n=p.  

 
The system (1) can then be decomposed so that the 
modeled and unmodeled dynamics is separated 
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where A11 is a nxn Frobenius matrix of the modeled 
part of dynamics, A22 is a mxm matrix of the 
unmodeled part of dynamics, A12 (nxm) and A21 
(mxn) are matrices representing the interactions. For 
the reasons of simplicity we consider the class of 
systems where only modeled part of dynamics is 
directly influenced by the control signal. 
 
Assume that the desired closed loop dynamical 
behavior is described by the reference model in the 
form 
 

n
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with the reference model state vector n

m Rx ∈  and 
reference signal r ∈ R. 
 
In standard MRAC schemes the control law is of the 
form 
 

 1
T
1r xkrku −=  (4) 

 
where T

1k  denotes a feedback gain vector and kr is a 
feedforward gain. However, in case of these control 
structures the unmodeled dynamics provokes the 
considerable deterioration of adaptive system 
tracking performances. 
 
 

3. REDUCING THE EFFECT OF 
UNMODELLED DYNAMICS  

 
Using the matching conditions 
 

 
*
rm

T*
1m

bkb

bkAA

=

−=
 (5) 

 
the following dynamics of adaptation error (defined 
as e = x1 – xm) can be derived 
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where  [ ] ,
TT ρ−κ=Θ  [ ]rx1=ω , 

 
  ( )T*

1
T
1 kk −=κ , ( )*

rr kk −=ρ .  
 
The stability of the system (6) is ensured by the 
tracking problem convergence. The stability proof 
will be based on the vector Ljapunov function 
methodology (Šiljak, 1978). The isolated subsystems 
of system (6) are 
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When r = 0, the equilibrium point of system (6) is 
e = 0, x2 = 0, xm = 0. To analyze the equilibrium 
point stability the Lyapunov function candidates for 
each isolated subsystem have to be chosen as the 
functions of the corresponding subsystem variables 
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The conditions of continuity and positive definiteness 
are satisfied for the functions V1, V2, V3. The vector 
Lyapunov function methodology is based on 
aggregation, where it is necessary to find the 
boundaries of the V1, V2, V3 time derivatives along 
the relevant subsystems trajectories. The time 
derivatives of the Lyapunov functions candidates (8) 
along the subsystem (7) trajectories are  
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Choosing a suitable adaptation law 
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so that 
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it is possible to introduce the following boundary for 
the V1 time derivative 
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where ( ) ( ) 1
T*

111111
TT*
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The boundaries for the V2 and V3 time derivatives 
are 
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It is also necessary to set bounds on the subsystem 
interactions 
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 m212m2122 xeAPxAPx ≤  (19) 
 
The aggregated system is of the form  
 

 Wzz =&&  (20) 
 

where z is the aggregated system state vector and W 
denotes the aggregation matrix 
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with 
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where λm(.) denotes the minimal matrix eigenvalue, 
λM(.) is the maximal matrix eigenvalue and G1, G2, 
G3 are the solutions of the following equations 
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The stability conditions are as follows 
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Let us now analyze the possibilities of satisfaction of 
the conditions (25): 
 
The condition i) is satisfied if the reference model is 
stable. 
The condition ii) is essential and its satisfaction will 
be analyzed in the following. 
The condition iii) requires the satisfaction of the 
condition ii) as well as the stability of the reference 
model. 
 
Let us define the stability measure 

)w,w,ww(L 2221,12,11  in the form 
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then the condition ii) of (25) is 
 
 0)w,w,w,w(L 22211211 >  (27) 
 
which after introducing (22) and (23) into(26) can be 
rewritten into the following form 
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The symmetrical matrices 121

T
1

T
12 APPA  and 

212
T
2

T
21 APPA  have positive eigenvalues and the 

product ( ) ( )2m1m GG λλ  is as well positive if the 



     

unmodeled dynamics is stable. The satisfaction of the 
condition (28) depends on the possibility of arbitrary 
increasing the value of ( )1m Gλ  by means of the 
adaptation. The problem is that the increase of 

( )1m Gλ  provokes also an increase of 1P  and so an 

increase of ( )121
T

1
T
12

2/1
m APPAλ . 

 
The mechanism of the conditions (25) satisfaction is 
very complicated and can not be analytically proved. 
In the control systems with adaptation the 
satisfaction of these conditions depends on the 
structure and the norm of interactions.  
 

 
Fig. 1 The stability measure dependence on the value 

of ( )1m Gλ   
 
Using a simple example of the 3rd order system 
consisting of the second order modeled part and of 
the first order unmodeled part we can illustrate the 
dependence of the stability measure on the value of 

( )1m Gλ , that represents the influence of state 
controller gains in the presence of the relatively 
“strong” interactions.  
 
In Fig. 1 the green line L2 corresponds to the 
reference model stability measure equal to -1 and the 
blue line L1 represents the reference model with the 
stability measure of -0.1. It can be seen that the 
adaptation error convergence can be influenced by 
the stability measure of the reference model. 
However, the reference model dynamics is given by 
the control performance requirements, so it is 
necessary to ensure the increase of the reference 
model stability measure indirectly during the 
adaptation error transient processes. 
 
This indirect increasing of the stability measure can 
be obtained by a modification of the control law (4) 
to the form 
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where the feedback term k2e ensures the increase of 
the Am matrix stability measure. 
 
After introducing (22) and (23) the stability 
condition ii) of (25) can be rewritten into the form 
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The symmetrical matrices 121

T
1

T
12 APPA  and 

212
T
2

T
21 APPA  have positive eigenvalues and by means 

of the appropriate adaptation of k2 it is possible to 
ensure the satisfaction of the ii) stability condition in 
(25). 
 
 

4. EXAMPLE 
 
Consider the controlled plant model in the form: 
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where ( )5,,1ia i K=  are unknown slowly varying 
parameters.  
 
The output y(t) is required to follow as close as 
possible the output ym(t) of the reference model  
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Using the proposed modification of the control law 
(29) and the standard adaptation law (Murgaš, et al., 
1992) 
 

 αωε=
Θ

dt
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where 0>α , PebT=ε  and P is the solution of the 
Lyapunov matrix equation 
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the acceptable tracking error can be obtained, as 
illustrated in Fig.2 and Fig. 3. 
 
It can be seen from Fig. 2 and Fig. 3 that the 
unmodeled dynamics influence reduction by means 
of the control law modification has been very 
efficient. The generalization of the proposed solution 
will be necessary in the future. 
 

0 5 10 15 20 25 30
-30

-25

-20

-15

-10

-5

0

5

10

15

20

λm(G1) 

St
ab

ilit
y

m
ea

su
re

L1
L2



     

 
 

 

 

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

time  [s]

O
ut

pu
t  

[p
.u

.]

 
 
Fig. 2 Performances of the MRAC with the proposed control law modification 
           modif. MRAC,             stand. MRAC,          ref. model 
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Fig. 3 Performances of the MRAC with the proposed control law modification (detail) 
           modif. MRAC,             stand. MRAC,          ref. model 

 
 
 

5. CONCLUSION 
 
Τhe aim of the proposed paper has been to reduce the 
effect of unmodeled dynamics in MRAC tracking 
problems. The proposed modification of the standard 
control structure increases the tracking system 
robustness even in case when the standard adaptation 
law is used. 
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