
ASSESSING THE PREDICTIONS OF DYNAMIC
NEURAL NETWORKS

K. Dadhe ∗, S. Engell ∗,1

∗ Process Control Laboratory
Department of Biochemical and Chemical Engineering
Universität Dortmund, D-44221 Dortmund, Germany

Tel: +49/231/755-5127, Fax: +49/231/755-5129

Abstract: In this paper, the estimation of prediction intervals for multi-step-ahead
predictions from dynamic neural network models is described. Usually, asymptotic
methods based on linearizations are applied with the potential problem of large
coverage errors and too optimistic prediction intervals. The potential sources of
these problems are the negligence of the network parameter uncertainties and the
non-normality of the error distribution. To overcome these restrictions, bootstrap
methods are used here. New formulations are introduced to apply the bootstrap to
nonlinear time series models with exogenous input. An explicit model of the error
process considers the influence of different training data densities on the empirical
error distribution. A Monte Carlo study illustrates the proposed methods.
Copyright c©2005 IFAC

Keywords: Dynamic Neural Networks, Prediction, Bootstrapping

1. INTRODUCTION

Many chemical and biochemical processes exhibit
strong nonlinearities. First principles modeling
based on physical and chemical laws is difficult
and time consuming, and the resulting models
are often of large size. In control applications,
data-based models are therefore often preferred.
Linear models are easy to estimate but often not
sufficiently accurate.

Nonlinear black box models may overcome this
problem. Neural networks have gained consider-
able attention in both academic research as well
as industrial applications. Their universal approx-
imation abilities and the access to a wide range
of software tools qualify them for the building of
nonlinear dynamic black-box models which can be
applied as prediction models in an NMPC scheme.
For applications of this idea it turned out that a
key issue is to estimate the prediction accuracy of

1 Corresponding author
E-mail: s.engell@bci.uni-dortmund.de

the neural network models over medium to large
prediction horizons.

However, a comparatively small number of arti-
cles in the literature deals with the assessment of
neural network predictions. In the case of station-
ary mappings, several different approaches were
reported. In (Rivals and Personnaz, 2000) (and
references therein) methods based on lineariza-
tions of the neural network are presented and in
(Tibshirani, 1995) they are compared with two
bootstrap methods.

The problem of the reliability of dynamic neural
network predictions after the training and valida-
tion procedures have been completed has hardly
been addressed systematically. Neural network
based predictive controller may show undesired
behaviors when the process leaves the regime in
which the prediction model had been trained.
One possible solution is to divide the input space
into subspaces and to calculate the density of
the training data in these subspaces and to use
the models only where enough data was avail-

able, see (Roßmann, 2002). A similar approach
was described in (Tsai et al., 2002) where a re-
gional knowledge index is calculated. If the mea-
sures indicate poor neural network predictions,
the neural network based NMPC switches to a
conventional controller. Both approaches try to
evaluate whether the current neural network input
lies in a region with high training data density or
not. However, even if enough training data was
used, the neural network predictions may be inac-
curate, especially for larger prediction horizons.

In this paper, prediction intervals of multi-step-
ahead forecasts of neural networks are calculated
by bootstrap methods. The proposed methods
yield prediction intervals that can be used as re-
liability measures to assess multi-step-ahead pre-
dictions within an NMPC framework. A predic-
tion interval is an upper and lower limit of the
predicted value together with a probability γ that
future realizations of the process lie between these
bounds. For this purpose, the residuals from the
neural network training are taken as estimates of
the true error distribution.

The residuals are mainly caused by two effects.
One source is noise in the training data and the
second source is the mismatch between the neural
network and the data generating process. The
mismatch is likely to be worse in regions where the
density of the training data is low. (Bishop, 1995)
showed that the variance of the neural network
parameter estimates is high in regions with low
training data density. As the output variance
obeys (at least locally) the Gaussian error prop-
agation, it is high in these regions, too. Hence,
the neural network model has poor approximation
and prediction capabilities in these regions and
the error distribution depends on the current in-
put and state. An explicit description of the error
process is realized by a GARCH model to account
for varying error variances. GARCH (General-
ized Autoregressive Conditional Heteroskedastic-
ity) models were introduced in (Bollerslev, 1986)
to explain time series from economic processes.

The nominal neural network and the GARCH
model are simulated many times with random
draws from the resulting error distributions. The
generated bootstrap data sets are used to estimate
bootstrap neural networks and bootstrap error
models for each simulation run. The estimated
error distribution represents the uncertainty of
the network predictions with respect to noise and
unmodeled process behavior, and the set of boot-
strap neural networks represents the uncertainty
of the network parameters considering them as
stochastic quantities as they are determined from
noisy and limited data. The m-step-ahead predic-
tions and their distributions are calculated from
the nominal and the bootstrap neural network

predictions, adding a random draw from the em-
pirical error distribution during each prediction
step.

This paper introduces the application of the
GARCH error model and performs a more exten-
sive simulation study compared to the preceding
paper (Dadhe et al., 2004) considering different
non-normal error processes, different methods to
estimate the resulting prediction intervals and a
further application of the bootstrap method to
dynamic neural networks. The paper is structured
as follows. Section 2 gives an introduction to the
bootstrap methods used here with a focus on
nonlinear dynamic models, and explains the appli-
cation of the GARCH for modeling the conditional
variances. In Section 3, extensions are made for
dynamic models with exogenous inputs typical for
control applications. In Section 4, the Monte Carlo
results from a neural network simulation example
are shown. The concluding Section 5 summarizes
the presented results and gives an outlook to fu-
ture work.

2. THE BOOTSTRAP

The bootstrap is a computer-based statistical
method to estimate unknown distributions or
parameters of distributions. It can be classified
into nonparametric or parametric techniques. The
standard textbook which covers a wide range of
applications is (Efron and Tibshirani, 1993). Ba-
sically, the bootstrap generates replicate pseudo-
data sets by resampling from empirical distribu-
tion functions. The union of all bootstrap resam-
ples most likely approximates the underlying true
distribution. The standard nonparametric boot-
strap method cannot be applied to dynamic mod-
els as it is based on the iid-assumption (indepen-
dent and identically distributed) of the training
data. As time series usually have serial correla-
tions, the iid-assumption is obviously violated. In
this case, the bootstrap must be applied to the
residuals of the training data rather than to the
original data assuming that the residuals fulfill the
iid-assumption.

A step-by-step guide for the calculation of predic-
tion intervals without considerations of network
uncertainties is given below. The description is
similar to that in (Clements and Taylor, 2001) and
(Pascual et al., 2001), however only linear AR(p)
and ARIMA(p, d, q) models are considered there.
The method will be denoted C-B (conditional
bootstrap) in the sequel.

Step 1. The data is generated by the NAR(p)
process

Yk = f (θ, Yk−1, . . . , Yk−p) + Ek (1)

where Ek is the noise process with distrib-
ution function Fe, zero mean and finite sec-
ond moment. θ is the parameter vector of the
process. Simulate the process and get the time
series Y = {y1, . . . , yn} from the initial values
{y−p+1, . . . , y0}.
Step 2. Estimate the parameters of the neural
network θ̂ and obtain the empirical distribution
Fê of the residuals by

êk = yk − f(θ̂, yk−1, . . .), k = 1, . . . , n. (2)

Step 3. Simulate B bootstrap continuations recur-
sively for the m-step-ahead predictions

y∗bk+j = f
(
θ̂, y∗bk+j−1, . . . , y

∗b
k+j−p

)
+ e∗bk+j , (3)

j = 1, . . . , m b = 1, . . . , B

and set y∗bk+s = yk+s for s ≤ 0 to condition
the predictions on the last p observations which
are supposed to be known. The e∗bk+j are random
draws from Fê.

Step 4. Estimate the prediction intervals from the
empirical distribution function of y∗bk+j . Several
methods may be applied, see (Hall, 1988) for a
comprehensive treatment. Here, Efron’s percentile
method is used. The cumulative empirical distri-
bution is defined as

γ = G∗B(h) =
1
B

B∑

b=1

I(y < h)

with the indicator function

I(y < h) =

{
1 if y < h

0 else
.

Then the symmetric 100γ%-prediction interval is[
Q∗B

(
1− γ

2

)
, Q∗B

(
1 + γ

2

)]
(4)

with Q∗B = G∗−1
B . (Hall, 1988) proposes to use

quantiles of the normalized bootstrap distribution
instead, yielding prediction intervals[
ŷk+j −Q∗B,H

(
1 + γ

2

)
, ŷk+j −Q∗B,H

(
1− γ

2

)]
.

(5)

Q∗B,H((1 − γ)/2) and Q∗B,H((1 + γ)/2) are the
respective quantiles of the bootstrap distribution
of Y ∗b

k+j − ŷk+j .

The C-B procedure does not account for the un-
certainty in the neural network parameters and
therefore conditions the prediction intervals on
one specific neural network with the parameter
θ̂. As the parameters are determined from limited
and noisy data, they should be considered as sto-
chastic quantities, too. Extensions are presented
below to cope with this fact.

In (Dadhe et al., 2004) it was stressed that the
variance of the error distribution varies with the

input of the neural network. Step 2 in the previ-
ously listed method does not condition the error
distribution on the current state (input and out-
put) of the neural network. In regions with high
training data density the error variance is proba-
bly smaller than in regions where the network has
only limited information. It is therefore question-
able to assume an error process Ek with constant
variance. Statistical tests can prove whether Ek

is homoskedastic (constant variance) and whether
the consideration of an explicit error model to
account for varying variance is necessary.

Here, two extended methods are applied. PU-B
(parameter uncertainty bootstrap) considers uncer-
tainties in the neural network parameter estimates
and GARCH-B (GARCH bootstrap) additionally
accounts for non-constant error variances with a
(bootstrapped) error model. The bootstrap proce-
dure for the GARCH model is taken from (Pascual
et al., 2000).

Step 1 and 4. As above.

Step 2. Obtain the parameter estimate θ̂ for the
neural network. Calculate the residuals

êk = yk − f
(
θ̂, yk−1, . . .

)

and use the statistical tests described in (Bollerslev,
1986) to check whether the residuals {êk} show
GARCH behaviour. Define the GARCH(1,1) model

êk =
√

ĥkν̂k (6)

ĥk = ω + αê2
k−1 + βĥk−1. (7)

The error model parameters {ω, α, β} are de-
termined by minimization of the (negative) log-
likelihood function. Even though it would be more
precise to solve the log-likelihood for both the
neural network and GARCH model together, the
sequential procedure bears the advantage that
standard software tools for both model types can
be used. The empirical normalized error distribu-
tion Fν̂ is

Fν̂ = {ν̂k} =

{
êk√
ĥk

}∣∣∣∣∣
ω̂,α̂,β̂

(8)

Step 3a. Simulate B bootstrap time series Y∗b, b =
1, . . . , B of length n with the nominal models f(θ̂)
and {ω̂, α̂, β̂}. Choose a random block of length
p as initial values or fix them to y−p+1, . . . , y0,
e2
0 and h0. The bootstrap GARCH series are

generated according to

h∗bk = ω̂ + α̂e∗b 2
k−1 + β̂h∗bk−1 (9)

e∗bk =
√

h∗bk ν∗bk , (10)

where the ν∗bk are random draws from Fν̂ .

Step 3b. Estimate B neural networks with pa-
rameters θ̂∗b and B GARCH model parameters
{ω̂∗b, α̂∗b, β̂∗b} for each Y∗b.
Step 3c. Simulate B bootstrap continuations re-
cursively for the m-step-ahead prediction

h∗bk+j = ω̂∗b + α̂∗be∗b 2
k+j−1 + β̂∗bh∗bk+j−1 (11)

e∗bk+j =
√

h∗bk+jν
∗b
k+j (12)

y∗bk+j = f
(
θ̂∗b, y∗bk+j−1, . . . , y

∗b
k+j−p

)
+ e∗bk+j ,

(13)
j = 1, . . . , m b = 1, . . . , B

with the same settings as in eq. (3). The condi-
tional variance at time instance k is estimated
following (Pascual et al., 2000) as

h∗bk = h∗b0 + α̂∗b
k−2∑

`=0

β̂∗b `
(
e2
k−`−1 − h∗b0

)
(14)

with the unconditional variance

h∗b0 =
ω̂∗b

1− α̂∗b − β̂∗b
. (15)

By replacing Fν̂ by Fê and omitting the GARCH
model the above GARCH-B method reduces to
the PU-B method. Note that all B bootstrap
models are trained and estimated in advance
and that the potentially high number of neural
networks does not rule out online applications as
the evaluation of the networks is comparatively
fast in contrast to their training.

3. EXTENSIONS TO NARX MODELS

In the former section, the model class was re-
stricted to nonlinear AR(p) models. Control appli-
cations on the other hand demand for extensions
to incorporate external inputs. Basically, there are
three possible approaches. Assume that the model
is of type

Yk = f (θ, Yk−1, . . . , Yk−p,

Uk−1, . . . , Uk−p) + Ek. (16)

For a simpler notation, equal lags p for the input
and output variables are assumed. Depending on
the class of input signals, different strategies for
resampling in Step 3a of the GARCH-B or PU-
B methods can be applied. If the input signal is
a deterministic one like sinusodial, chirp or rec-
tangular, bootstrapping the empirical distribution
function of the input sequence will produce sig-
nals with completely different spectral densities.
As a consequence, different process dynamics are
excited and the estimated model most likely does
not coincide with the nominal one. In this case
it seems best to keep the input signal fixed or
just shift it in phase. The resulting models and

prediction intervals will thus be conditioned on
the specific realization {uk} rather than the dis-
tribution Fu of the input signal.

For random signals with unknown distribution Fu,
resampling from {u1, . . . , un} will also generate
bogus signals. A promising solution is the use
of the empirical difference distribution F∆û. A
bootstrap sample drawn from F∆û is most likely
to have similar properties (e.g. spectral densities)
as the original one. Rescaling of the bootstrap
input signal might be necessary to ensure that the
bootstrap input series lies in the same range as the
realization {uk}.
If the distribution of the input signals is known,
obviously the best approach is to take random
draws from the distribution function Fu. Step 3a
is therefore extended as follows.

Step 3a, revised. Simulate B bootstrap time series
with the nominal model f(θ̂) and {ω̂, α̂, β̂} to
obtain Y∗b of length n. The h∗bk+j and e∗bk+j are
taken from eq. (11-12).

y∗bk = f
(
θ̂, y∗bk−1, . . . , y

∗b
k−p,

u∗bk−1, . . . , u
∗b
k−p

)
+ e∗bk , (17)

k = 1, . . . , n.

Choose a random block of length p as initial value
or fix it to {y−p+1, . . . , y0, u−p+1, . . . , u0}. The
input signals may be obtained by:

(1) Set u∗bk = uk−q∗b to use the same input
sequence as in Y with a potential (random)
phase shift q∗b.

(2) Generate a difference data set ∆U = {u1 −
u0, . . . , un−1−un−2} with corresponding dis-
tribution function F∆û. The input sequence
will be u∗bk = u∗bk−1 + ∆u∗bk where ∆u∗bk is
a random draw from F∆û. u∗b0 can be zero,
any value from Fû or u0. The bootstrap input
sequence U∗b should be rescaled to have the
same range as U .

(3) If Fu is explicitly known, the input sequence
{u∗bk } is just a realization of U .

4. SIMULATION EXAMPLE

4.1 Model Description

The data generating process is a nonlinear AR(2)
model with exogenous input u originally trained
with data obtained from simulation studies of a
highly nonlinear biochemical reactor (Dadhe et
al., 2004). The nominal neural network is

yk = 0.43 + 2.02 tanh (0.5 + p1xk)
+ 2.11 tanh (−0.77 + p2xk) + ek (18)

with the parameter vectors p1 =
[−0.26 1.59 0.25 0.05

]
,

p2 =
[
2.54 −3.42 −0.35 −0.05

]
and the input

vector xk =
[
yk−1 yk−2 uk−1 uk−2

]T consisting
of lagged input and output variables. All initial
values yk and uk for k ≤ 0 are set to zero.

4.2 Signal Specifications

The input signal for the training data set is an
amplitude modulated pseudo random binary sig-
nal (APRBS) with a maximum of 1.0, a minimum
of 0.5 and a switching time that is equally distrib-
uted over the interval k ∈ [10; 50]. For the error
process Ek different distributional assumption are
made:

(1) Normal distribution ek ∼ N (0, 10−5)
(2) Mixed normal distribution ek,1 ∼ N (−2 ·

10−3, 10−5) with probability p1 = 0.2 and
ek,2 ∼ N (5 · 10−4, 10−5) with probability
p2 = 0.8.

(3) GARCH(1,1) distribution ek =
√

hkνk with
νk ∼ N (0, 1) and hk = 5 · 10−6 + 0.15e2

k−1 +
0.8hk−1 and initial values h0 = e0 = 5 ·
10−6/(1 − 0.15 − 0.8), which is the uncon-
ditional variance.

4.3 Neural Network Training

The scope of this paper is not to find the best
neural network structure and parameters for a
problem at hand but to assess a neural network
that has been obtained by standard methods.

• Neural network training, simulation and val-
idation was performed using the Matlab
Neural Network Toolbox. The neural net-
works consisted of one hidden layer with two
neurons and sigmoidal activation function.

• The maximum likelihood estimation of the
GARCH parameters was performed with the
Matlab SQP solver fmincon.

• The nominal data set consists of 200 subse-
quent data points used for training. Condi-
tional on the state at the end of the training
data set, 500 predictions of length 20 with
different realizations of the error process Ek

were performed. These data were used to
evaluate the actual coverage of the bootstrap
prediction intervals. The number B of boot-
strap resamples and neural network models
is 199.

4.4 Monte Carlo Results

The results of the Monte Carlo simulation are
shown in Tab. 1 for a nominal coverage of 95%.
It can be seen, that for a normal distributed error
process Ek the PU-B method is superior because
the C-B method neglects the stochastic nature

of the neural network parameters which plays an
important role here as the training data sets are
relatively small.

The GARCH-B method seems advantageous when
the normality assumption of the error process
is violated. Generally, it has better matches in
nominal and actual coverage with smaller interval
lengths. Nevertheless, the difference between the
two methods bootstrapping the parameter esti-
mates is not significant.

In Fig. 1 the quantiles of the bootstrap distri-
bution are depicted as functions of the number
of prediction steps. The ability of the bootstrap
to account for non-symmetric prediction intervals
ensures good coverage with comparatively narrow
intervals.

The formulation of the prediction intervals in eq.
(4-5) assumes that the upper and lower tails of
the distributions have equal quantiles. The results
give no clear indication of which method to obtain
the empirical distribution of ŷk+j performs best
here. In all cases, the Monte Carlo estimate of
the standard error is comparatively low. Tab. 2
shows the difference between Efron’s and Hall’s
percentile method. It can be seen that Efron’s
method performs better than the method based
on normalizing the bootstrap distribution. This
contradicts other results reported in literature and
therefore needs further investigations.

5. CONCLUSION

In this paper, methods have been introduced to
evaluate the prediction uncertainty of neural net-
works for modeling of nonlinear dynamic systems.
This aspect has not yet attracted the necessary
attention even though unreliable predictions can
lead to erratic behavior of e.g. nonlinear model
predictive controllers. The bootstrap as a tool
from computational statistics is used to circum-
vent the limitations that are imposed by the non-
linearity of the applied neural network models
and by the normality assumption of the error dis-
tributions. Although the proposed method gives
additional insight into the prediction uncertainty
of neural networks, further research is necessary to
improve the estimation of prediction intervals. Us-
ing eq. (1) tacitly assumes that the data generat-
ing process lies in the class of neural networks used
for modeling. If this assumption is not justified
anymore, the GARCH-B method should perform
better than the other bootstrap methods pre-
sented here. Further research is necessary to eval-
uate the proposed methods when (defined) plant-
model mismatches are present. The results shown
here and in (Dadhe et al., 2004) promise that the
bootstrap methods perform properly even with

Method m γ̄∗b γ̄∗b
low γ̄∗b

up λ̄

[100%] [100%] [100%]

Normal distribution

C-B 5 91.08 6.80 2.12 0.0351

PU-B 95.60 3.60 0.80 0.0391

GARCH-B 92.88 6.48 0.64 0.0371

C-B 20 89.92 5.92 4.16 0.0391

PU-B 92.04 4.84 3.12 0.0397

GARCH-B 90.00 7.24 2.76 0.0377

Mixed normal distribution

C-B 5 94.44 3.84 1.72 0.0355

PU-B 96.88 2.44 0.68 0.0416

GARCH-B 96.24 3.16 0.60 0.0412

C-B 20 97.76 0.48 1.76 0.1570

PU-B 98.24 0.24 1.52 0.1646

GARCH-B 97.84 0.24 1.92 0.1200

GARCH distribution

C-B 5 91.68 2.80 5.52 0.1325

PU-B 93.20 2.80 4.00 0.1466

GARCH-B 91.80 3.24 4.96 0.1342

C-B 20 91.32 3.04 5.64 0.2157

PU-B 92.48 1.92 5.60 0.2543

GARCH-B 92.00 3.68 4.32 0.2494

Table 1. The table presents the results
for nominal coverage of 95%. 100γ̄∗b%
is the Monte Carlo estimate of the ac-
tual coverage, 100γ̄∗blow% and 100γ̄∗bup%
are the lower and upper quantiles, re-
spectively, λ̄ is the estimated prediction

interval length from eq. (4).

80% 90% 95%

m Efron Hall Efron Hall Efron Hall

1 82.3 78.5 92.0 87.8 96.2 94.0

5 85.8 86.0 93.5 92.6 96.9 96.6

20 90.1 75.9 96.0 84.5 98.2 88.3

Table 2. Comparison of Efron’s and
Hall’s prediction intervals (nominal vs.
actual coverage) for the GARCH-B
method with mixed normal error distri-

bution.

highly nonlinear systems and that the application
within neural network based NMPC schemes can
improve the controller performance.

6. REFERENCES

Bishop, C. M. (1995). Neural Networks for Pat-
tern Recognition. Oxford University Press.

Bollerslev, T. (1986). Generalized autoregres-
sive conditional heteroskedasticity. Journal of
Econometrics 31, 307–327.

Clements, M. P. and N. Taylor (2001). Bootstrap-
ping prediction intervals for autoregressive
models. International Journal of Forecasting
17, 247–267.

 1 5 10 15 20

−0.2

−0.1

0

0.1

0.2

Prediction steps

B
oo

ts
tr

ap
 d

is
tr

ib
ut

io
n

qu
an

til
es

Fig. 1. Bootstrap quantiles using Efron’s per-
centile interval method from eq. (4). The box
is the 80% prediction interval and the upper
and lower lines represent the 95% and 99%
bounds, respectively. The results are shown
for the GARCH-B method applied to simula-
tions with GARCH error distributions.

Dadhe, K., R. Gesthuisen and S. Engell (2004).
Estimating the prediction uncertainty of dy-
namic neural network process models. In: 7th
International Symposium on Dynamics and
Control of Process Systems. Cambridge, MA.
Paper No. 148.

Efron, B. and R. J. Tibshirani (1993). An Intro-
duction to the Bootstrap. Monographs on Sta-
tistics and Applied Probability. Chapman &
Hall.

Hall, P. (1988). Theoretical comparison of boot-
strap confidence intervals. The Annals of Sta-
tistics 16(3), 927–953.

Pascual, L., J. Romo and E. Ruiz (2000). Fore-
casting returns and volatilities in GARCH
processes using the bootstrap. Technical re-
port. Working Paper 00-68(31), Econometrics
and Statistics Series, Universidad Carlos III
de Madrid.

Pascual, L., J. Romo and E. Ruiz (2001). Effects of
parameter estimation on prediction densities:
a bootstrap approach. International Journal
of Forecasting 17, 83–103.

Rivals, I. and L. Personnaz (2000). Construction
of confidence intervals for neural networks
based on least squares estimation. Neural
Networks 13, 463–484.

Roßmann, V. (2002). Prädiktive Regelung Neu-
ronaler Netze (Predictive Control with Neural
Networks). Dr.-Ing Dissertation. Univer-
sität Dortmund, Process Control Laboratory,
Shaker Verlag, Aachen.

Tibshirani, R. (1995). A comparison of some error
estimates for neural networks. Neural Compu-
tation 8, 152–163.

Tsai, P. F., J. Z. Chu, S. S. Jang and S. S. Shieh
(2002). Developing a robust model predictive
control architecture through regional knowl-
edge analysis of artificial neural networks. J.
Proc. Contr. 13, 423–435.

