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Abstract: In applying nonlinear model-predictive control to fast unstable systems,
the main difficulty is that the optimization cannot be finished within one sampling
interval. To solve this problem, a cascade-control scheme has been proposed,
where input-output feedback linearization forms the inner loop and nonlinear
predictive control the outer loop. Thus, the nonlinear predictive control has to
handle only the internal dynamics which might be slow. For example, in the case of
pendubot, an underactuated mechanical system with two rotary joints, the input-
output dynamics are fast while the internal dynamics are slow. The proposed
cascade approach was applied successfully to the experimental pendubot setup.
Copyright c©2005 IFAC
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1. INTRODUCTION

Predictive control is an effective approach for
tackling problems with nonlinear dynamics, espe-
cially when the analytical computation of the con-
trol law is difficult (Morari and Lee, 1999; Rawl-
ings et al., 1994). This methodology is widely used
in the process industry, where system dynamics
are sufficiently slow to permit its implementation
(Qin and Badgwell, 1997). In contrast, applica-
tions to fast systems are rather limited since it
is often not possible to complete the optimiza-
tion within one sampling interval, the duration of
which is limited by Nyquist’s sampling theorem.

An approach to use predictive control for the
stabilization of fast unstable systems has been
developed by the authors (Guemghar et al., 2002;

Guemghar et al., 2004). The methodology is based
on input-output feedback linearization, model
predictive control and singular-perturbation the-
ory. The system is first input-output feedback
linearized, separating the input-output system be-
havior that is fast, from the internal dynamics
that is hopefully slow. Predictive control is then
used to stabilize the internal dynamics, using the
reference of outputs as the manipulated variables.
This results in a cascade-control scheme, where
the outer loop consists of a model predictive con-
trol of the internal dynamics, and the inner loop is
the input-output linearization. Stability analysis
of the cascade system is provided using results of
singular-perturbation theory (Khalil, 1996).

The goal of this paper is to apply the above
methodology on the pendubot (Spong et al.,



2001). The pendubot consists of two rotary joints,
with the second one being unactuated. This sys-
tem represents an interesting example for control,
and has been widely used in the literature due
to its nonlinear, unstable, and nonminimum-phase
natures (Fantoni et al., 2000; Yamada et al., 2003;
Zhang and Tarn, 2002; Ma and Su, 2002). More-
over, this system has all the properties that suit
the cascade scheme mentioned above. It is nonlin-
ear, unstable and has fast input-output dynamics.
Also, when input-output feedback linearization is
used, the internal dynamics is rather slow, so that
the model predictive control can be used with a
low re-optimization frequency. In addition, no an-
alytical stabilizing feedback law can be formulated
for the internal dynamics, justifying the use of
predictive control for the stabilization of internal
dynamics.

The paper is organized as follows: The next sec-
tion describes the model of the pendubot. In Sec-
tion 3, the cascade-control scheme is presented.
Experimental results are given in Section 4, and
Section 5 concludes the paper.

2. THE MODEL

Fig. 1. Pendubot Struture

The pendubot (Figure 1) is a two-degree of free-
dom underactuated mechanical system consisting
of an actuated rotating arm and an unactuated
one. Let ψ denote the actuated coordinate, φ the
unactuated one and τ the torque. The pendubot
is described by the following set of differential
equations (Favez, 1997):

J1ψ̈ + J cos(ψ − φ)φ̈ + J sin(ψ − φ)φ̇2

−g1 sin(ψ) + bψ̇ + c1sign(ψ̇) = τ
(1)

J2φ̈+ J cos(ψ − φ)ψ̈ − J sin(ψ − φ)ψ̇2

−g2 sin(φ) = 0
(2)

where g1, g2 are the gravity components, J , J1, J2

the inertia components, c1 the Coulomb friction

coefficient, and b1 the viscous friction coefficient.
The physical values of the parameters obtained
from measurements on the experimental setup are
g1 = 2.2 N, g2 = 0.36 N, J = 0.0185 kg m2,
J1 = 0.22 kg m2, J2 = 0.019 kg m2, c1 = 1.12
Nm, b = 0.066 N s rad−1.

2.1 State space formulation

Denoting x =
[

φ φ̇ ψ ψ̇
]T

, u = τ − bψ̇ −

c1sign(ψ̇), and considering φ as the output, the
pendubot equations (1)-(2) can be rewritten as:

ẋ = f(x) + g(x)u
y = h(x)

(3)

where

f(x) =









φ̇

−J1α− J cos(ψ − φ)β

ψ̇

J cos(ψ − φ)α + J2β









(4)

g(x) =









0
−aJ cos(ψ − φ)

0
aJ2









(5)

h(x) = φ (6)

and

a=
1

J1J2 − J2 cos2(ψ − φ)

α= a(−g2 sinφ− J sin(ψ − φ)ψ̇2) (7)

β = a(g1 sinψ − J sin(ψ − φ)φ̇2)

2.2 Relative Degree of the Pendubot

Differentiating the output h(x) successively with
respect to time t, it follows that Lgh(x) = 0,
where Lgh(x) = ∂h

∂x
g(x) is the Lie derivative

of h(x) along g. However, the second derivative
Lfgh(x) = aJ cos(ψ − φ) 6= 0, indicating that
System (3) is of relative degree r = 2 (Isidori,
1989).

2.3 Nonminumun-phase Behavior of the Pendubot

To test the nonminimum-phase property of the
pendubot, the output φ and its derivative are
replaced in Equation (2) by their values at the
equilibrium, φ = 0, φ̇ = 0. This yields:

ψ̈ = ψ̇2 tanψ (8)

whose solution is

ψ(t) = arcsin
(

ψ̇(0) cos (ψ(0)) t+ sin (ψ(0))
)

(9)



where t is the time, ψ(0) and ψ̇(0) the values of ψ
and ψ̇, respectively, at time t = 0. It can be seen
that ψ(t) 6→ 0 as t → ∞. So, the zero dynamics
(9) is not asymptotically stable, and System (3)
is nonminimum phase (Isidori, 1989). Also, the
linearization of the zero dynamics around the
origin (9) gives ψ̈ = 0, i.e. a double integrator,
which corresponds to slow internal dynamics.

3. CASCADE CONTROL OF THE
PENDUBOT

3.1 Description of the Scheme

The control objective is to control the unactu-
ated angle φ to the upright position and, at the
same time, stabilize the pendulum angle ψ to the
upright position. These two tasks are considered
separately in the following control structure (Fig-
ure 2):
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Fig. 2. Cascade-control scheme

(1) Inner loop: Input-output feedback linearization
and linear feedback. First, System (3) is input-
output feedback linearized into Byrnes-Isidori
normal form using the following steps (Isidori,
1989):

• Apply a state feedback law that compensates
the nonlinearities in the input-output behav-
ior:

u =
v − J1α− J cos(ψ − φ)β

aJ cos(ψ − φ)
(10)

where a, α and β are given in (7).
• Use the nonlinear transformation z = T (x),
z = [φ φ̇ ηT ]T , with η = [η1 η2]

T , η1 =
[J sin(ψ − φ), η2 = Jψ̇ cos(ψ − φ) + J2φ̇, to
express System (3) as:

φ̈= v, φ(0) = φ0, φ̇(0) = 0 (11)

η̇ =Q(η, φ, φ̇), η(0) = η0 (12)

with

Q(η, φ, φ̇) =











−φ̇
√

J2 − η2
1 + η2 − J2φ̇

η1φ̇
√

J2 − η2
1

(

η2 − φ̇J2

)

+g2 sin(φ)











(13)

where Q is the nonlinear function defining
the dynamics of η. The particular choice of η2

makes the dynamics independent of φ̈. Also,
η1 is chosen to be the integral of η2 when
φ̇ = 0.

The system output φ is controlled by a linear
feedback control that computes the new input v
defined in Equation (10):

v = −
1

ǫ2
(φ− φref ) −

2

ǫ
(φ̇− φ̇ref ) (14)

where φref and φ̇ref are references for the output

φ and its derivative φ̇, respectively, and are deter-
mined by the outer loop of the cascade control.
ǫ→ 0 is a small parameter. The closed-loop poles
of the linearized resulting subsystem correspond
to a double pole at − 1

ǫ
. The gains are chosen this

way since, for any choice of ǫ > 0, the closed-loop
subsystem is stable and ǫ can be used as a single
tuning parameter.

(2) Outer loop: Stabilization of the internal dy-
namics using model predictive control.

As can be seen, the internal dynamics of the
pendubot (12) depend on both φ and its derivative
φ̇. However, the parameter ǫ being small, quasi-
steady-state assumption can be made, which leads
to φ→ φref and φ̇→ φ̇ref in (12)-(13). Then, the

trajectories (φref , φ̇ref ) will used to stabilize the
internal dynamics.

In general, input-output linearization decouples
the input-output behavior from the internal dy-
namics, i.e. η has no effect on the output φ. On
the other hand, the quasi-steady-state assumption
decouples the internal dynamics from the input-
output behavior, i.e. φ has no effect on the output
η, though the profile of φref (an independent
variable) is used to control η. Thus, the two sub-
systems can be handled separately.

The internal dynamics under quasi-steady-state
assumption can be written as:

˙̄η = Q̄(η̄, w), η̄(0) = η̄0 (15)

with

Q̄(η̄, w) =













η̄2 − w

(

√

J2 − η̄2
1 + J2

)

g2 sin(η̄3) +
η̄1w

√

J2 − η̄2
1

(η̄2 − wJ2)

w













(16)

where η̄ = [η̄1 η̄2 η̄3]
T , η̄1 = J sin(ψ − φref ),

η̄2 = Jψ̇ cos(ψ − φref ) + J2φ̇ref , η̄3 = φref and

w = φ̇ref . Note that it is important to add an
additional state φref since it is treated as an in-
dependent variable. Its derivative w is considered
as the manipulated variable for stabilization.

An analytical solution for w that stabilizes the in-
ternal dynamics under quasi-steady-state assump-



tion cannot be computed. So, predictive control
is used to compute numerically the value of a
stabilizing w∗:

w∗ = arg min
w([t,t+T ])

{

1

2
η̄(t+ T )TP η̄(t+ T ) (17)

+
1

2

t+T
∫

t

(

η̄(τ)TS η̄(τ) +Rw2(τ)
)

dτ







s.t. ˙̄η = Q̄(η̄, w) η̄(t) = η̄t

w(·) ∈ Y, η̄(·) ∈ N , η̄(t+ T ) ∈ Nf

where η̄t are the measured or estimated states
at time t, T the prediction horizon, Y and N
the sets of admissible outputs and internal states,
respectively, and Nf ⊂ N a closed set that
contains the origin. The input w is updated every
δ sec, where time δ is greater than or equal to the
sampling time.

3.2 Stability Analysis

The stability of the cascade-control scheme is dis-
cussed in this section. The key idea is to intro-
duce a time-scale separation in order to be able
to use results from singular-perturbation theory,
which is enforced here by the presence of the
small parameter ǫ. The results from (Guemghar et
al., 2002; Guemghar et al., 2004) will be recalled
here for completeness.

Theorem 1. Consider System (11)-(12) with φref ,

φ̇ref obtained using (17), and the input u com-
puted using (10) and (14). Let the following as-
sumptions be satisfied:

(1) System (15) is controllable considering w as
input,

(2) (η̄ = 0, w = 0) is an equilibrium point of
(15)-(16),

(3) The function Q̄(η̄, w) in (16) is such that

‖Q̄(η̄, 0)‖ ≤ L‖η̄‖,

(4) P , S, and R used in (17) are positive definite,
(5) ∃ wk = k(η̄) defined in Nf , for which

F (η̄) = 1
2 η̄

TP η̄ defined in Nf and q(η̄, wk) =
1
2{η̄

TS η̄ + Rwk
2} satisfies

Ḟ (η̄) + q(η̄, wk) ≤ 0

(6) The set Nf is positively invariant with re-
spect to wk,

(7) The prediction horizon T is chosen suffi-
ciently large to ensure that η̄(t + T ) ∈ Nf .
where η̄∗(.) represents the internal states ob-
tained under predictive control.

Then, there exists an ǫ∗ > 0 such that, for all
ǫ < ǫ∗, the origin of System (3) is exponentially
stable.

The above theorem indicates that, if ǫ is chosen
smaller than a certain value, i.e. if the feedback
gains of the inner loop are chosen sufficiently
large, then the overall system is stable. In other
words, this means that an effective time-scale
separation needs to be created for the stability
of the proposed cascade scheme to be guaranteed.

The assumptions of Theorem 1 can be easily
verified for the pendubot example.

(1) System (15) is not affine in w. However, it is
affine in ẇ. Therefore, the controllability of
(15) is shown considering ẇ as input.

System (15) can be rewritten as follows:

[

˙̄η
ẇ

]

= f̄(η̄, w) + ḡ(η̄, w)ẇ

s.t. η̄(0) = η̄0, w(0) = w0

(18)

with

f̄ =

















η̄2 − w

(

√

J2 − η̄2
1 + J2

)

g2 sin(η̄3) +
η̄1w

√

J2 − η̄2
1

(η̄2 − wJ2)

w

0

















ḡ =









0
0
0
1









System (18) is controllable if the distribu-
tion ∆(η̄, w) = span{g, adfg, adffg, adfffg},
with adNg = LgN − LNg, has dimension 4,
for all (η̄, w), and is locally controllable since
∆(0, 0) has dimension 4 (Vidyasagar, 2002).
Computing ∆ gives a nonlinear function of
η̄ and w, which is not of dimension 4 ev-
erywhere. However ∆(0, 0) has dimension 4,
and (18) is locally controllable using ẇ as
input, and therefore System (15) is locally
controllable using w as input.

(2) By replacing (η̄, w) by the value (0, 0) in (16),
it can be easily verified that (η̄, w) = (0, 0) is
an equilibrium point.

(3) Replacing w = 0 in (16), and computing the
norm of Q̄(η̄, 0) gives ‖Q̄(η̄, 0)‖ < L‖η̄‖, with
L = 1.

(4) P , Q and R are chosen positive definite.
(5) and (6) depend on item (7). Here, the pre-

diction horizon T = 0.6 sec, for which the
pendubot is stable. Therefore, there exists
Nf and wk which satisfy points (5) and (6).

The above verification shows that the pendubot
can be controlled with guaranteed local stability
with the cascade scheme.

It is important to note that only local stability
of the cascade control of the pendubot can be
verified. In fact, an important drawback of the
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Fig. 3. Performance of the cascade-control scheme
- Angular position φ (-), ψ (- -)

methodology used here is that input-output feed-
back linearization of the pendubot causes a sin-
gularity when cos(ψ − φ) = 0. At the singularity,
the feedback linearizing input (10) is infinite!

4. EXPERIMENTAL RESULTS

4.1 Experimental Results with the Cascade Scheme

In this section, experimental results of applying
the cascade-control scheme to the pendubot are
discussed. The parameter chosen for the inner-
loop controller (14) is ǫ = 0.05. The parameters
chosen for the outer-loop controller (17) are

R = 1, Q =





1 0 0
0 10 0
0 0 1



, P =





4.67 5.91 1.17
5.91 24.32 4.89
1.17 4.89 2.17



.

The matrix P is computed by solving the algebraic
Ricatti equation of the linear quadratic regulation
problem of the linearized version of Subsystem
(15)-(16) (Morari and Lee, 1999). The choice
of the re-optimization time δ is taken from an
implementation perspective, δ = 0.3 sec, which
corresponds to 60 times the sampling period h =
0.005 sec.

The experimental results for the cascade-control
scheme are presented in Figures 3-4, where Fig-
ure 3 shows the evolution of the pendubot angles
φ and ψ, and Figure 4 the input u. Although
the pendubot is stable, the angle ψ oscillates
considerably. This is due to the fact that model
predictive control is applied open loop between
two re-optimizations. Especially, ψ is fed back
only once every δ time units. This is the main
disadvantage of using a low re-optimization fre-
quency in presence of disturbances.
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Fig. 4. Performance of the cascade-control scheme
- Input u

4.2 Experimental Results with the Cascade Scheme
and Neighboring Extremals

As a solution to this problem, the results from
(Ronco et al., 2001) are used. This work suggests
the use of an additional linear feedback whenever
the numerical optimizer (nonlinear model predic-
tive control) is unable to compute the optimal in-
put. The feedback is computed using neighboring-
extremal theory, based on the analytical law de-
rived from the linearized problem:

• Linear model predictive control is applied
on the linearized internal dynamics un-
der quasi-steady-state assumption (15)-(16),
which leads to the linear state feedback w̄:

w̄ = −η̄1 − 4.67η̄2 − 2.12φref

φ̇ref = w̄, φref (0) = φ0
(19)

• Then, this linear state feedback is used in
combination with the nonlinear model pre-
dictive control (w∗ is given by (17)), leading
to the new reference w = w̄+w∗ for the inner
loop of the cascade-control scheme. Although
w∗ is updated every 0.3 sec, the reference w̄
is updated at each sampling period.

The experimental results for the cascade-control
scheme using the neighboring-extremal theory are
presented in Figures 5-6, where Figure 5 shows
the evolution of the pendubot angles φ and ψ,
and Figure 6 the input u. With the neighboring-
extremal approach, the angles are much smoother
than using only nonlinear model predictive con-
trol. Also, the angles converge faster to the origin
and the input energy is smaller. Due to the feed-
back of ψ that is present every sampling time,
the linear state feedback helps reject the effect of
measurement noise.



0 2 4 6 8 10 12
-0.4

0

0.4

0.8

1.2

φ

ψ

time (s)

Fig. 5. Performance of the cascade-control scheme
using neighboring extremals - Angular posi-
tion φ (-), ψ (- -)

0 2 4 6 8 10 12
-5

-2.5

0

2.5

5

u

time (s)

Fig. 6. Performance of the cascade-control scheme
using neighboring extremals - Input u

5. CONCLUSION

A cascade structure that allows the use of non-
linear model predictive control on fast systems
such as the pendubot has been proposed. First,
input-output feedback linearization is applied to
separate the fast input-output system dynamics
from the slow internal dynamics. Model predic-
tive control is then used to stabilize the internal
dynamics and can be implemented at a lower fre-
quency. Experimental results have been obtained
showing excellent performance.

However, the issue of constraints, which has been
one of the main advantages of predictive control
techniques, has not been addressed in this paper.
The presence of constraints would prevent the
separation between the input-output dynamics
and the internal dynamics.
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