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Abstract: State-dependent parameter representations of nonlinear stochastic sampled-
data systems are studied. Velocity-based linearization is used characterize sampled-
data systems using nominally linear models whose parameters can be represented as
functions of past outputs and inputs. For stochastic systems the approach leads to state-
dependent ARMAX (quasi-ARMAX) representations. The models and their parameters
are identified from input-output data using feedforward neural networks to represent the
model parameters as functions of past inputs and outputs. Copyright c© 2005 IFAC
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1. INTRODUCTION

A widely used approach for the black-box modelling
and identification of nonlinear dynamical systems is
to apply various nonlinear function approximators,
such as artificial neural networks or fuzzy models.
A shortcoming of these models is that they do not
provide much insight into the systems dynamics. For
this reason various model structures, which provide
such information, have been introduced. One general
class of models of this type consists of models with
a nominally linear structure, but with state-dependent
parameters (Priestley, 1988; Hu et al., 2001; Young et
al., 2001). An important class of state-dependent pa-
rameter models consists of ARX models, in which the
model parameters are nonlinear functions of past sys-
tem outputs and inputs. These models have been called
quasi-ARX (Hu et al., 1998; Hu et al., 2001; Previdi
and Lovera, 2001) or state-dependent ARX models
(Priestley, 1988; Young et al., 2001). State-dependent
parameter representations have the useful property
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that explicit information about the local dynamics is
provided by the locally valid linear model, and in
a number of situations they can be treated as linear
systems whose parameters are taken as functions of
scheduling variables.

For discrete-time systems, state-dependent parameter
representations are usually approximative descriptions
introduced for convenience. In contrast, continuous-
time systems can be represented exactly by state-
space models with state-dependent parameters con-
structed using velocity-based linearization (Leith and
Leithead, 1998b; Leith and Leithead, 1998a). This fact
can be applied to construct exact discrete-time state-
dependent parameter representations for sampled-data
systems (Toivonen, 2003). Quasi-ARX models of
sampled-data systems are obtained by reconstructing
the state of the state-dependent parameter represen-
tation in terms of past inputs and outputs (Toivonen,
2003).

In practice it is important to be able to deal with
systems which are subject to stochastic noise. It is
shown that a nonlinear sampled-data system subject



to an additive drifting disturbance and measurement
noise can be represented by a quasi-ARMAX model.
By using a feedforward neural network to describe
the model parameters as functions of past inputs and
outputs (Hu and Hirasawa, 2002), the quasi-ARMAX
model is represented with a type of recurrent network.
Identification of neural network quasi-ARMAX mod-
els from input-output data is studied and illustrated
with numerical examples.

2. STATE-DEPENDENT PARAMETER MODELS
OF STOCHASTIC SYSTEMS

In a previous study (Toivonen, 2003), state-dependent
parameter representations were derived for determin-
istic nonlinear sampled-data systems. In this paper, a
generalization to stochastic systems is studied. Con-
sider a nonlinear system

ẋP(t) = fP(xP(t),u(t))

y(t) = hP(xP(t))+w(t) (1)

where xP(t) denotes the state vector, u(t) is the control
input and y(t) denotes the output. It is assumed that the
nonlinear functions fP(·, ·) and hP(·) are continuous
with Lipschitz continuous first derivatives. The system
is subject to an additive drifting disturbance w(t),
which is described by a Wiener process with the
incremental variance rw.

The continuous-time input u(t) to the nonlinear sys-
tem is generated from a discrete-time input ud(k) by
a zero-order hold and a strictly proper low-pass filter
with the state-space representation (AH ,BH ,CH). The
system input is thus generated according to

ẋH(t) = AHxH(t)+BHud(k), t ∈ (kh,kh+h]

u(t) = CHxH(t) (2)

where h denotes the sampling interval. The filter (2)
generates a continuous input u(t) to (1), which is
differentiable for all t, except possibly at the sampling
instants kh.

The sampled output is corrupted by measurement
noise,

ym(kh) = y(kh)+ em(k) (3)

which is described by a zero-mean white noise distur-
bance {em(k)} with the variance σ2

m.

Although a more realistic and complex disturbance
model could be used, one reason for focusing on the
model (3) is that it allows the construction of an exact
quasi-ARMAX representation. It is therefore possible
to compare identified models with the theoretically
correct system description. It is also believed that the
combination of a drifting disturbance and measure-
ment noise provides a good approximation of more
complex disturbances as well.

The generalized system consisting of the filter (2),
the nonlinear system (1) and the disturbance model
(3) can be described by a nonlinear system with a
piecewise constant input,

ẋ(t) = f (x(t))+Bud(k), t ∈ (kh,kh+h]

y(t) = h(x(t))+w(t) (4)

ym(kh) = y(kh)+ em(k)

where x = [xT
P ,xT

H ]T is the state of the generalized
system, and

f (x) =

[

fP(xP,CHxH)
AHxH

]

, B =

[

0
BH

]

h(x) = hP(xP) (5)

Differentiation of (4) with respect to time gives a
nonlinear system with jumps,

ẍ(t) = A(x(t))ẋ(t), t 6= kh

x(kh+) = ẋ(kh)+B∆ud(k) (6)

dy(t) = C(x(t))dx(t)+dw(t)

where the notation x(kh+) = limε↓0 x(kh+ε) has been
used, ∆ud(k) = ud(k)−ud(k−1) and

A(x) =
∂ f (x)

∂x
, C(x) =

∂h(x)
∂x

(7)

Integration of (6) over the sampling intervals gives
(Toivonen, 2003)

ẋ(kh+h) = F(x(kh),ud(k))ẋ(kh)

+G(x(kh),ud(k))∆ud(k)

∆y(kh+h) = H(x(kh),ud(k))ẋ(kh) (8)

+J(x(kh),ud(k))∆ud(k)+ ew(k +1)

where ∆y(kh+h) = y(kh+h)−y(kh) and ew(k+1) =
w(kh + h)−w(kh). Hence {ew(k)} is a discrete-time
white noise sequence with variance σ2

w = rwh. The
matrices F(·, ·), G(·, ·), H(·, ·) and J(·, ·) are smooth
functions given by

F(x(kh),ud(k)) = Φ(kh+h) (9)

H(x(kh),ud(k)) = Φy(kh+h) (10)

and G(·, ·) = F(·, ·)B, J(·, ·) = H(·, ·)B, where Φ(·)
and Φy(·) are defined by the differential equations

dΦ(t)
dt

= A(x(t))Φ(t), Φ(kh) = I (11)

dΦy(t)

dt
= C(x(t))Φ(t), Φy(kh) = 0 (12)

where x(t) is given by (4).

The parameters of (8) are functions of the system state.
In order to construct a model using input-output data



only, it will be assumed that the state can be recon-
structed from the inputs and outputs. For this purpose,
some facts about the observability of nonlinear sys-
tems will be summarized (Levin and Narendra, 1995).
The differential equation (4) defines a discrete-time
system, which describes the propagation of the system
state and output at the discrete sampling instants kh,

[

x(kh+h)
w(kh+h)

]

=

[

fd(x(kh),ud(k))
w(kh)

]

+

[

0
I

]

ew(k +1) (13)

y(kh) = h(x(kh))+w(kh)

where fd(·, ·) is a smooth function. The discrete-time
system (13) is state-invertible, i.e. x(kh) is uniquely
defined by x(kh+h) and ud(k).

Observability makes it possible to determine the state
from a finite number of system inputs and outputs.
Unlike the linear case, observability of nonlinear sys-
tems cannot in general be guaranteed for all input
sequences. Instead, a useful concept for nonlinear sys-
tems is generic observability (Aeyels, 1981; Levin
and Narendra, 1995), meaning that the system is ob-
servable for almost every input sequence. Levin and
Narendra (1995) have shown that if h(·) has isolated
critical points, then the set of fd ∈ C ∞ for which
the system (13) is generically observable is open and
dense in C ∞.

Assuming observability, there exist an integer l and
continuous functions gm(·), such that

x((k− l +m)h) = gm(ϕl(k)), m = 1, . . . , l (14)

for almost every input sequence, where

ϕl(k) = [y(kh), . . . ,y((k− l +1)h),

ud(k−1), . . .ud(k− l),

ew(k), . . . ,ew(k− l)] (15)

For a system with a scalar output, observability en-
sures that the state can be reconstructed from l =
2na + 1 past inputs and outputs, where na is the di-
mension of the augmented system (13) (Levin and
Narendra, 1995). As na independent observations are
sufficient to reconstruct the state, a smaller value of l
can be expected to work well in many cases, however.

In order to obtain a state-dependent ARMAX repre-
sentation of (8), the following assumptions are needed.
Let ud ∈ U ⊂ Rp and x(kh) ∈ X ⊂ Rn, where U and
X are open sets, and define the set

X f (y,ud) = {ẋ ∈ Rn | ẋ = f (x)+Bud ,

h(x) = y,x ∈ X } (16)

Assumption 1. The discrete-time system (13) is gener-
ically observable, such that (14) hold for almost every
input sequence.

Assumption 2. The set defined by (16) is such that
span{X f (y,ud)} = Rn for all y ∈ h(X ) holds for
almost every ud ∈ U .

Using (14) to reconstruct the state in (8) gives the
following result (cf. Toivonen (2003)).

Theorem 1. Suppose Assumptions 1 and 2 hold. Then
the system with jumps described by (6) has the
discrete-time representation

∆ym(kh+h) =
l

∑
i=1

Ai(ϕl(k))∆ym((k− i+1)h)

+
l+1

∑
i=1

Bi(ϕl(k))∆ud(k− i+1)

+e(k +1)+
l+1

∑
i=1

Ci(ϕl(k))e(k− i+1) (17)

where e(k) = ∆ym(kh)−∆ŷm(kh|kh− h) is the mini-
mum one-step prediction error. The moving average
parameters Ci(ϕl(k)) are given by

Ci(ϕl(k)) =







c−A1(ϕl(k))
−cAi−1(ϕl(k))−Ai(ϕl(k))
−cAl+1(ϕl(k))

(18)

where

c = −
σ2

w +2σ2
m

2σ2
m

+

√

(

σ2
w +2σ2

m

2σ2
m

)2

−1 (19)

where σ2
w = Eew(k)2 and σ2

m = Eem(k)2. Moreover,
{e(k)} is a zero-mean white noise process with the
variance Ee(k)2 = −σ 2

m/c.

The result can be proven in analogy with the deter-
ministic case (Toivonen, 2003), and by using an inno-
vations representation to model the stochastic noise.

The system representation (17) provides a theoreti-
cal justification for using a state-dependent parameter
ARMAX (quasi-ARMAX) model structure to model
nonlinear sampled-data systems. It is in general un-
tractable to evaluate the functions in (14), which re-
construct the state, and hence the parameters Ai(ϕl(k))
and Bi(ϕl(k)) of (17), even for simple systems with
known dynamics. In practical situations it is usu-
ally also unrealistic to assume that the whole state
is known. These limitations lead to the problem of
estimating the parameters of (17) directly from input-
output data. For this purpose various function approx-
imators, such as neural networks, can be applied.

3. SYSTEM IDENTIFICATION

In this section, identification of the quasi-ARMAX
model (17) is considered. The model parameters are



represented as functions of past inputs and outputs
using feedforward neural networks (cf. Hu and Hi-
rasawa, 2002). The representation of the model pa-
rameters is not a standard neural network approxi-
mation problem, because the approximated functions
Ai(·), Bi(·) and Ci(·) are observed only indirectly via
the system output ym. However, by taking the model
equation (17) as an additional output layer with time-
varying weights ∆y(kh− ih), ∆ud(k− i), e(k− i), it is
straightforward to use input-output data to train neu-
ral networks which approximate the quasi-ARMAX
model parameters. A feedforward neural network rep-
resentation of the quasi-ARMAX model is shown in
Figure 1. The neural network output is given by

∆yNN(kh+h) =
nA

∑
i=1

Ai(k)∆ym((k− i+1)h)

+
nB

∑
i=1

Bi(k)∆ud(k− i+1)

+

nC

∑
i=1

Ci(k)ε(k− i+1) (20)

where ε(k) = ∆ym(kh)−∆yNN(kh). The partial deriva-
tives of (20) with respect to the network weights W can
be evaluated according to

∂∆yNN(kh+h)

∂W
=

nA

∑
i=1

∆ym((k− i+1)h)
∂Ai(k)

∂W

+
nB

∑
i=1

∆ud(k− i+1)
∂Bi(k)

∂W

+

nC

∑
i=1

(

ε(k− i+1)
∂Ci(k)

∂W

−Ci(k)
∂∆yNN((k− i+1)h)

∂W

)

(21)

where the derivatives ∂Ai(k)/∂W , ∂Bi(k)/∂W and
∂Ci(k)/∂W of the outputs are given by standard for-
mulae.

Observe that in the stochastic case the network in
Figure 1 is a kind of a recurrent network, as the output
∆yNN(kh + h) depends on past outputs via the output
layer weights ε(i) associated with the C-parameters.
However, the training problem is simplified by the fact
that the dependence on past outputs is linear. By taking
the C-parameters as constants the complexity of the
training problem can be reduced further.

4. EXPERIMENTAL RESULTS

In this section the modelling and system identification
methods presented in this study are tested on a sim-
ulated bioreactor benchmark process (Ungar, 1990).
The bioreactor consists of a continuous stirred tank
reactor with a constant volume, containing cells and
nutrients. The process dynamics are described by a
nonlinear second-order system of the form (1), where

fP(xP,u) =

[

−xP,1u+ξ
−xP,2u+ξ β/(β − xP,2)

]

hP(xP) = xP,1 (22)

where ξ = xP,1(1−xP,2)exp(xP,2/γ). Here xP,1 and xP,2
are dimensionless cell mass and substrate conversion,
respectively, and u is the flow rate through the reactor.
The variables are chosen to lie in the interval [0,1].
The parameter values β = 1.02 and γ = 0.48 are used.

The continuous-time input u is obtained from the
discrete-time input ud by passing it through a zero-
order hold followed by a low-pass filter. The low-pass
filter (2) had the parameters AH = −100, BH = 100
and CH = 1. The sampling time h = 0.5 suggested by
Ungar (1990) was used.

The system is augmented with a disturbance model
according to (1) and (3), consisting of an additive
drifting process noise w(t) with incremental variance
rw = 2× 10−7 and measurement noise with variance
σ2

m = 10−4.

By Theorem 1, the system can be represented by a
quasi-ARMAX model (17). The theoretical values of
the model parameters can be calculated (cf. Toivonen,
2003) and used for comparison with the identified
models. Using the approach in (Toivonen, 2003), the
bioreactor can be represented by a quasi-ARMAX
model with two A-parameters, three B-parameters and
three C-parameters, which are functions of two past
outputs and three past inputs. As the parameter B3(k)
is very close to zero (|B3(k)|< 0.0017|B2(k)|) it is not
estimated in the model. Thus, quasi-ARMAX models
with two A-parameters and two B-parameters were
identified.

Two sets of 2500 input-output pairs each were gener-
ated; one was used for training and the other for test-
ing. The minimum one-step prediction error variance
of the theoretical model is 0.000103. The optimal pre-
dictor gives the prediction error variances 0.000114
and 0.000104 on training data and test data, respec-
tively.

In order to study the effect of the number of C-
parameters, models with various numbers of constant
C-parameters were identified. The results are shown
in Table 1. Using four hidden layer neurons, the total
number of network weights ranges from 44 to 47.
The results can be compared to the optimal predic-
tion error variances, cf. above. It is seen that the pre-
diction error is the smallest with three C-parameters,
although two parameters give quite similar results, in
terms of the test error. Due to the incremental form of
the quasi-ARMAX model structure, at least a second-
order noise model is required for a satisfactory mod-
elling of the noise dynamics. In particular, using a
model with one C-parameter the noise model tends to
become unstable, as the parameter value is approxi-
mately equal to one.
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–nC

+
1)

∆yNN(kh+h)

Feedforward network

Fig. 1. Structure of the quasi-ARMAX model (20), whose parameters are represented by a feedforward neural
network.

Table 1. Prediction errors for quasi-
ARMAX models with different numbers of

constant C-parameters.

nC Prediction error variance
Training data Test data

0 0.000170 0.000166
1 0.000140 ∞
2 0.000129 0.000130
3 0.000119 0.000124

Models with time-varying C-parameters were also
identified. Using three C-parameters and a network
with three hidden layer neurons corresponds to 46
weights. The result was similar to the case with con-
stant C-parameters, giving the prediction error vari-
ance 0.000118 on the training data and 0.000124 on
the test data.

The predictions and the measurements of the neural
network quasi-ARMAX model with three constant C-
parameters are shown in Figure 2. Figure 3 shows the
approximated and the theoretical parameters. The con-
stant C-parameters correspond well with the average
values of the theoretical ones.

For comparison, a neural network ARMAX (NNAR-
MAX) model (Nørgaard et al., 2000) was identified.
The model consists of a feedforward neural network
and a linear noise filter,

yNN(kh+h) = gNN(ϕyu(k))

+

nC

∑
i=1

CiεNN(k− i+1) (23)

where gNN(·) is a feedforward network with input vec-
tor ϕyu(k) = [ym(kh), . . . ,ym((k−ny +1)h),ud(k), . . . ,
ud(k−nu +1)] and

εNN(k +1) = ym(kh+h)− yNN(kh+h)

0 20 40 60 80
0

0.05

0.1
y

0 20 40 60 80
0

0.5

1

u

Time

Fig. 2. Prediction results with a quasi-ARMAX model
with three C-parameters. The upper graph shows
the measurements (solid lines) and the one-step
ahead predictions (crosses). The lower graph
shows the system input.

The network is chosen to have the same inputs as
the quasi-ARMAX model and six hidden layer neu-
rons. An NNARX model and an NNARMAX model
with three C-parameters were identified. The NNARX
model had a total of 43 weights and the NNARMAX
model had 46 weights. The results are summarized in
Table 2. It is seen that quasi-ARMAX model gives
smaller prediction error variances provided a suffi-
ciently complex noise model is used.

Table 2. Comparison of different models.

Model nC Prediction error variance
Training data Test data

Quasi-ARX 0 0.000170 0.000166
Quasi-ARMAX 3 0.000119 0.000124
NNARX 0 0.000145 0.000156
NNARMAX 3 0.000142 0.000142
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Fig. 3. Quasi-ARMAX model parameters correspond-
ing to the simulation in Figure 2. Dashed lines
represent the neural network approximations and
solid lines the theoretically correct parameter val-
ues.

5. DISCUSSION AND CONCLUSIONS

Identification of quasi-ARMAX models of nonlin-
ear stochastic sampled-data systems was presented.
The quasi-ARMAX structure can be be derived by
velocity-based linearization and reconstruction of the
state in terms of past outputs and inputs. The pa-
rameters were approximated by a feedforward neural
network. The quasi-ARMAX model can be seen as
a recurrent network, which can be trained on input-
output data.

A bioreactor was used as a numerical example. The
system was subject to an additive drifting disturbance
and measurement noise. The correct model parameters
were calculated for comparison with the approxima-
tions. Identification from input-output data gave an
accurate model in terms of the one-step prediction
error. The quasi-ARMAX model was also more accu-
rate than an NNARMAX model with approximately
the same structure and complexity. This result is in
accordance with the results of Peng et al. (2003), who
studied the deterministic case using radial basis func-
tions for model approximation.

The quasi-ARMAX model structure provides a conve-
nient way of describing nonlinear stochastic sampled-
data systems. In particular, the nominally linear struc-
ture makes it suitable for prediction and control ap-
plications, and the state-dependent parameters provide
information about the system dynamics.
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