
FAULT DIAGNOSIS FOR DISTRIBUTED
ASYNCHRONOUS DYNAMICALLY RECONFIGURED

DISCRETE EVENT SYSTEMS.

S. Haar, A. Benveniste, E. Fabre, and C. Jard

Abstract: Diagnosis of concurrent and asynchronous systems, such as large telecommuni-
cation or information systems, requires powerful mathematical models. The use of Petri
net unfoldings allows to formalize diagnosis using partial order semantics, a general-
ization from the global state model imposed by the use of automata. If, in addition to
asynchronicity and distribution, the network topology itself is subject to dynamic changes,
all static models, including Petri nets, reach their limits. Then, graph grammars can be
used, encoding in the current local states not only the current values of state variables but
also the current topology of the network connections; the fact that unfolding semantics is
available allows to carry over the diagnosis algorithms to this setting.
Copyright c©2005 IFAC

Keywords: Networks, Discrete event systems, Fault Diagnosis, Distributed models

1. INTRODUCTION

Diagnosis of concurrent and asynchronous discrete
events dynamical systems, such as large telecommuni-
cation or information systems, is a challenging topic,
see Benveniste et al. (2003). Suppose a system is
monitored in such a way that at each site, alarms
are collected at a single sensor and processed by a
central supervisor. Since communications are asyn-
chronous, each local sensor has only a partial view
of the system, and its local time is not synchronized
with that of the other sensors. Time is totally ordered
at each individual node. But it is only partially ordered
between different nodes. Even if the order of events
may be correctly observed by each individual sensor,
communicating alarm events via the network causes
a loss of synchronization. Hence the interleaving of
events communicated to the supervisors is nondeter-
ministic. Global states of the overall system are very
costly to capture, and are in fact never handled in a
large networked system. Thus we use only local states
attached to each individual node.

? Supported by the RNRT (French Research Ministry) projects
MAGDA2 and SWAN. Address: IRISA, Campus de Beaulieu,
35042 Rennes cedex, France. A.B., E.F., S.H., are with Inria, C.J.
with CNRS. Corresp. author: Stefan.Haar@irisa.fr

We will sketch here the approach of Benveniste et al.
(2003) to represent all solutions of the (centralized)
diagnosis of concurrent and asynchronous systems, by
using so-called unfoldings, see Engelfriet (1991); we
will illustrate the techniques below in the context of a
toy client-server model.

2

3

1

6

ClientServer

i ok

sf cf

ρ
ρ

α

β

ρ

β

c−ok

se
4a

5b
4b

5a

Fig. 1. Running Petri net example

In dynamic settings, this approach reaches its limits:
(i) in network management, insertion of new peers
modifies the connectivity structure and requires dy-
namic and local (re-)negotiation of services changing
the structure to be supervised, and/or the set of su-



pervisors. Dually, withdrawal of peers, loss of con-
nections etc, reduce the connectivity graph. (ii) Web
services requested by a client peer can be performed
by a server peer itself or via secondary service calls to
other peers, etc; the actual topology of interaction will
change depending on availability, parameters. etc. We
will illustrate the use of Graph grammars as a unifying
formal model that supports diagnosis and improves
over Petri nets by allowing self-reconfiguration; the
running example will be modified into a dynamic one-
server system with several on-and-off clients.
The paper is organized as follows: we illustrate in
Section 2 the diagnosis with unfoldings, in the context
of Petri nets. Section 3 introduces graph grammars as
a model for dynamicity, and their unfoldings. Section
4 discusses an example of one server with two clients,
extending the running example from the Petri net case,
and Section 5 concludes.

1

2

ok

c−ok

ok

α

ok

c−ok

1

i

β

ρ

2

ok
c−ok

3

4a

1

6
2

24b

5b

3

6

1

5b

ok

ok

α

ok

c−ok

i

ok

sf

cfsf

α

β β

ρ ρ

ρ

ok

c−ok

c−ok

ok

c−ok
ok

se se

se se

c−ok
ok

ok

5a

sf

cfsf

β

ok

ρ ρ

α

ok

c−ok

ok

c−ok

4b

4a

4b

Fig. 2. Unfolding of the running example

2. STATIC TOPOLOGY : PETRI NET APPROACH

Suppose first a fixed network topology, and that all
variables involved have finite domain; we can then
use safe Petri nets with so-called “true concurrency
semantics” to formalize distributed fault diagnosis.
We assume the reader is familiar with terminology and
representation of Petri nets.

Our example is shown in Fig. 1. It has two interacting
components, server and client. The client may fail due
to server failure but not vice versa. In our model, the
client is either ok (token in the place c-ok), being
served (se), or in a fault state (cf). The server can
be ok, in an internal fault state i or in a visible
fault sf that may effect the client. The transitions
of Figure 1 are: server enters (4a) or leaves (5a)
internal fault state; same for visible fault (4b, 5b);
service begins (1) and may end normally with client
“ok” (2), or abnormally due to server fault, with the
client in the fault state, with recovery (6). Note that
an internal server fault can occur concurrently with
ongoing service; it only delays the end of service,
while visible fault can prevent normal termination.
Suppose now that the server emits alarm β upon enter-
ing one of its fault states; that is, we label transitions
4a and 4b by β. In the same way, label the repair
transitions 5a, 5b and 6 by ρ, and service beginning
1 by α; the unlabeled transitions represent unobserv-
able events. - The initial marking is given by the set
{av,ok, id}. Labels (α, β or self-repair ρ) attached
to the different transitions or events, will be called
alarms in the sequel. The diagnosis problem is now
to identify, for a given sequence A of alarms (we
only consider sequential observations here to keep the
presentation simple), all possible behaviours of the
system (represented by its model, which we assume
complete for the moment) that would have triggered
A, i.e. represent possible explanations for A.

Unfoldings represent all runs. he partial order se-
mantics known as branching processes gives nonse-
quential executions of the net in a compact form. Fig-
ure 2 shows three different scenarios, and the same
with their common prefixes glued together (bottom
right): the latter structure is a branching process, a
prefix of the unfolding of the net. Its graph forms
an occurrence net, see below; to distinguish from
the corresponding concepts in Petri nets, we speak
of conditions/events instead of places/transitions. The
construction is recursive: let Petri net N = (P , T ,→
,M0) be given. For each place in the initial marking
M0, create a copy, an initial condition. Then, add
recursively 1) a new event e for each transition t

that is enabled in the corresponding marking, with
arcs to e from the condition set (co-set, see below)
corresponding to t’s pre-places, and 2) output arcs
leading to new output conditions for e , one for each
place that receives a token from t ; repeat. The unique
maximal element of the set of branching processes
thus constructed is called the unfoldingUN of Petri net



N , see Engelfriet (1991). Conditions/events UP are
labeled by places/transitions of P such that input and
output sets of transitions are respectively in bijection.
Consider Figure 2. The first scenario shows a normal
service cycle, where the server is “ok” consistently.
In the second, the service starts and ends normally but
its termination is delayed by an internal server fault; in
the third, service is disrupted following a visible server
fault. The last figure (bottom right) is the branching
process formed by these scenarios, identifying their
shared prefixes. Note that all scenarios and the branch-
ing process are acyclic by construction; the transitive
closure of the constructed flow arc relation is a par-
tial order 6, called the causality relation. The preset
of any condition contains exactly one event (or none
if the condition is initial), and in each scenario, the
postset of any condition contains at most one event. In
a branching process, a condition’s postset can contain
two or more different events, as shown by the first
condition labeled se on the right hand side, whose
post-events are occurrences of 2 (twice) and 3. This in-
dicates a conflict, corresponding to the fact that in each
run, at most one of those events can occur. Conflict is
hereditary: if x#x′ and x � y, x′ � y′, then y#y′

follows. Finally, concurrency holds between nodes x

and y that are neither in conflict (thus there exists a
run containing both) nor causally ordered, i.e. neither
x#y, nor x � y, nor y � x: this is the case for 5a

and 6 in the third scenario. In particular, the initial
conditions form a maximal set of pairwise concur-
rent conditions; such sets are called cuts. Each cut
corresponds to a reachable marking, and each reach-
able marking is reflected by at least one cut of the
unfolding. Each branching process of a Petri net N
associates to N an occurrence nets (ON), which we
define now: ON = (B, E , ;, c0) is an ON iff

(1) ; is acyclic, and defines a partial order 6 with-
out infinite descending chains;

(2) no node is in conflict with itself : ¬(y#y);
(3) the set c0 of 6-minimal nodes is a cut, called the

initial cut of ON .

The executions of a Petri net are reflected in sub-
occurrence nets of its unfolding. Call configuration
every subnet κ of ON that (i) contains the initial
cut c0, (ii) is conflict-free, i.e. does not contain any
conflicting pair of nodes, and (iii) is causally closed,
i.e. x ∈ κ and y 6 x together imply y ∈ κ. Maximal
configurations are called runs.

Asynchronous diagnosis. In Fig. 2, assume we are
given alarm sequence sequence A = αβρ recorded
at the unique sensor. The configuration κ1 top left
produces neither β nor ρ, so is not an explanation for
A. Top right, κ2, fits A, we include it in the diagnosis
of A. The third, κ3, produces an alarm pattern con-
taining A as a prefix: it has two prefixes that explain
A (the ones containing exactly one ρ-labeled event)
See Benveniste et al. (2003) for the formal algorithm,
using synchronized Petri net products.

3. DYNAMIC NETWORKS AND THE GRAPH
GRAMMAR MODEL

Once the assumption of fixed network topology is
dropped, the Petri net model is no longer applicable;
however, concurrency remains present. We will see
that true concurrency semantics carries over and al-
lows to extend the above asynchronous diagnosis ap-
proach, provided graph grammars are used as system
model. The principle of rewriting using rules in the
case of transformation systems that operate on graphs
is the same as that for generators of word languages;
however, this is not our concern here. We view graph
grammars as discrete event dynamical systems, gener-
ated by an initial graph and a collection of rules; they
may exhibit concurrency in the parallel application
of rules. Several classes of graph grammars can be
found in the literature (see references); we mention
node rewriting systems, hyperedge replacement sys-
tems, SPO grammars. Our presentation focuses on the
class of Double Pushout (DPO) Grammars. To fix
terminology, let V be a non-empty set of vertices, E a
set of (hyper)edges (we will drop henceforth the prefix
“hyper”: whenever we speak of “edges” and “graphs”,
we mean “hyperedges” and “hypergraphs”), and sc, tg

two mappings associating to each edge e ∈ E sets
sc(e), tg(e) ⊆ V of source and target vertices, respec-
tively. Note that sc(e) and tg(e) need not be disjoint,
and that either set can be empty. G = (V , E) is called
a (hyper)graph. A graph morphism ϕ : G1 → G2

is a pair of partial mappings ϕV : V1 → V2 and
ϕE : E1 → E2 such that for all e1 ∈ E1 such that
ϕE(e1) is defined, ϕV induces bijections sc1(e1) ↔
sc2(ϕE(e1)) and tg

1
(e1)↔ tg

2
(ϕE (e1)).

(Hyper-)Graph transformation. Consider Figure 3.
It shows a replacement of a hyperedge labeled a by
a hypergraph of the form given by the graph “R”.
Here, the grammar rule is given by the upper line,
L← K → R, relating an abstract left hand side graph
L to the right hand side graph R that replaces L, up
to preservation of the shared part of the form given
by the interface graph K. Formally, the interface K is
mapped by injective morphisms (arrows) into both L

and R. Then, an occurrence of L in G is detected: that
is, there exists another injective morphism inserting L

into G, called matching (it is probably more intuitive
to view this matching as the detection of a subgraph

K

c

ba

c

a b

L

G HD

R

Fig. 3. The elements of a graph transformation rule



of G that is isomorphic to L). The categorical double
pushout (DPO) construct (see Ehrig et al. (1999);
Baldan et al. (1999)) fills in the remaining graphs and
morphisms such that: the diagram’s squares commute,
the abstract interface K is matched in D, and D is
matched in both G and the resulting graph H , and
Graph H is obtained as the “pushout” of D ← K →
R: that is, the fusion of an image of R and D along the
common interface of form K. D is to be interpreted
as the context graph that remains unchanged under
the production; Figure 3 illustrates the application of
a rule to graph G, producing H.
Definition 1. A typed graph over graph T G is a pair
(G, typ) where G is a graph and typ : G → T G
a morphism assigning to each node n and edge e

in G a corresponding node / edge in T G, called the
type. A typed DPO graph grammar is a tuple G =
(T G,G, typ,R), where T G is a type graph, (G, typ) a
typed graph over T G, and R a set of DPO productions

r : (L
lr←− K

rr−→ R) with lr, rr injective graph
morphisms.
For technical reasons, it is preferable to restrict atten-
tion to rules that preserve vertices (see Baldan et al.
(1999) for a discussion): that is, we assume that for

all rules r : (L
lr←− K

rr−→ R) and vertices v in L,
v is in the image of K under lr (this implies that v is
preserved by r, i.e. has a counterpart in R).
Occurrence Grammars and Configurations. Rules
exhibit relations similar to events in occurrence nets:

Definition 2. Let G ← D → H be an instance of the
rule r = (L← K → R). Denote as

(1) •r the set of type graph elements consumed by r

(2) r• the set of elements produced by r , and as
(3) r the set of elements preserved by r

of a grammar G is defined as follows: Let r1, r2 ∈ R,
and x a node or edge in T G. The causal relation < is
defined as follows:

(1) If x ∈ •r1 then x < r1;
(2) if x ∈ r1

• then r1 < x;
(3) if r1

• ∩ r2 = ∅ then r1 < r2.

The asymmetric conflict relation↗ on R is:

(1) if r1 ∩ •r2 6= ∅ then r1 ↗ r2;
(2) if •r1 ∩ •r2 6= ∅ and r1 6= r2 then r1 ↗ r2;
(3) if r1 < r2 then r1 ↗ r2.

To illustrate Definition 2, consider Figure 4. Rule r0

may occur before r2, but not after r2; on the other
hand, there is no causal link between the two, since
r2 does not require r0. We thus have r0 ↗ r2, which
can be read as “r0 is prevented by r2”. Similarly,
r0 ↗ r2; there are three possible executions, with r2

alone, or e2 after r0, or r2 after r1; there is no possible
execution with both r0 and r1, which is consistent
with the fact that r0#r1. A binary conflict relation
“#” containing and extending the above notion of
conflict in occurrence nets is obtained as the symmet-
ric closure of↗, hence x # y implies x ↗ y but not

BA

C

BA

C

BA

C

BA

C

BA

C

BA

C

q2

BA

C

BA

C

BA

C

q1

q0

Fig. 4. Asymmetric Conflict: Rule r0 is prevented by
r2, and in conflict with rule r1

C C COK

S S S

S SS

S SS

C CC

C C C

S S S

S S S

S S

S

C

S

COK

OK

FAULT

Service

S

C

Service

OK

OK

OK

OK

FAULT

FAULT

FAULTFAULT

FAULT

OK

Service

OK

OK

OK

OK

FAULT

S

OK

I−FAULT

I−FAULT

R 3

−

R 4a

β

R 4b

β

R 5a

ρ

R 5b

ρ

R 6

ρ

R 1

α

R 2

−

Fig. 5. Rules of a server-client system with associated
alarm labels

I−FAULT

OK

OK OK OKS

OKService Service OK

β

ρ

− −

αα

R 5a

R 2 R 2

R 1R 1

C1 C2R 4a

Fig. 6. One service with regular behaviour and a
concurrent internal fault that delays termination

vice versa.We note that in the presence of asymmetric
conflicts, any event e can have several histories, whose
difference lies in the occurrence (or not) of events that
are prevented by e or an ancestor of e but which do not
interfere with e itself.



FAULT

OK OK OKS

FAULT

OK

OK OK

FAULT
Service Serviceβ

ρ −
−

ρ

αα

ρ

R 4b

R 3
R 3

R 6 R 6

R 1R 1

C1 C2

R 5b

Fig. 7. Visible fault disrupting all services

FAULT

OK OK OKS

OK

OK

OK

FAULT
Service Serviceβ

ρ −
−

ρ

αα

R 4b

R 3
R 2

R 6

R 1R 1

C1 C2

R 5b

Fig. 8. Visible fault disrupting one service while al-
lowing another to terminate regularly

4. EXAMPLE: MULTI-CLIENT-SYSTEM

Let us now consider the above example which we
modify by adding dynamicity : suppose one server
may be serving an unspecified number of clients; for
simplicity, we restrict to a setting with two clients
present, so two, one, or none may be receiving service
at a given instant. Then the servers state changes from
ok to faulty will also affect a varying number of
clients, namely, those that are currently being served.
The Petri net model above had server and client invari-
ably linked. The dynamic multi-client case cannot be
handled in the same way (more precisely, one could
model each service configuration by alternative parts
in a bigger Petri net: the readers may want to per-
form this operation for the small example here, and
convince themselves of the exponential growth of the
model); we need a more supple formal representation.
Figure 5 shows the rules of a graph grammar model
for this situation; the rule names and alarm labels
are indicated. Note that in the figures showing graph
transformations, we draw circles to represent vertices;
rectangular boxes with rounded corners represent hy-
peredges, and those with unrounded corners, occur-
rences of rules. So, in the left hand side of R1, generic
server S is represented by a vertex; the two hyper-
edges having S as unique source and target vertex (call

I−FAULT

FAULT

OK

OK OK OKS

FAULT

OKOK

OK

OK OK

FAULT
Service Serviceβ

β

ρ

ρ −
− −

−

ρ

αα

ρ

R 5a

R 4b

R 3
R 2 R 2

R 3

R 6 R 6

R 1R 1

C1 C2R 4a

R 5b

Fig. 9. Unfolding prefix containing all of the above
configurations, with alarm labels

this type 1-edges) represent the “ok” state. Similarly,
a generic client C is a vertex : we adopt the principle
of representing actors by vertices, states by 1-edges,
and connections, multirelations etc. by more general
hyperarcs reflecting the topology of interaction. By the
action of R1, a service is established between server
S and generic client C; C’s “ok” arc disappears, and
an arc connects S and C while the service is being
delivered. (One has bigger edges in other examples
: suppose for instance that C’s request concerns a
certain number of other nodes, e. g. objects to be
repaired, contacts with other clients to be brokered,
etc; one would then link all the vertices concerned
by one hyperedge, ensuring that future transactions
are applied consistently to the correct “case file” in
all sites.) Note that the “ok” status of the server must
hold during the entire transaction; it is therefore part
of the interface graph preserved by R1. The regular
termination of service is described by R2: the service-
arc is removed, and the client returns into “ok”. In R3,
the effect of a visible server fault is shown: the arc for
service en route is removed, and C enters a fault state.
In rules R4a and R4b, S leaves the “ok” state and
enters one of two fault states : internal (IFault, R4a)
or visible (Fault, R4b), with external effects given by
R3. Rules R5a and R5b describe repair of faults of S.
The only rule that concerns the generic client C alone
is R6, where C repairs its fault (such as induced by a
server fault during service) and returns into the “ok”
state. Note that this behaviour reflects the one given
by the Petri net example above; in fact, we have here a
generalization of the 1-Client/1-Server system to sev-
eral clients that may join or leave. In fact, the number
of clients or servers is not specified by the rule set;
it will be given by the initial graph of a process. The
rule set can also be extended by “birth” rules creating
servers or clients from nothing, and / or “death” rules
in which an idle client looses that edge, and so forth.
The figures here show only a space-restricted selection
of possibilities.
Unfolding. The Figures 6 through 8 show configura-
tions of the above example. Circles are vertices, round
boxes with solid lines represent hyperedges. The rect-



angular boxes represent the occurrence of the rule
whose names and labels are inscribed; consumption
and creation of graph parts are indicated by dotted ar-
rows, and thick dash-dotted lines indicate side condi-
tions. Side conditions are indicated by read arcs (dash-
dotted lines) In all cases, there is initially one server
in the “ok” state, and two clients C1, C2 initially
“ok”. All clients are instances of the generic client
C in the grammar rules from Figure 5. In Figure 6,
C1’s request is entirely satisfied: R1 starts services,
linking C1 and C2 to S; service for C2 terminates
without difficulties. During the service for C1, but
after successful termination for C2, an internal fault
occurs at S (R4a) and is repaired (R5a); only after
repair can the service terminate normally (R2), and
C1 then returns into the idle state. Note that the side
conditions of R1 and R2 for C1 force this ordering of
R4a and R2: R2 acts only after repair, not during the
first “ok” state - the side condition of R1’s occurrence
- since in that case we would have had a read arc from
that first “ok” to both R1 and R2.

In Figure 7, both C1 and C2’s services are prevented
from normal termination by the visible fault of S and
produce faults; after repairs, S and the clients turn
“ok”, but no service was achieved. In Figure 8, the
service for C2 terminates normally and sufficiently
fast to escape the visible fault on S, which disrupts
the service for C1, with the usual repair afterwards.
Figure 9 gives a comprehensive view of all the above
executions; it shows a prefix of the grammar’s unfold-
ing, with shared prefixes glued together like in the
Petri net unfolding of Figure 2.

Histories and asymmetric conflicts. Let us take an-
other close look at Figure 7. One notices the presence
of asymmetric conflict: the two occurrences of R1 are
prevented by R4b, and similarly, those of R3 by R5b.
The occurrence of R5b, call it e, has several differ-
ent causally closed histories within the configuration:
the event set H1(e) = {R11, R12, R31, R32, R4b},
where we note Rxy the occurrence of rule x at client
y 1 , and the event sets

H2(e) = {R11, R12, R31, R4b}, H3(e) = {R4b}
H4(e) = {R11, R12, R32, R4b},
H5(e) = {R11, R12, R4b}, H6(e) = {R11, R4b}
H7(e) = {R11, R31, R4b}, H8(e) = {R12, R4b}
H9(e) = {R12, R32, R4b}.

These sets are in fact mutually exclusive, potential his-
tories explaining e; the asymmetric conflict prevents,
e.g., R12 to occur after H4(e), or R31 after H5(e).
The presence of e allows neither to deduce nor to
exclude occurence of R1 and R3.

Diagnosis. Now, using labels one can perform fault
diagnosis procedure as for Petri net unfoldings : ac-
cording to Figure 5 all self-repair rules are labeled ρ,

1 note that the occurrences of R6 in Figure 7 are concurrent with
e, not part of its causal history

server faults as β, and α is the label of applications of
R1. The label sequence A = ααβρρρ is explained
by the configuration of Figure 7, but not the other
two: Figure 6 allows only ααβρ, and Figure 8 only
ααβρρ. Thus sequence A filters away those config-
urations, as not being candidates for diagnosis. The
formal technique for diagnosis over graph grammars
can be obtained by lifting from the Petri net approach
sketched above:

(1) describe a given alarm pattern A as a determinis-
tic (conflict-free) graph grammar GA;

(2) unfold the product grammar GA × G obtained
from GA and the system model G by synchro-
nizing rules bearing the same label ;

(3) take the set diag′(A) formed by all those con-
figurations κ′ in the unfolding of GA ×G such
that the projection of κ′ to the label set yields A

(and not a proper prefix); then,
(4) diagnosis of A is the set diag(A) of projections

of all κ′ ∈ diag′(A) to rules from G.

5. CONCLUSION

Asynchronous dynamic systems whose topology change
dynamically can be modelled and diagnosed by graph
grammars using algorithms that extend naturally those
developped for Petri nets. The presence of interfaces
introduces asymmetric conflict, leading to slightly
”blurred” causal histories, but which can still be dis-
criminated using adaquate labeling for diagnosis. It
should be noted that asymmetric conflict is common
to systems with read arcs, such as Read Petri Nets,
see Baldan et al. (2001).

REFERENCES

Baldan, P.; Corradini, A; and Montanari, U. Unfolding
and event structure semantics for graph grammars.
Proc. FOSSACS 1999, LNCS 1578:73–89.

Baldan, P.; Corradini, A; Montanari, U. Contex-
tual Petri nets, asymmetric event structures and pro-
cesses. Information and Computation 171(1):1–
49, 2001.

Benveniste, A; Fabre, E.; Haar, S; and Jard, C. Diag-
nosis of asynchronous discrete event systems, a net
unfolding approach. IEEE Transactions on Auto-
matic Control, 48(5):714–727, May 2003.

Ehrig, H; Kreowski, H.-J.; Montanari, U; Rozenberg,
G. (eds.). Handbook of Graph Grammars and Com-
puting by Graph Transformations. Vol. 3. World
Scientific 1999.

Engelfriet, J. Branching processes of Petri Nets. Acta
Informatica, 28:575–591, 1991.

Benveniste, A; Fabre, E.; Haar, S; and Jard, C.
Distributed monitoring of concurrent and asyn-
chronous systems. In Proc. CONCUR 2003 (Invited
Talk), LNCS. Springer, 2003. Revised and extended
version to appear in Discrete Event Systems.


