

IMPROVING THE BEHAVIOUR OF SUPERVISOR UNDER BLOCKING

Ozgür T. Kaymakcia,*, Leyla Görena, Salman Kurtulana

a Control Systems Division, Faculty of Electrics and Electronics Engineering,
Istanbul Technical University, Istanbul, Turkey

* Corresponding Author e-mail: kaymakci@elk.itu.edu.tr

Abstract: Sometimes, under control of a supervisor a discrete event system could
constitute a conservative solution in this case relaxing the blocking becomes an inevitable
fact to improve the performance. Meanwhile the balance between blocking and
achievement has to be preserved. So the strings that drive the system to blocking and also
the strings causing achievement have to be investigated in a numerical manner. For this
purpose in this study a new performance measure is introduced. The elements of the
performance measure depend on numeric values obtained from strings that correspond to
blocking and success so the proposed formulation captures the fundamental trade-off
motivated by the classical optimization approach. Then a new algorithm that explores the
best result according to this performance measure is introduced. Copyright © 2005 IFAC

Keywords: Discrete Event Systems, Finite State Machines, Performance Evaluation

1. INTRODUCTION

Discrete event systems are often modelled as regular
languages that can be represented by finite state
automata. Generally the behaviour of the system is
not satisfactory and must be “modified” by a control
action. In this perspective, supervisory control theory
(SCT) is a powerful tool that gives us the possibility
to build in the modifications via supervisor as much
as possible. Therefore all the desired behaviour of
the system is not usually marked by the supervisor
that is built according to nonblocking and
controllability constraints. Sometimes to prevent all
probable blockings in the system, the designed
supervisor could constitute a “conservative” solution.
So one may be willing to risk blocking if there will
be serious increase in the performance of the system.
Therefore in this work, the performance of the
system is examined under blocking and the attempt is
to obtain an optimal language from the acceptable
solution set. So a new performance measure and an
optimization procedure are introduced. In the
literature several researchers have proposed optimal
control of DES. Chen and Lafortune dealed with the
blocking in discrete event systems and introduced

two operators on a set of languages that optimizes the
performance measure according to set inclusion.
(Chen and Lafortune, 1991). Kumar and Garg
proposed a cost function with payoff and control
costs and transformed the optimal control problem to
combinatorial one and solved with network flow
algorithm. Kumar and Garg assumed that a certain
state may be visited only once, so the corresponding
transitions are controlled only once (Kumar and
Garg, 1995). Sengupta and Lafortune also used
control and event costs to find the optimal
nonblocking supervisor and solved the problem by
dynamic programming (Sengupta and Lafortune,
1998). Surana and Ray constructed a signed measure
over discrete event systems and the measure is
defined on state transitions (Surana and Ray). Also
Fu and Ray used this signed measure to formulate an
unconstrained optimal control policy. The policy is
obtained by selectively disabling controllable events
to maximize the measure (Fu, J., et al., 2004). These
strategies have addressed performance enhancement
of discrete event systems but none of them were
interested the blocking case and derived a numeric
performance measure for it.

This paper introduces an optimization algorithm to
find the optimal blocking supervisor based on a
specified performance measure built on a metric
space. The paper is organized in 5 sections. Section 2
briefly gives the preliminaries. Section 3 describes
the motivation and gives the problem formulation.
Section 4 presents optimization algorithm and gives
an example. The paper is summarized and concluded
in section 5.

2. PRELIMINARIES

Discrete event systems (DES) are dynamical systems
which evolve in time by the occurrence of events at
possibly irregular time intervals. Generally the
system to be controlled is modelled with a
Deterministic Finite State Machine (DFSM) defined
by a 6-tuple ()0, , , , , mG X f x X= ∑ Γ where X is

the set of states, ∑ is the finite set of events,
:f X X× ∑ → is the state transition function,

: 2X ∑Γ → is the active event set, 0x is the initial
state and mX X⊆ is the set of marked states
representing a completion of a given task or
operation. Then the behaviour of the system G is
described by a prefix-closed language ()L G , which

is defined as () (){ }* *
0 ,L G s f x s X= ∈ ∑ ∈ where

*∑ denotes the set of all finite concatenations of
events that belong to ∑ , including the zero length
string ε ; the state transition function is extended to:

* *:f X X× ∑ → . ()L G can be considered as the
uncontrolled behaviour of the system. In this paper it
is assumed that the uncontrolled behaviour of the
system ()L G is finite. Similarly the language

()mL G corresponds to the marked behaviour of the
DFSM G.

For a string *s ∈ ∑ , s denotes the prefixes of s.
Extending this definition to languages, prefix closure
of a language L denoted as L is obtained. When a
language L satisfies the condition L L= then it is
called prefix closed. In the literature the length of a
string or Myhill congruence index of a language is
symbolized with .& & . Also p is a projection
function defined on string where ()jp s represents
the prefix of string s of length j (Sengupta and
Lafortune, 1998).

If () ()mL G L G≠ then the DFSM G is said to be
blocking. Two types of blocking can occur; these are
deadlock and livelock. At deadlock, G can reach a
state ix , where ()ixΓ = ∅ ()i mx X∉ and at livelock;
the DFSM can reach a set of unmarked states that
form a strongly connected group of states, but with
no transition out of this set (Lafortune and Chen,

1990). In this work, it is assumed that all the possible
blockings are deadlock.

Some of the events in ∑ are uncontrollable i.e. their
occurrence cannot be prevented by a controller. A
sensor output at a manufacturing system is a good
example of this class. In this regard, ∑ is partitioned
as ()c uc c uc∑ = ∑ ∑ ∑ ∑ = ∅∪ ∩ , where c∑ and uc∑
represent the set of controllable events and the set of
uncontrollable events respectively. Likewise the
control action can be applied on a system that is
partially observable, but in this work it is assumed
that all the events are observable.

The control of DES was for the first time explicitly
introduced in the work of Wonham and Ramadge
(Ramadge and Wonham, 1987b). In this work, the
aim of the supervisor is to generate a given language
while restricting the system behaviour minimally.
Here the supervisor’s role is characterized such that
at any given system’s state, it determines a set of
controllable events to be disabled so that the plant
evolves over events without violating the
specifications. In this perspective the existence of a
supervisor is guaranteed if the desired language K
satisfies Controllability Condition defined
as ()ucK L G K∑ ⊆∩ . But the given language can
not be always controllable with respect to uc∑ . Then
the idea of obtaining the maximum part of the given
language is needed. Here the “maximal” means in
terms of set inclusion. This maximum part of K is
Supremal Controllable Sublanguage and denoted
with CK ↑ and to compute efficient algorithms is
given (Ramadge and Wonham, 1987a; Wonham and
Ramadge, 1987). With a similar approach violating
the controllability condition, one finds the smallest
prefix-closed and controllable language containing
K. This language is known as Infimal Prefix-Closed
Controllable Superlanguage of K and denoted
with CK ↓ . Likewise algorithms also exist for its
computation (Lafortune and Chen, 1990).

3. MOTIVATION AND PROBLEM
FORMULATION

Sometimes the minimally restrictive nonblocking
solution (MRNBS) is deemed inadequate owing to its
too restrictive behaviour. In other words, the
MRNBS gives a conservative result in the sense that
it prevents all uncontrollable events that lead to
blocking. As a result this kind of a strategy may
constrain the behaviour of the system considerably.
Also in some situations the blocking of the controlled
system can be easily detected and resolved or for the
system to conclude a task is more essential than
avoiding the occurrence of a possible blocking. So at
the design phase of the supervisor, there is needed to
relax the nonblocking requirement. But at this point,
the question “How much relaxing?” arises. The
motivation of this work is to search a formal answer
to this question. This problem has been considered

by Lafortune and Chen and they introduced two
operators on a set of languages that optimizes the
performance measure (Chen and Lafortune, 1991).
These two operators optimize the initial solution in
the sense of set inclusion so for different initial
solutions different incomparable final solutions can
occur. Also in practice the interpretation of generated
strings by the system are not the same. So the
differences between the strings have to be taken into
consideration before selecting the “best” supervisor.
To overcome these drawbacks in this work a new
structure is formulated where different languages
generated under the supervision of different
supervisors are compared. To fulfil this purpose, a
new metric space and a new performance measure is
suggested. At the end, to obtain the optimal blocking
supervisor a new algorithm is introduced. Also in our
previous work the same part of the problem is taken
into consideration and to differentiate strings a
different metric space is introduced and the result is
discussed (Kaymakci and Kurtulan, 2004).

For a given G and the admissible S, the resulting
closed loop system is symbolized with S/G. Let the
admissible language and admissible marked
language be ,a amL L respectively. Then the
specifications and trivial assumptions on the
controlled language are

() () ()/ : /m mL S G L S G L G= ∩

() () ()/ , /m am a aL S G L L S G L L L G⊆ ⊆ = ⊆ ,

()am a m a amL L L G L L= =∩ ∩ so amL is ()mL G
closed. Then the class of all admissible solutions is

: : C C C
cand am a amL K L K L L↑ ↑ ↓  = ⊆ ⊆ ∧  

 
∩

() ()()}ucK K K L G K= ∧ ∑ ⊆∩

The strings that drive the system to blocking can be
represented as a set which is defined as

() () (){ }(/) : / \ /mBM L S G L S G L S G= . Also the

admissible marked strings, that are not allowed by
the controlled system, are denoted with

()() (){ }/ : \ /C
am mSM L S G L L S G= . These two sets

are called Blocking Measure Set and Non-Satisfying
Measure Set respectively. For detailed information
refer to (Chen and Lafortune, 1991).

At this point, there is no difference between all
strings generated by the system. For example, all the
strings in the non-satisfying measure set have the
same significance. But in practice this is not always
true. Sometimes this set may include a very
important string which can conclude a very
important task. To improve the performance, this
kind of a string has to be added to controlled
language in a formal way. But the suggested solution
by Chen and Lafortune does not give permission for
addition of this string if a new blocking arises. This
is due to set inclusion. For this purpose, a new
performance measure, which gives an opportunity to
discriminate the languages, is formulized below.

Definition 1: The importance of a generated string is
denoted as c where

*s ∈ ∑ , *: \c ε +∑ → \ and () 0c ε = ▲
Definition 2: The importance of a language is defined

as () { }
*

: 2 0Lβ +∑ → +\ where
*

2L ∑∈ such that

{ 1 2 3, , ,L s s s= }..., ns .Then

() ()
1:

0

n

i
i

c s L
L

otherwise

β
=


≠ ∅

= 



∑ ▲

In this way, the significance of a language is obtained
in terms of function β but this has no determining
factor on languages only gives a numerical value. For
comparing different languages a more formal
structure has to be formed. So a new metric space for
discrete event systems is formulated. For detailed
information on metric space refer to (Kreyszig,
1978).
Property 1: If 1 2

*
, 2L L ∑∀ ∈ and 1 2L L⊆ then

() ()1 2L Lβ β≤ ▲

Property 2: If *
2L ∑∈ and

1

u

i
i

L L
=

=∪ where k lL L = ∅∩

such that , 1...k l u= and k l≠ then
() () ()1 ... uL L Lβ β β= + + ▲

Property 3: If 1 2

*
, 2L L ∑∀ ∈ then ()1 2L Lβ ≤∪

() ()1 2L Lβ β+
The proofs of Property 1, 2 and 3 are trivial and
omitted.
Definition 3: The distance function

{ }
* *

: 2 2 0d +∑ ∑× → +\ is defined in terms of the
importance of the language as:

() { } { }()1 2 1 2 2 1, : \ \d L L L L L Lβ= ∪ ▲

Proposition 1: The set
*

2∑ and the distance function
defined above forms a metric space ()*

2 ,d∑ .

Proof: It will be shown that the axioms of metric
space (Kreyszig, 1978) are fulfilled.
• In accordance with the definition of function β ,

() { }1 2, 0d L L +→ +\ ,
*

1 2, 2L L ∑∀ ∈

• () { } { }()1 2 1 2 2 1, \ \d L L L L L Lβ= ∪

() { } { }()2 1 2 1 1 2, \ \d L L L L L Lβ= ∪

then () ()1 2 2 1, ,d L L d L L=
*

1 2, 2L L ∑∀ ∈

• If ()1 2, 0d L L = then { } { }1 2 2 1\ \L L L L = ∅∪ (by
definition of function β) 1 2L L⇒ =
If 1 2L L= then () ()1 2, 0d L L β= ∅ =

()1 2 1 2, 0 d L L L L= ⇔ = ,
*

1 2, 2L L ∑∀ ∈

• Assume that { } { }1 2 2 1\ \L L L L ⊃∪

{ } { }({ } { })1 3 3 1 3 2 2 3\ \ \ \L L L L L L L L∪ ∪ ∪ .

Let s be an element of () ()3 1 3 2\ \L L L L∪

Then { } { } { } { }()1 3 3 1 3 2 2 3\ \ \ \s L L L L L L L L∈ ∪ ∪ ∪

By the assumption, () ()1 2 2 1\ \s L L L L∈ ∪ . But by

the definition of s, () ()1 2 2 1\ \s L L L L∉ ∪ . This is a
contradiction; as a result the assumption is not right.
{ } { } { } { } { }({ })1 2 2 1 1 3 3 1 3 2 2 3\ \ \ \ \ \L L L L L L L L L L L L⊆∪ ∪ ∪ ∪

 { } { }() { } { }(1 2 2 1 1 3 3 1\ \ \ \L L L L L L L Lβ β≤∪ ∪

 { } { })3 2 2 3\ \L L L L∪ ∪ (by Property 1)

{ } { } { } { }() { }(1 3 3 1 3 2 2 3 1 3\ \ \ \ \L L L L L L L L L Lβ β≤∪ ∪ ∪

{ }) { } { }()3 1 3 2 2 3\ \ \L L L L L Lβ+∪ ∪ (by Property 3)

Then () () ()1 2 1 3 3 2, , ,d L L d L L d L L≤ +
*

1 2 3, , 2L L L ∑∀ ∈ ▲

 Definition 4: The Non-Satisfying Measure and
Blocking Measure for candL L∈ are respectively
k () ()(): , /C

am mSM L d L L S G=

k () () ()(): / , /mBM L d L S G L S G= ▲

Now the blocking measure set and non-satisfying
measure set are improved on the defined metric set.
Thus the elements of these two sets are not only
known but also an opinion about their effects on
system can be obtained. It is also clear that only
trying to decrease the number of the elements of
these two sets is not enough. It is expected the sum
of these two performance criterion gives the
performance measure of a language.
Definition 5: For candL L∈ , the performance measure
of the language is defined as:
i k () k (): CJ SM L BM L= + . ▲
The performance measure denoted is a numerical
performance measure so different solutions can be
compared. As expected the language that gives the
minimum performance measure is the best solution.
Then the optimal blocking supervisor problem can be
defined as follows:
Definition 6: Let the uncontrolled behaviour of the
system be ()L G , the performance measure be iJ , and
then optimization problem is defined as

 imin
candL L

arg J
∈

 
 
 

 ▲

4. OPTIMIZATION ALGORITHM AND
AN EXAMPLE

In this section the theoretical foundations of the
optimal blocking supervisor will be presented. Let

ISS be a given supervisor that symbolizes the initial
supervisor such that ()/IS IS candL L S G L= ∈ .

For ISS , ()ISBM S and ()C
ISSM S will be a finite set

as () { }1 2, ,...,IS mBM S α α α= , () { }1 2, ,...,C
IS nSM S ξ ξ ξ= .

Lemma 1: If candL L∈ and ()i BM Lα ∈ then

()\ C
i iLα α ↑∉ .

Proof: () ()\ \C C
i iL L Rα α↑ ↑= ∪ where ()\ C

iL Rα ↑ = ∅∩ .

Then to be a member of ()\ C
iL α ↑ , iα is either a

member of ()\ C
iL α ↑ or R . In addition to this it is

easily seen that ()\ C
i iLα α ↑∉ . If i Rα ∈ , there exists

a ()\ C
it L α ↑∈ such that ()i ip t α= ,1 1i t≤ ≤ −& & .

But ()i BM Lα ∈ so ()i s L Gα ∉ such that *s ∈ ∑ .

So ()\ C
i iLα α ↑∉ ▲

Proposition 2: If candL L∈ and (),i k BM Lα α ∈

then () ()\ \ \ \
C C

C C
i k k iL Lα α α α

↑ ↑
↑ ↑   

=   
   

Proof: For any pair of ,i kα α , we can write

()\ C
iL Lα ↑ ⊆ (because candL L∈)

() ()\ \ \
C

C C
i k kL Lα α α

↑
↑ ↑ 

⊆ 
 

() ()\ \ \ \ \
C

C C
i k i k iL Lα α α α α

↑
↑ ↑ 

⊆ 
 

() ()\ \ \ \
C

C C
i k k iL Lα α α α

↑
↑ ↑ 

⊆ 
 

 (by lemma 1)

() ()\ \ \ \
C C

C C
i k k iL Lα α α α

↑ ↑
↑ ↑   

⊆   
   

Since iα and kα are arbitrary elements then

() ()\ \ \ \
C C

C C
i k k iL Lα α α α

↑ ↑
↑ ↑   

=   
   

 ▲

This result can be extended to a general form with
more than two strings in any order. But due to the
similar formulation structure, it is not given here.
Also for guaranteeing the optimality of the solution,
which is obtained with the algorithm given below,
these assumptions are given.

• i () ()\ \ \ \ 0
CC

i jJ L L L Lα α
↑↑     =   

     
∩

() () \ \ \ \
CC

i jL L L Lα α
↑↑   

∨ ⊇   
    

 (A1)

• i () (){ }\ \ 0C C
l mJ L L L Lξ ξ↓ ↓    =      

∪ ∩ ∪

() ()\ \
C C

j lL L L Lξ ξ
↓ ↓   ∨ ⊇     

∪ ∪ (A2)

• C
l jξ α↓ = ∅∩ (A3)

where () (), , , C
i j IS l m ISBM S SM Sα α ξ ξ∈ ∈

According to the first part of A1 the intersection of
strings, which are removed from the language due to
two different blockings, have no effect on
performance measure. In other words the removed

common strings have no influence on blocking or
success. Also the removed strings due to one
blocking could include same sort of removed strings.
Similarly the second assumption possess same type
of constraints on languages but this time the
concerned strings that drive system not blocking but
success. Moreover these assumptions do not possess
a too restrictive structure on target languages.

Definition 7: For (),i j BM Lα α ∈ and candL L∈ there
exists a transformation 1 : cand candT L L→ such that

() () () i
1

\ J \
, :

C C
i i

i
L if L J L

T L

L otherwise

α α
α

↑ ↑  
<      =   




�
 ▲

According to the “if statement” in the definition of
1T , removing a string is bounded to a strict

performance improvement. As the blocking set is
finite; the transformation gives the best solution in
m steps according to blocking measure set. And

candL is a complete lattice set for 1T , so the
transformed language is always a member of candL .
Then the existence of final solution is guaranteed by
the definition of candL
Remark 1: As a obvious result of A1 and proposition
2, the following relation always holds.

()1 1 , ,i kT T L α α  =  ()1 1 , ,k iT T L α α   . Similarly this
can also be extended to more than two words. Then
the optimality of final language is guaranteed by
Lemma 1 and A1.

Definition 8: For (), C

j l SM Lξ ξ ∈ , candL L∈ then

there exist a transformation 2 : cand candT L L→ such
that

() () i () i
2

, :

C C
j j

j
L if J L J L

T L
L otherwise

ξ ξ
ξ

↓ ↓  
<      =   




∪ ∪ ▲

Like 1T , including a string is strictly bounded to
performance improvement so in a similar way 2T
gives the best solution if it is applied to non-
satisfying measure set completely.
Lemma 2: If candL L∈ and (), C

j l SM Lξ ξ ∈ then

() ()
C CC C

j l l jL Lξ ξ ξ ξ
↓ ↓↓ ↓   =     

∪ ∪ ∪ ∪ ▲

The proof is straight forward.

Remark 2: As candL is a complete lattice set, the
result of 2T is always a member of candL so the
existence of the solution is guaranteed. Also
according to lemma 2 and the A2, the transformation
over non-satisfying measure set gives the optimal
solution. As the non-satisfying measure set is finite;
the transformation gives the best solution in n steps.

It can be followed that, the transformations 1T and

2T deal with the blocking set and non-satisfying set

respectively. If these two transformations are used
together, an optimal blocking supervisor can be
attained with respect to performance measure.

Lemma 3: Let candL L∈ , ()i BM Lα ∈

and ()C
j SM Lξ ∈ . For i () i []\ C

iJ L J Lα ↑  <  

and i () iC
jJ L J Lξ

↓ 
<     

 
∪ .

Then () ()\ \
C CCC

i j j iL Lα ξ ξ α
↓ ↑

↓↑   
⊆   

  
∪ ∪ .

Proof:

() ()

() ()

\ by

\

C
i cand

C
CC

i j j

L L L L

L L

α

α ξ ξ

↑

↓
↓↑

⊆ ∈

 
⊆ 

 
∪ ∪

() ()\ \
CC C

i j j iL Lα ξ ξ α
↓↑ ↓ ⊆∪ ∪ (by A3)

() ()\ \
C

CC C
i j j iL Lα ξ ξ α

↑
↓↑ ↓  

⊆  
 

∪ ∪

() ()\ \
C CCC

i j j iL Lα ξ ξ α
↓ ↑

↓↑   
⊆   

  
∪ ∪ ▲

Remark 3: Since iα and jξ are arbitrary elements
and in accordance with definition 1

i () i ()\ \
C C

CC
i j j iJ L J Lα ξ ξ α

↓ ↑
↓↑

        ≤          
∪ ∪ always holds.

Then applying 1T before 2T , gives a smaller
performance measure. Under these three given
assumptions, using the two transformations in given
order gives the optimal blocking supervisor. This
solution can also be applied in an algorithmic
structure.
Step 1
• Pick any IS candL L∈ and calculate 1 max

C
ISL L K ↓= ∪

and ()1 2 1
C

FS amL L L L ↓= = ∩ respectively where

() (){ }max : sup : \ C
am IS IS amK K K L L ve K L L↓= ⊆ ⊆ ∪

• Find () { }1 1,...,FS mBM L α α= , () { }1 1,...,C
FS nSM L ξ ξ=

Step 2
2 1 2(,)iL T L α= . Repeat this step for

()1i FSBM Lα∀ ∈
At the end of iteration 3 2L L=
Step 3

3 2 3(,)jL T L ξ= . Repeat this step for ()1
C

j FSSM Lξ∀ ∈
At the end of iteration 2 3FSL L=
Remark 4: Due to 1 2and T T are defined on finite
sets, the number of iterations needed to arrive an
optimal blocking supervisor is

() ()2 2
C

FS FSBM L SM L m n+ = +

Example: Consider the generator G in Figure 1. Let
{ }1 2,uc β β∑ = , { }1 5 1 2 8 1 2 3 1 2 4, , ,amL α α α α α α α α α β α= ,

{ }1 5 1 1 2 1 1 2 3 1, ,a amL L α α β α α β α α α β= ∪ . ()1 2 8 10c α α α = ,

()1 2 1 3c α α β = , ()1 2 3 12c α α α = , ()1 2 3 1 10c α α α β = ,
()1 5 3c α α = , ()1 5 1 7c α α β =

Figure 1

Let { }1 5 1 1 2 4 1 2 8 1 2 1, , ,ISL α α β α β α α α α α α β= . Then
k () 17CSM L = , k () 10BM L =
i () k () k () 27C

IS IS ISJ L BM L SM L= + =

maxK = ∅ so ()1 SM IS ISL A L L= = and ()1 1FS BML A L=

ISL= (FSL denotes the final solution) When the
example is solved by Chen and Lafortune’s
optimization technique and the final solution remains
the same. So no change at performance measure
occurs. Now the problem will be solved by the
search algorithm presented above.
Step 1 ISL is defined.

() { }1 5 1 1 2 1,ISBM L α α β α α β=

() { }1 2 3
C

ISSM L α α α= , FS ISL L=
Step 2
The transformation 1T will be applied to blocking
set.

() { }1 1 5 1 1 2 4 1 2 8 1 2 1, , ,FST L α α β α β α α α α α α β= because
i () i ()1 1 5 1,FS FSJ T L J Lα α β  < 

() { }1 1 2 1 1 2 4 1 2 8 1 2 1, , ,FST L α α β α β α α α α α α β= because
i () i ()1 1 2 1,FS FSJ T L J Lα α β  > 
Step 3

() { }2 1 2 3 1 2 4 1 2 3 1 1 2 8 1 2 1, , , ,FST L α α α α β α α α α β α α α α α β=

because i () i ()2 1 2 3,FS FSJ T L J Lα α α  < 

Then { }2 1 2 4 1 2 3 1 1 2 8 1 2 1, , ,FSL α β α α α α β α α α α α β=

Also i () i ()2 1FS FSJ L J L<
The optimization algorithm presented above gives a
better result according to numerical performance
measure.

5. CONCLUSION

In this paper the issue of blocking in supervisory
control of DES is studied. A new numerical
performance measure is proposed in terms of two

different distance functions. Two transformations are
presented and using them an optimization algorithm
is constructed to minimize the performance measure.
This paper contributes a better understanding of the
properties of blocking and gives an optimal blocking
supervisor in a set of admissible supervisors. This
paper is concluded by showing that under the given
assumptions the task of finding the optimal blocking
supervisor requires m n+ iteration steps where n
and m refers the number of the elements in ()BM L
and ()CSM L , respectively. Future work will be
concerned with blocking where besides deadlock
livelock is considered. Another issue would be the
investigation of relaxing the assumptions on
languages.

REFERENCES

Chen, E. and Lafortune, S. (1991). Dealing with

Blocking in Supervisory Control of Discrete-
Event Systems. IEEE Transactions on Automatic
Control, Vol 36(6), pages 724-735 .

Fu, J., Ray, A. and Lagoa C. (2004) Unconstrained
Optimal Control of Regular Languages,
Automatica, Vol 40(4) submitted for printing.

Kaymakci, Ö. T. and Kurtulan S. (2004) A Metric
Space Approach for a Class of Discrete Event
Systems. 12th Mediterranean Conference on
Control and Automation (MED’04), June 6-
9,2004, Kuşadası, Turkey

Kreyszig, E.,(1978) Introductory functional analysis
with applications, John Wiley & Sons.

Kumar, R. and Garg, V. (1995). Optimal Supervisory
Control of Discrete Event Dynamical Systems.
SIAM Journal of Control and Optimization, Vol
33(2), pages 419-439.

Lafortune, S. and Chen, E. (1990) The Infimal
Closed Controllable Superlanguage and its
Application in Supervisory Control, IEEE
Transactions on Automatic Control , Vol 35(4)
pages398-405

Ramadge, P. J. and Wonham, W. M., (1987a).
Modular Feedback Logic for Discrete Event
Systems. SIAM Journal Control and
Optimization, Vol 25(5), pages 1202-1218

Ramadge, P. J. and Wonham, W. M., (1987b).
Supervisory Control of a Class of Discrete Event
Systems. SIAM Journal Control and
Optimization, Vol 25(1), pages 206-230

Sengupta, R. and Lafortune, S. (1998). An Optimal
Control Theory for Discrete Event Systems.
SIAM Journal of Control and Optimization, Vol
36(2), pages 488-541.

Surana, A. and Ray, A. Measure of Regular
Languages. Discrete Event Dynamic Systems:
Theory and Applications, submitted for printing.

Wonham, W.M. and Ramadge, P.J. On the Supremal
Controllable Sublanguage of a given language,
SIAM J. Control Optimization Vol. 25 , No. 3, pp
637-659, May 1987

