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Abstract: Sometimes, under control of a supervisor a discrete event system could 
constitute a conservative solution in this case relaxing the blocking becomes an inevitable 
fact to improve the performance. Meanwhile the balance between blocking and 
achievement has to be preserved. So the strings that drive the system to blocking and also 
the strings causing achievement have to be investigated in a numerical manner. For this 
purpose in this study a new performance measure is introduced. The elements of the 
performance measure depend on numeric values obtained from strings that correspond to 
blocking and success so the proposed formulation captures the fundamental trade-off 
motivated by the classical optimization approach. Then a new algorithm that explores the 
best result according to this performance measure is introduced. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Discrete event systems are often modelled as regular 
languages that can be represented by finite state 
automata. Generally the behaviour of the system is 
not satisfactory and must be “modified” by a control 
action. In this perspective, supervisory control theory 
(SCT) is a powerful tool that gives us the possibility 
to build in the modifications via supervisor as much 
as possible. Therefore all the desired behaviour of 
the system is not usually marked by the supervisor 
that is built according to nonblocking and 
controllability constraints. Sometimes to prevent all 
probable blockings in the system, the designed 
supervisor could constitute a “conservative” solution. 
So one may be willing to risk blocking if there will 
be serious increase in the performance of the system. 
Therefore in this work, the performance of the 
system is examined under blocking and the attempt is 
to obtain an optimal language from the acceptable 
solution set. So a new performance measure and an 
optimization procedure are introduced. In the 
literature several researchers have proposed optimal 
control of DES. Chen and Lafortune dealed with the 
blocking in discrete event systems and introduced 

two operators on a set of languages that optimizes the 
performance measure according to set inclusion. 
(Chen and Lafortune, 1991). Kumar and Garg 
proposed a cost function with payoff and control 
costs and transformed the optimal control problem to 
combinatorial one and solved with network flow 
algorithm. Kumar and Garg assumed that a certain 
state may be visited only once, so the corresponding 
transitions are controlled only once (Kumar and 
Garg, 1995). Sengupta and Lafortune also used 
control and event costs to find the optimal 
nonblocking supervisor and solved the problem by 
dynamic programming (Sengupta and Lafortune, 
1998). Surana and Ray constructed a signed measure 
over discrete event systems and the measure is 
defined on state transitions (Surana and Ray). Also 
Fu and Ray used this signed measure to formulate an 
unconstrained optimal control policy. The policy is 
obtained by selectively disabling controllable events 
to maximize the measure (Fu, J., et al., 2004). These 
strategies have addressed performance enhancement 
of discrete event systems but none of them were 
interested the blocking case and derived a numeric 
performance measure for it.  
 



     

This paper introduces an optimization algorithm to 
find the optimal blocking supervisor based on a 
specified performance measure built on a metric 
space. The paper is organized in 5 sections. Section 2 
briefly gives the preliminaries. Section 3 describes 
the motivation and gives the problem formulation. 
Section 4 presents optimization algorithm and gives 
an example. The paper is summarized and concluded 
in section 5. 
 
 

2. PRELIMINARIES 
 
Discrete event systems (DES) are dynamical systems 
which evolve in time by the occurrence of events at 
possibly irregular time intervals. Generally the 
system to be controlled is modelled with a 
Deterministic Finite State Machine (DFSM) defined 
by a 6-tuple ( )0, , , , , mG X f x X= ∑ Γ  where X  is 

the set of states, ∑  is the finite set of events, 
:f X X× ∑ →  is the state transition function, 

: 2X ∑Γ →  is the active event set, 0x  is the initial 
state and mX X⊆ is the set of marked states 
representing a completion of a given task or 
operation. Then the behaviour of the system G is 
described by a prefix-closed language ( )L G , which 

is defined as ( ) ( ){ }* *
0 ,L G s f x s X= ∈ ∑ ∈  where 

*∑  denotes the set of all finite concatenations of 
events that belong to ∑ , including the zero length 
string ε ; the state transition function is extended to: 

* *:f X X× ∑ → . ( )L G  can be considered as the 
uncontrolled behaviour of the system. In this paper it 
is assumed that the uncontrolled behaviour of the 
system ( )L G  is finite. Similarly the language 

( )mL G  corresponds to the marked behaviour of the 
DFSM G. 
 

For a string *s ∈ ∑ , s  denotes the prefixes of s. 
Extending this definition to languages, prefix closure 
of a language L denoted as L is obtained. When a 
language L satisfies the condition L L=  then it is 
called prefix closed. In the literature the length of a 
string or Myhill congruence index of a language is 
symbolized with .& & . Also p  is a projection 
function defined on string where ( )jp s  represents 
the prefix of string s  of length j  (Sengupta and 
Lafortune, 1998). 
 

If ( ) ( )mL G L G≠  then the DFSM G is said to be 
blocking. Two types of blocking can occur; these are 
deadlock and livelock. At deadlock, G can reach a 
state ix , where ( )ixΓ = ∅ ( )i mx X∉  and at livelock; 
the DFSM can reach a set of unmarked states that 
form a strongly connected group of states, but with 
no transition out of this set (Lafortune and Chen, 

1990). In this work, it is assumed that all the possible 
blockings are deadlock. 
 
Some of the events in ∑  are uncontrollable i.e. their 
occurrence cannot be prevented by a controller. A 
sensor output at a manufacturing system is a good 
example of this class. In this regard, ∑  is partitioned 
as ( )c uc c uc∑ = ∑ ∑ ∑ ∑ = ∅∪ ∩ , where c∑  and uc∑  
represent the set of controllable events and the set of 
uncontrollable events respectively. Likewise the 
control action can be applied on a system that is 
partially observable, but in this work it is assumed 
that all the events are observable. 
 
The control of DES was for the first time explicitly 
introduced in the work of Wonham and Ramadge 
(Ramadge and Wonham, 1987b). In this work, the 
aim of the supervisor is to generate a given language 
while restricting the system behaviour minimally. 
Here the supervisor’s role is characterized such that 
at any given system’s state, it determines a set of 
controllable events to be disabled so that the plant 
evolves over events without violating the 
specifications. In this perspective the existence of a 
supervisor is guaranteed if the desired language K 
satisfies Controllability Condition defined 
as ( )ucK L G K∑ ⊆∩ . But the given language can 
not be always controllable with respect to uc∑ . Then 
the idea of obtaining the maximum part of the given 
language is needed. Here the “maximal” means in 
terms of set inclusion. This maximum part of K is 
Supremal Controllable Sublanguage and denoted 
with CK ↑  and to compute efficient algorithms is 
given (Ramadge and Wonham, 1987a; Wonham and 
Ramadge, 1987). With a similar approach violating 
the controllability condition, one finds the smallest 
prefix-closed and controllable language containing 
K. This language is known as Infimal Prefix-Closed 
Controllable Superlanguage of K and denoted 
with CK ↓ . Likewise algorithms also exist for its 
computation (Lafortune and Chen, 1990).  

 
 

3. MOTIVATION AND PROBLEM 
FORMULATION 

 
Sometimes the minimally restrictive nonblocking 
solution (MRNBS) is deemed inadequate owing to its 
too restrictive behaviour. In other words, the 
MRNBS gives a conservative result in the sense that 
it prevents all uncontrollable events that lead to 
blocking. As a result this kind of a strategy may 
constrain the behaviour of the system considerably. 
Also in some situations the blocking of the controlled 
system can be easily detected and resolved or for the 
system to conclude a task is more essential than 
avoiding the occurrence of a possible blocking. So at 
the design phase of the supervisor, there is needed to 
relax the nonblocking requirement. But at this point, 
the question “How much relaxing?” arises. The 
motivation of this work is to search a formal answer 
to this question. This problem has been considered 



     

by Lafortune and Chen and they introduced two 
operators on a set of languages that optimizes the 
performance measure (Chen and Lafortune, 1991). 
These two operators optimize the initial solution in 
the sense of set inclusion so for different initial 
solutions different incomparable final solutions can 
occur. Also in practice the interpretation of generated 
strings by the system are not the same. So the 
differences between the strings have to be taken into 
consideration before selecting the “best” supervisor. 
To overcome these drawbacks in this work a new 
structure is formulated where different languages 
generated under the supervision of different 
supervisors are compared. To fulfil this purpose, a 
new metric space and a new performance measure is 
suggested.  At the end, to obtain the optimal blocking 
supervisor a new algorithm is introduced. Also in our 
previous work the same part of the problem is taken 
into consideration and to differentiate strings a 
different metric space is introduced and the result is 
discussed (Kaymakci and Kurtulan, 2004).  
 
For a given G and the admissible S, the resulting 
closed loop system is symbolized with S/G. Let the 
admissible language and admissible marked 
language be ,a amL L  respectively. Then the 
specifications and trivial assumptions on the 
controlled language are 

( ) ( ) ( )/ : /m mL S G L S G L G= ∩  

( ) ( ) ( )/ , /m am a aL S G L L S G L L L G⊆ ⊆ = ⊆ ,  

( )am a m a amL L L G L L= =∩ ∩  so amL  is ( )mL G  
closed. Then the class of all admissible solutions is 

: : C C C
cand am a amL K L K L L↑ ↑ ↓  = ⊆ ⊆ ∧  

 
∩  

( ) ( )( )}ucK K K L G K= ∧ ∑ ⊆∩  

The strings that drive the system to blocking can be 
represented as a set which is defined as 

( ) ( ) ( ){ }( / ) : / \ /mBM L S G L S G L S G= . Also the 

admissible marked strings, that are not allowed by 
the controlled system, are denoted with 

( )( ) ( ){ }/ : \ /C
am mSM L S G L L S G= . These two sets 

are called Blocking Measure Set and Non-Satisfying 
Measure Set respectively. For detailed information 
refer to (Chen and Lafortune, 1991).  
 
At this point, there is no difference between all 
strings generated by the system. For example, all the 
strings in the non-satisfying measure set have the 
same significance. But in practice this is not always 
true. Sometimes this set may include a very 
important string which can conclude a very 
important task. To improve the performance, this 
kind of a string has to be added to controlled 
language in a formal way. But the suggested solution 
by Chen and Lafortune does not give permission for 
addition of this string if a new blocking arises. This 
is due to set inclusion. For this purpose, a new 
performance measure, which gives an opportunity to 
discriminate the languages, is formulized below. 

 
Definition 1: The importance of a generated string is 
denoted as c  where 

*s ∈ ∑ , *: \c ε +∑ → \  and ( ) 0c ε =            ▲ 
Definition 2: The importance of a language is defined 

as ( ) { }
*

: 2 0Lβ +∑ → +\   where 
*

2L ∑∈  such that 

{ 1 2 3, , ,L s s s= }..., ns .Then 

( ) ( )
1:

0

n

i
i

c s L
L

otherwise

β
=


≠ ∅

= 



∑               ▲ 

In this way, the significance of a language is obtained 
in terms of function β  but this has no determining 
factor on languages only gives a numerical value. For 
comparing different languages a more formal 
structure has to be formed. So a new metric space for 
discrete event systems is formulated. For detailed 
information on metric space refer to (Kreyszig, 
1978).  
Property 1: If 1 2

*
, 2L L ∑∀ ∈ and 1 2L L⊆  then 

( ) ( )1 2L Lβ β≤               ▲ 

Property 2: If *
2L ∑∈ and 

1

u

i
i

L L
=

=∪ where k lL L = ∅∩  

such that , 1...k l u=  and k l≠  then 
( ) ( ) ( )1 ... uL L Lβ β β= + +                  ▲ 

Property 3: If 1 2

*
, 2L L ∑∀ ∈ then ( )1 2L Lβ ≤∪  

( ) ( )1 2L Lβ β+  
The proofs of Property 1, 2 and 3 are trivial and 
omitted.  
Definition 3: The distance function 

{ }
* *

: 2 2 0d +∑ ∑× → +\  is defined in terms of the 
importance of the language as: 

( ) { } { }( )1 2 1 2 2 1, : \ \d L L L L L Lβ= ∪                               ▲ 

Proposition 1: The set 
*

2∑  and the distance function 
defined above forms a metric space ( )*

2 ,d∑ . 

Proof: It will be shown that the axioms of metric 
space (Kreyszig, 1978) are fulfilled. 
• In accordance with the definition of function β ,  

( ) { }1 2, 0d L L +→ +\ , 
*

1 2, 2L L ∑∀ ∈  

• ( ) { } { }( )1 2 1 2 2 1, \ \d L L L L L Lβ= ∪  

( ) { } { }( )2 1 2 1 1 2, \ \d L L L L L Lβ= ∪  

then ( ) ( )1 2 2 1, ,d L L d L L=  
*

1 2, 2L L ∑∀ ∈  

• If ( )1 2, 0d L L = then { } { }1 2 2 1\ \L L L L = ∅∪  (by 
definition of function β ) 1 2L L⇒ =  
If 1 2L L=  then ( ) ( )1 2, 0d L L β= ∅ =  

( )1 2 1 2, 0  d L L L L= ⇔ = , 
*

1 2, 2L L ∑∀ ∈  

• Assume that { } { }1 2 2 1\ \L L L L ⊃∪  

{ } { }( { } { })1 3 3 1 3 2 2 3\ \ \ \L L L L L L L L∪ ∪ ∪ .  



     

Let s be an element of ( ) ( )3 1 3 2\ \L L L L∪   

Then { } { } { } { }( )1 3 3 1 3 2 2 3\ \ \ \s L L L L L L L L∈ ∪ ∪ ∪  

By the assumption, ( ) ( )1 2 2 1\ \s L L L L∈ ∪ . But by 

the definition of s, ( ) ( )1 2 2 1\ \s L L L L∉ ∪ . This is a 
contradiction; as a result the assumption is not right. 
{ } { } { } { } { }( { })1 2 2 1 1 3 3 1 3 2 2 3\ \ \ \ \ \L L L L L L L L L L L L⊆∪ ∪ ∪ ∪

 { } { }( ) { } { }(1 2 2 1 1 3 3 1\ \ \ \L L L L L L L Lβ β≤∪ ∪  

           { } { })3 2 2 3\ \L L L L∪ ∪  (by Property 1) 

{ } { } { } { }( ) { }(1 3 3 1 3 2 2 3 1 3\ \ \ \ \L L L L L L L L L Lβ β≤∪ ∪ ∪

{ }) { } { }( )3 1 3 2 2 3\ \ \L L L L L Lβ+∪ ∪      (by Property 3) 

Then ( ) ( ) ( )1 2 1 3 3 2, , ,d L L d L L d L L≤ +
*

1 2 3, , 2L L L ∑∀ ∈ ▲ 

 Definition 4: The Non-Satisfying Measure and 
Blocking Measure for candL L∈  are respectively 
k ( ) ( )( ): , /C

am mSM L d L L S G=  

k ( ) ( ) ( )( ): / , /mBM L d L S G L S G=            ▲ 

Now the blocking measure set and non-satisfying 
measure set are improved on the defined metric set. 
Thus the elements of these two sets are not only 
known but also an opinion about their effects on 
system can be obtained. It is also clear that only 
trying to decrease the number of the elements of 
these two sets is not enough. It is expected the sum 
of these two performance criterion gives the 
performance measure of a language. 
Definition 5: For candL L∈ , the performance measure 
of the language is defined as: 
i k ( ) k ( ): CJ SM L BM L= + .            ▲ 
The performance measure denoted is a numerical 
performance measure so different solutions can be 
compared. As expected the language that gives the 
minimum performance measure is the best solution. 
Then the optimal blocking supervisor problem can be 
defined as follows: 
Definition 6: Let the uncontrolled behaviour of the 
system be ( )L G , the performance measure be iJ , and 
then optimization problem is defined as  

         imin
candL L

arg J
∈

 
 
 

                  ▲ 

 
 

4. OPTIMIZATION ALGORITHM AND  
AN EXAMPLE 

 
In this section the theoretical foundations of the 
optimal blocking supervisor will be presented. Let 

ISS  be a given supervisor that symbolizes the initial 
supervisor such that ( )/IS IS candL L S G L= ∈ . 

For ISS , ( )ISBM S  and ( )C
ISSM S  will be a finite set 

as ( ) { }1 2, ,...,IS mBM S α α α= , ( ) { }1 2, ,...,C
IS nSM S ξ ξ ξ= .  

Lemma 1: If candL L∈  and ( )i BM Lα ∈  then 

( )\ C
i iLα α ↑∉ . 

Proof: ( ) ( )\ \C C
i iL L Rα α↑ ↑= ∪  where ( )\ C

iL Rα ↑ = ∅∩ . 

Then to be a member of ( )\ C
iL α ↑ , iα  is either a 

member of ( )\ C
iL α ↑ or R . In addition to this it is 

easily seen that ( )\ C
i iLα α ↑∉ . If i Rα ∈ , there exists 

a ( )\ C
it L α ↑∈  such that ( )i ip t α= ,1 1i t≤ ≤ −& & . 

But ( )i BM Lα ∈  so ( )i s L Gα ∉  such that *s ∈ ∑ . 

So ( )\ C
i iLα α ↑∉             ▲ 

Proposition 2: If candL L∈  and ( ),i k BM Lα α ∈  

then ( ) ( )\ \ \ \
C C

C C
i k k iL Lα α α α

↑ ↑
↑ ↑   

=   
   

 

Proof: For any pair of ,i kα α , we can write 

( )\ C
iL Lα ↑ ⊆ (because candL L∈ ) 

( ) ( )\ \ \
C

C C
i k kL Lα α α

↑
↑ ↑ 

⊆ 
 

 

( ) ( )\ \ \ \ \
C

C C
i k i k iL Lα α α α α

↑
↑ ↑ 

⊆ 
 

 

( ) ( )\ \ \ \
C

C C
i k k iL Lα α α α

↑
↑ ↑ 

⊆ 
 

        (by lemma 1) 

( ) ( )\ \ \ \
C C

C C
i k k iL Lα α α α

↑ ↑
↑ ↑   

⊆   
   

 

Since iα  and kα are arbitrary elements then 

( ) ( )\ \ \ \
C C

C C
i k k iL Lα α α α

↑ ↑
↑ ↑   

=   
   

                   ▲ 

This result can be extended to a general form with 
more than two strings in any order. But due to the 
similar formulation structure, it is not given here. 
Also for guaranteeing the optimality of the solution, 
which is obtained with the algorithm given below, 
these assumptions are given. 

• i ( ) ( )\ \ \ \ 0
CC

i jJ L L L Lα α
↑↑     =   

     
∩  

( ) ( ) \ \ \ \
CC

i jL L L Lα α
↑↑   

∨ ⊇   
    

                            (A1) 

• i ( ) ( ){ }\ \ 0C C
l mJ L L L Lξ ξ↓ ↓    =      

∪ ∩ ∪  

( ) ( )\ \
C C

j lL L L Lξ ξ
↓ ↓   ∨ ⊇     

∪ ∪                       (A2) 

• C
l jξ α↓ = ∅∩                                         (A3) 

where ( ) ( ), ,   , C
i j IS l m ISBM S SM Sα α ξ ξ∈ ∈  

According to the first part of A1 the intersection of 
strings, which are removed from the language due to 
two different blockings, have no effect on 
performance measure. In other words the removed 



     

common strings have no influence on blocking or 
success. Also the removed strings due to one 
blocking could include same sort of removed strings. 
Similarly the second assumption possess same type 
of constraints on languages but this time the 
concerned strings that drive system not blocking but 
success. Moreover these assumptions do not possess 
a too restrictive structure on target languages. 
 
Definition 7: For ( ),i j BM Lα α ∈ and candL L∈  there 
exists a transformation 1 : cand candT L L→  such that 

( ) ( ) ( ) i
1

\  J \
, :

C C
i i

i
L if L J L

T L

L otherwise

α α
α

↑ ↑  
<      =   




�
            ▲ 

According to the “if statement” in the definition of 
1T , removing a string is bounded to a strict 

performance improvement. As the blocking set is 
finite; the transformation gives the best solution in 
m  steps according to blocking measure set. And 

candL  is a complete lattice set for 1T , so the 
transformed language is always a member of candL . 
Then the existence of final solution is guaranteed by 
the definition of candL  
Remark 1: As a obvious result of A1 and proposition 
2, the following relation always holds. 

( )1 1 , ,i kT T L α α  =   ( )1 1 , ,k iT T L α α   . Similarly this 
can also be extended to more than two words. Then 
the optimality of final language is guaranteed by 
Lemma 1 and A1. 
 
Definition 8: For ( ), C

j l SM Lξ ξ ∈ , candL L∈  then 

there exist a transformation 2 : cand candT L L→  such 
that 

( ) ( ) i ( ) i
2

 
, :

C C
j j

j
L if J L J L

T L
L otherwise

ξ ξ
ξ

↓ ↓  
<      =   




∪ ∪        ▲ 

Like 1T , including a string is strictly bounded to 
performance improvement so in a similar way 2T  
gives the best solution if it is applied to non-
satisfying measure set completely.  
Lemma 2: If candL L∈  and ( ), C

j l SM Lξ ξ ∈  then 

( ) ( )
C CC C

j l l jL Lξ ξ ξ ξ
↓ ↓↓ ↓   =     

∪ ∪ ∪ ∪            ▲ 

The proof is straight forward. 

Remark 2: As candL  is a complete lattice set, the 
result of 2T   is always a member of candL so the 
existence of the solution is guaranteed. Also 
according to lemma 2 and the A2, the transformation 
over non-satisfying measure set gives the optimal 
solution. As the non-satisfying measure set is finite; 
the transformation gives the best solution in n  steps. 
 
It can be followed that, the transformations 1T  and 

2T deal with the blocking set and non-satisfying set 

respectively. If these two transformations are used 
together, an optimal blocking supervisor can be 
attained with respect to performance measure.  
 
Lemma 3: Let candL L∈ , ( )i BM Lα ∈  

and ( )C
j SM Lξ ∈ . For i ( ) i [ ]\ C

iJ L J Lα ↑  <  
 

and i ( ) iC
jJ L J Lξ

↓ 
<     

 
∪ .  

Then ( ) ( )\ \
C CCC

i j j iL Lα ξ ξ α
↓ ↑

↓↑   
⊆   

  
∪ ∪ . 

Proof:  

( ) ( )

( ) ( )

\  by 

\

C
i cand

C
CC

i j j

L L L L

L L

α

α ξ ξ

↑

↓
↓↑

⊆ ∈

 
⊆ 

 
∪ ∪

 

( ) ( )\ \
CC C

i j j iL Lα ξ ξ α
↓↑ ↓ ⊆∪ ∪    (by A3) 

( ) ( )\ \
C

CC C
i j j iL Lα ξ ξ α

↑
↓↑ ↓  

⊆  
 

∪ ∪  

( ) ( )\ \
C CCC

i j j iL Lα ξ ξ α
↓ ↑

↓↑   
⊆   

  
∪ ∪                  ▲ 

 
Remark 3: Since iα  and jξ  are arbitrary elements 
and in accordance with definition 1 

i ( ) i ( )\ \
C C

CC
i j j iJ L J Lα ξ ξ α

↓ ↑
↓↑

        ≤          
∪ ∪ always holds. 

Then applying 1T  before 2T , gives a smaller 
performance measure. Under these three given 
assumptions, using the two transformations in given 
order gives the optimal blocking supervisor. This 
solution can also be applied in an algorithmic 
structure.  
Step 1  
• Pick any IS candL L∈ and calculate 1 max

C
ISL L K ↓= ∪  

and ( )1 2 1
C

FS amL L L L ↓= = ∩  respectively where  

( ) ( ){ }max : sup :  \ C
am IS IS amK K K L L ve K L L↓= ⊆ ⊆ ∪  

• Find ( ) { }1 1,...,FS mBM L α α= , ( ) { }1 1,...,C
FS nSM L ξ ξ=  

Step 2 
2 1 2( , )iL T L α= . Repeat this step for 

( )1i FSBM Lα∀ ∈  
At the end of iteration 3 2L L=  
Step 3 

3 2 3( , )jL T L ξ= . Repeat this step for ( )1
C

j FSSM Lξ∀ ∈  
At the end of iteration 2 3FSL L=  
Remark 4: Due to 1 2and T T  are defined on finite 
sets, the number of iterations needed to arrive an 
optimal blocking supervisor is  

( ) ( )2 2
C

FS FSBM L SM L m n+ = +  



     

Example: Consider the generator G in Figure 1. Let 
{ }1 2,uc β β∑ = , { }1 5 1 2 8 1 2 3 1 2 4, , ,amL α α α α α α α α α β α= , 

{ }1 5 1 1 2 1 1 2 3 1, ,a amL L α α β α α β α α α β= ∪ . ( )1 2 8 10c α α α = , 

( )1 2 1 3c α α β = , ( )1 2 3 12c α α α = , ( )1 2 3 1 10c α α α β = ,
( )1 5 3c α α = , ( )1 5 1 7c α α β =  

 
Figure 1 

Let { }1 5 1 1 2 4 1 2 8 1 2 1, , ,ISL α α β α β α α α α α α β= . Then 
k ( ) 17CSM L = , k ( ) 10BM L =  
i ( ) k ( ) k ( ) 27C

IS IS ISJ L BM L SM L= + =  

maxK = ∅  so ( )1 SM IS ISL A L L= = and ( )1 1FS BML A L=  

ISL=  ( FSL  denotes the final solution) When the 
example is solved by Chen and Lafortune’s 
optimization technique and the final solution remains 
the same. So no change at performance measure 
occurs. Now the problem will be solved by the 
search algorithm presented above. 
Step 1 ISL  is defined.  

( ) { }1 5 1 1 2 1,ISBM L α α β α α β=  

( ) { }1 2 3
C

ISSM L α α α= , FS ISL L=  
Step 2  
The transformation 1T  will be applied to blocking 
set. 

( ) { }1 1 5 1 1 2 4 1 2 8 1 2 1, , ,FST L α α β α β α α α α α α β=  because 
i ( ) i ( )1 1 5 1,FS FSJ T L J Lα α β  <   

( ) { }1 1 2 1 1 2 4 1 2 8 1 2 1, , ,FST L α α β α β α α α α α α β=  because 
i ( ) i ( )1 1 2 1,FS FSJ T L J Lα α β  >   
Step 3 

( ) { }2 1 2 3 1 2 4 1 2 3 1 1 2 8 1 2 1, , , ,FST L α α α α β α α α α β α α α α α β=  

because i ( ) i ( )2 1 2 3,FS FSJ T L J Lα α α  <   

Then { }2 1 2 4 1 2 3 1 1 2 8 1 2 1, , ,FSL α β α α α α β α α α α α β=  

Also i ( ) i ( )2 1FS FSJ L J L<  
The optimization algorithm presented above gives a 
better result according to numerical performance 
measure.  
 
 

5. CONCLUSION 
 
In this paper the issue of blocking in supervisory 
control of DES is studied. A new numerical 
performance measure is proposed in terms of two 

different distance functions. Two transformations are 
presented and using them an optimization algorithm 
is constructed to minimize the performance measure. 
This paper contributes a better understanding of the 
properties of blocking and gives an optimal blocking 
supervisor in a set of admissible supervisors. This 
paper is concluded by showing that under the given 
assumptions the task of finding the optimal blocking 
supervisor requires m n+  iteration steps where n  
and m  refers the number of the elements in ( )BM L  
and ( )CSM L , respectively. Future work will be 
concerned with blocking where besides deadlock 
livelock is considered. Another issue would be the 
investigation of relaxing the assumptions on 
languages. 
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