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Abstract: This paper presents a strategy for robust H2/H∞ dynamic output-
feedback control synthesis, with regional pole placement, applied to linear
continuous-time time-invariant systems with polytope-bounded uncertainty. The
proposed synthesis approach is based on a multiobjective optimization algorithm
applied directly in the space of controller parameters. The H2 and H∞ norms,
computed in all polytope vertices and in possible “worst case” interior points are
taken as the optimization objectives. A branch-and-bound algorithm based on LMI
guaranteed cost formulation is applied to validate the controller design. Examples
are presented to show the effectiveness of the proposed strategy, including exam-
ples of full order and low order, centralized and decentralized control systems.
Copyright c©2005 IFAC.
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1. INTRODUCTION

This paper deals with the problem of robust
H2/H∞ dynamic output-feedback control synthe-

1 This work has been supported in part by CNPq, and
FAPEMIG, Brazil.

sis, with regional pole placement, for systems with
polytope-bounded uncertainty, also considering
the robust decentralized control case. There is no
direct LMI-based formulation to solve this control
synthesis problem, unless those that can be char-
acterized as a bilinear matrix inequality (BMI)



optimization problem. In (Kanev et al., 2004)
it is presented an extensive review of previous
works in this field, as well as a comparison of
five local BMI approaches for dynamic output-
feedback control. Several works are based on the
strategy of transforming the BMI problem in two
coupled LMI optimization problems by fixing one
of the variables in each problem, however those
approaches are concerned only with the H2 per-
formance (Iwasaki, 1999; de Oliveira et al., 2000).

In this paper, a two-phase synthesis strategy is
also proposed, with a different approach. In the
first phase, the controller is computed based on
an optimization problem formulated directly in
the space of controller parameters; the objective
functions and constraints are verified at the poly-
tope vertices of the uncertain domain. In the
second phase, the controller performance is veri-
fied by means of LMI-based analysis formulations,
in order to compute the H2 and H∞ costs and
to certificate that the regional pole placement
holds. If the controller do not attain the required
specification, the controller is re-designed with
the inclusion of the worst case polytope interior
points. Both the cost computation and the worst
case point search are performed by a branch-and-
bound LMI-based algorithm for exact guaranteed
cost computation. The examples in Section 4 show
that the contribution of this paper is to present a
computationally tractable algorithm to compute
full or low order, centralized or decentralized, mul-
tiobjective robust dynamic output-feedback con-
trollers.

2. PROBLEM STATEMENT

Consider the LTI system described by

ẋ(t) = Ax(t) + Buu(t) + Bww(t)
z∞(t) = Cz1x(t) + Dzu1u(t) + Dzw1w(t)
z2(t) = Cz2x(t) + Dzu2u(t)
y(t) = Cyx(t) + Dyww(t)

(1)

in which x ∈ R
n is the state vector, u ∈ R

pu is the
control input, w ∈ R

pw is the exogenous input,
z∞ ∈ R

mz∞ is the controlled output related to
the H∞ performance, z2 ∈ R

mz2 is the controlled
output related to the H2 performance, and y ∈
R

my is the measurement output.

The system matrices in (1) gathered in the matrix

S ,









A Bu Bw

Cz1 Dzu1 Dzw1

Cz2 Dzu2 0
Cy 0 Dyw









(2)

can include uncertain parameters belonging to a
known polytope, defined by its vertices:

P(α) ,

{

S : S =
N

∑

i=1

αiSi; α ∈ Ω

}

(3)

Ω ,

{

α : αi ≥ 0,

N
∑

i=1

αi = 1

}

(4)

where Si, i = 1, . . . , N , are the polytope vertices
and the vector α =

[

α1 . . . αN

]′
parameterizes

the polytope.

The system is controlled by a dynamic output-
feedback controller, K:

K :

{

ẋc(t) = Acxc(t) + Bcy(t)
u(t) = Ccxc(t) + Dcy(t)

(5)

The closed-loop system with x̄T (t) = [xT (t) xT
c (t)]

is:

˙̄x(t) = Āx̄(t) + B̄w(t)
z∞(t) = C̄1x̄(t) + D̄1w(t)
z2(t) = C̄2x̄(t)

(6)

where

Ā =

[

A + BuDcCy BuCc

BcCy Ac

]

(7)

B̄ =

[

Bw + BuDcDyw

BcDyw

]

(8)

C̄1 =
[

Cz1 + Dzu1DcCy Dzu1Cc

]

(9)

D̄1 =
[

Dzw1 + Dzu1DcDyw

]

(10)

C̄2 =
[

Cz2 + Dzu2DcCy Dzu2Cc

]

(11)

Let T∞(α,K) denote the closed-loop transfer func-
tion matrix from w to z∞ and T2(α,K) denote
the closed-loop transfer function matrix from w
to z2. Consider the vector of control objectives to
be minimized:

J(K) =

[

max
α
||T∞(α,K)||∞

max
α
||T2(α,K)||2

]

(12)

with ||·||∞ and ||·||2 respectively theH∞ norm and
the H2 norm of the argument. Let Γ denote the
set of all controllers that satisfy the regional pole
placement constraints for the closed-loop system:

Γ ,
{

K : σ(Ā(α,K)) ⊂ D ∀ α ∈ Ω
}

(13)

with D ⊂ C− and σ(·) the spectrum of the
argument.

The conceptual problem that is addressed here is
stated as:

Multiobjective H2/H∞ Guaranteed Cost
Problem: Find controllers K∗ that belong to the

Pareto-optimal set Γ∗:

Γ∗ , {K∗ ∈ Γ : 6 ∃ K ∈ Γ |
J(K) ≤ J(K∗) and J(K) 6= J(K∗)} (14)



The vector comparison operators ≤ and 6= are
employed here with the meaning usually adopted
in vector optimization (Chankong and Haimes,
1983): consider xi an entry of the vector x ∈ R

n

and yi an entry of the vector y ∈ R
n, than

x ≤ y ⇒ xi ≤ yi,∀i = 1, . . . , n; and x 6= y ⇒
∃i | xi 6= yi.

3. PROPOSED DESIGN PROCEDURE

Consider the set of points initialized as the poly-
tope vertices Ω̃:

Ω̃ ,

{

α : αi = 1 , αj = 0 ∀ j 6= i,
i = 1, . . . , N

}

(15)

and the “worst case” H2 norm in this set, with a
given controller K, as:

δ̄w.c. , max
α∈Ω̃
‖T2(α,K)‖2 (16)

Consider also the “worst case” points in the poly-
tope, with a given controller K, as:

α(2) , arg max
α
‖T2(α,K)‖2

α(∞) , arg max
α
‖T∞(α,K)‖∞

(17)

Define now the set:

Γ̃ ,
{

K : σ(Ā(α,K)) ⊂ D ∀ α ∈ Ω̃
}

(18)

The following auxiliary problem will be used:

Auxiliary problem: Given a γ > 0, find the

controller K̃∗ such that:

K̃∗ = arg min
K

max
α∈Ω̃
||T2(α,K)||2

subject to:

{

K ∈ Γ̃
||T∞(α,K)||∞ ≤ γ

(19)

The design procedure proposed here is stated as:

Design Procedure

Step 1. Initialize
i← 0,
Ω̃0 ← set of polytope vertices,

Step 2. i← i + 1,
Ω̃i ← Ω̃i−1.

Step 3. Solve the Auxiliary Problem, finding
K̃∗.

Step 4. Compute the exact H2 cost, δc, and
find α(2) for K̃∗.

If α(2) 6∈ Ω̃i and (‖T2(α(2), K̃∗)‖2 −
δ̄w.c.)/δ̄w.c. > εδ, then Ω̃i ← Ω̃i ∪ α(2).

Step 5. Compute the exact H∞ cost, γc, and
find α(∞) for K̃∗.

If α(∞) 6∈ Ω̃i and γc > γ, then Ω̃i ← Ω̃i∪α(∞).

Step 6. Check the regional pole placement
constraints, if it is found an α(p) that violates

these constraints then Ω̃i ← Ω̃i ∪ α(p).

Step 7. If Ω̃i 6= Ω̃i−1 go to Step 2. Otherwise
stop.

These steps are further explained in the next sub-
sections. The idea behind this algorithm is simple.
The controller is computed with the optimization
algorithm, considering initially only a set that
initially contains only the polytope vertices. The
design is validated “a posteriori” by means of
LMI-based branch-and-bound exact analysis for-
mulations. If the required specifications are not
met, then the worst-case polytope interior points,
relative to these specifications, are included in the
set and a new iteration is processed. To avoid un-
necessary iterations, a sufficiently small constant
εδ is used as a decision tolerance, for including or
not interior points that lead to greater worst case
H2 norms than previous points.

3.1 Solution of the Auxiliary Problem

The auxiliar scalar optimization problem is solved
by the cone-ellipsoid algorithm, described by the
recursive equations presented in (Gonçalves et

al., 2005). The optimization algorithm stops when
(fmax − fmin)/fmin ≤ ε, where fmax and fmin are
the maximum and minimum objective function
values in the last Nε iterations and ε is the relative
accuracy required.

3.2 Guaranteed Costs Computation

The “exact” H2 (H∞) cost computation, δc (γc),
is based on a branch-and-bound algorithm where
the upper bound function is the H2 (H∞) guaran-
teed cost, δgc (γgc), and the lower bound function
is the worst case H2 (H∞) norm, δw.c. (γw.c.),
at the vertices of the polytope and subpolytopes.
The difference between the upper and lower bound
functions tends to zero when the polytope is sub-
divided in smaller subpolytopes and the algorithm
stops when the “exact” cost, δc (γc), achieves
the specified relative accuracy, εc. The guaranteed
cost computations can be based on any LMI-
based formulation. In this work, the H2 guaran-
teed cost computation is based on the combina-
tion of Lemma 1 and Lemma 2 in (de Oliveira
et al., 2004a) and the H∞ guaranteed cost com-
putation is based on Lemma 1 in (de Oliveira et

al., 2004b).

The polytope subdivision technique applied in
the branch operation is performed in two steps:
first the polytope is split in simplices (generaliza-
tions of triangles in any dimension space) then
the simplices are split with an edgewise simplex
subdivision.



3.3 Regional Pole Placement Verification

The robust regional pole placement in LMI-
regions are verified by the conventional LMI-based
analysis formulation as presented in (Chilali and
Gahinet, 1999). If the problem is not feasible in
the whole uncertain parameter set, the polytope
is partitioned until all subpolytopes result in fea-
sible problems indicating that the regional pole
placement constraints are satisfied in the whole
polytope. If it is found a subpolytope vertex α(p)

that violates one of the regional pole placement
constraints, it is necessary a new iteration in the
controller synthesis algorithm.

4. ILLUSTRATIVE EXAMPLES

The proposed design procedure was implemented

with the MATLABr and a Pentium IV 2.8GHz,
512 MBytes RAM computer.

Example 1

The system is a satellite consisting of two rigid
bodies (main module and sensor module) con-
nected by an elastic link that is modelled as a
spring with torque constant k and viscous damp-
ing f that have uncertainty ranges (Gahinet et

al., 1995):

0.09 ≤ k ≤ 0.4 and 0.0038 ≤ f ≤ 0.04

The state-space description for the satellite sys-
tem is
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θ̈2
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0
0
1

J1
0











w

(20)

z∞ =
[

0 1 0 0
]

x (21)

z2 =





1 0 0 0
0 1 0 0
0 0 0 0



 x +





0
0
1



 u (22)

y =

[

1 0 0 0
0 1 0 0

]

x (23)

where θ1 and θ2 are the yaw angles for the main
body and the sensor module, u is the control
torque, and w is a torque disturbance on the main
body. It is considered J1 = 1 and J2 = 1.
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Fig. 1. Trade-off between the H2 and H∞ costs

The problem is to design a robust dynamic
output-feedback controller that achieves a trade-
off between the ||T2||2 and ||T∞||∞ norms, with
||T∞||∞ ≤ γ, and places the closed-loop eigen-
values λ(Ā) into the intersection of the half-plane
Real(λ(Ā)) ≤ −0.1, and the conic sector centered
at the origin ∠λ(Ā) ≥ 2π/3, for all possible values
of the uncertain parameters k and f .

Tables 1, 2, and 3 present the results achieved
with the proposed approach for the full order, 2nd

order, and 1st order control synthesis with γ =
0.2, 0.4, . . . , 1.0, the initial solution as Ac = −I,
Bc and Cc as matrices with 1’s, and Dc = 0,
the initial ellipsoid defined by Qo = 104I, the
optimization stop criteria ε = 0.01 and Nε = 10,
the accuracy specifications εδ = 0.01 and εc =
0.01. It is necessary only one iteration for all
values of γ.

Table 1. Results achieved with the pro-
posed approach in Example 1 for full

order controller.

γ 0.2 0.4 0.6 0.8 1.0

H∞ cost, γc 0.20 0.40 0.60 0.80 0.99
H2 cost, δc 1.67 1.47 1.39 1.35 1.34

CPU time (min) 28.3 25.3 27.7 26.9 27.0

Table 2. Results achieved with the pro-
posed approach in Example 1 for 2nd

order controller.

γ 0.2 0.4 0.6 0.8 1.0

H∞ cost, γc 0.20 0.40 0.60 0.78 0.98

H2 cost, δc 1.86 1.63 1.54 1.48 1.43

CPU time (s) 183.9 185.5 162.8 144.5 183.6

Table 3. Results achieved with the pro-
posed approach in Example 1 for 1st

order controller.

γ 0.2 0.4 0.6 0.8 1.0

H∞ cost, γc 0.20 0.40 0.59 0.78 1.00
H2 cost, δc 1.92 1.65 1.53 1.47 1.40

CPU time (s) 62.6 50.1 51.6 55.4 165.4

Fig. 1 shows the trade-off between the H2 and
H∞ costs for controllers of different orders. As
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Fig. 2. The upper and lower bound functions when
computing the H∞ cost in example 1 with
γ = 0.6

an example, the controller matrices achieved, with
γ = 0.6, for full and reduced order are:

• Full order (4th order):

Ac =









−8.5350 7.8020 3.5284 0.1101
−8.7362 −6.8625 4.6327 0.3778
−2.0578 −2.9389 −6.8692 2.5733

0.4084 −2.1166 1.3411 −0.5612









Bc =









1.9385 −5.6352
13.4991 5.3192
7.1978 5.6589
−0.3369 2.2821









Cc =
[

15.8997 6.5053 −1.2410 −2.2183
]

Dc =
[

−24.8033 −8.1367
]

• Reduced order (2nd order):

Ac =

[

−17.3132 14.6594
−5.3360 −8.0353

]

Bc =

[

12.0920 −1.2458
11.7582 31.7465

]

Cc =
[

28.9127 −8.4016
]

Dc =
[

−33.6685− 38.2308
]

• Reduced order (1st order):

Ac =
[

−16.7875
]

, Bc =
[

24.0555 55.4678
]

Cc =
[

30.2365
]

, Dc =
[

−46.4142 −99.1818
]

The Fig. 2 presents the upper and lower bound
function evolutions, in terms of the iteration num-
ber, in the “exact” H∞ cost computation for the
presented full order controller. This figure shows
the necessity of applying a branch-and-bound al-
gorithm in the validation phase, since with the
LMI-based guaranteed cost formulation alone, it
would be erroneously considered that the designed
controller did not attain the required specifica-
tions.

Example 2

Consider now the reliable control problem based
on (Veillette et al., 1992). The nominal system
matrices are:

A =









−2 1 1 1
3 0 0 2
−1 0 −2 −3
−2 −1 2 −1









,

Bu =









0 0
b1 0
0 0
0 b2









, Bw =









1 0 0
0 0 0
1 0 0
0 0 0









,

Cz1 = Cz2 =





1 0 −1 0
0 0 0 0
0 0 0 0



 ,

Dzu1 = Dzu2 =





0 0
1 0
0 1



 , Dzw1 = 03×3

Cy =

[

c1 0 0 0
0 0 c2 0

]

, Dyw =

[

0 c1 0
0 0 c2

]

with b1 = b2 = c1 = c2 = 1.

In this example it is considered the design of
a centralized reliable control to deal with three
different scenarios: the nominal plant (c1 = 1, c2 =
1), fail of the first sensor (c1 = 0, c2 = 1), and fail
of the second sensor (c1 = 1, c2 = 0). The system
is modelled by a polytope of matrices with three
vertices in the 2-D space corresponding to these
scenarios.

Fixing the constraint γ = 3, the proposed syn-
thesis approach generates the following controller
matrices in one external iteration:

Ac =









−1.2752 −0.0071 −0.2247 −0.5492
−0.1787 −1.0717 −0.7339 −1.7033
−0.1780 −0.0479 −1.1440 0.5562

0.4806 1.7213 0.7167 −1.9041









Bc =









0.4020 0.2442
−0.0574 0.0847
−1.1741 −1.1741

1.3395 0.5370









Cc =

[

−0.1630 0.6472 0.5461 −0.6639
0.7545 0.0260 0.5640 0.0405

]

Dc =

[

0 0
0 0

]

The H2 cost computed with the branch-and-
bound strategy for the presented controller is
1.7312 and the H∞ is 2.9912. In (Veillette et

al., 1992), aiming only the H∞ cost optimization,
the best synthesis achieves the worst case value of
3.38 for the H∞ cost.



Example 3

Consider the same system of Example 2. Now,
the objective is to design a decentralized reliable
control to deal with three different scenarios: the
nominal plant (b1 = 1, b2 = 1), outage of the
first actuator (b1 = 0, b2 = 1), and outage of
the second actuator (b1 = 1, b2 = 0). Again, the
system is modelled by a polytope of matrices with
three vertices in the 2-D space corresponding to
these scenarios. The decentralized control consists
of two transfer functions of second order: Gc1(s) =
U1(s)/Y1(s) and Gc2(s) = U2(s)/Y2(s). The pro-
posed synthesis approach generates the following
controller matrices in three external iterations:

Ac =









−1.9080 0.4299 0 0
0.4726 −2.0023 0 0

0 0 −3.7075 0.4929
0 0 0.1813 −3.7962









Bc =









−1.0083 0
1.4678 0

0 1.3632
0 −1.8784









Cc =

[

1.1183 −1.2692 0 0
0 0 −1.8162 1.4413

]

Dc =

[

0 0
0 0

]

that corresponds to the following transfer func-
tions

Gc1(s) =
−2.9905(s + 1.505)

(s + 2.408)(s + 1.502)

Gc2(s) =
−5.1831(s + 3.357)

(s + 4.054)(s + 3.45)

The H2 cost computed with the branch-and-
bound strategy for the presented controller is 3.91
and the H∞ cost is 6.50. In (Veillette et al., 1992),
aiming only the H∞ cost optimization, the best
synthesis achieve the worst case value of 7.03 for
the H∞ cost. And as reported in (de Oliveira et

al., 2000), aiming only the H2 cost optimization
for the nominal plant, the best synthesis achieves
the H2 guaranteed cost of

√
169.92 ≈ 13.

5. CONCLUSIONS

The proposed strategy was shown to be a valid ap-
proach for the robust H2 / H∞ dynamic output-
feedback design with regional pole placement ap-
plied to systems with polytope uncertainty. The
proposed approach can also handle structure-
constrained control problems, e.g., decentralized
or reduced-order control synthesis. Although the
proposed synthesis step is based on a non-convex
optimization, the analysis step is performed with
convex algorithms that lead to exact results, valid
in the whole uncertainty set. The exact worst-case

points are found, to be dealt with by the next step
of synthesis. The resulting controller is, therefore,
robust, with low conservativity.

The problem formulation allows dealing with
other kinds of objectives and constraints without
substantial modification. It can also be directly
applied to the discrete-time case. The proposed
procedure can also be a good alternative to solve
control problems when there is no LMI-based syn-
thesis procedure, or when they do not provide
acceptable controllers.
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