

INVESTIGATION ON EVOLUTIONARY DETERMINISTIC CHAOS CONTROL

Ivan Zelinka

Institute of Process Control and Applied Informatics,

 Faculty of Technology, Nam. T.G.M. 275
Tomas Bata University in Zlín

Czech Republic
Email: zelinka@ft.utb.cz

Abstract: This contribution introduces an investigation on deterministic spatiotemporal
chaos control based on evolutionary algorithms use. Two evolutionary algorithms are
used for chaos control here: differential evolution and self-organizing migrating
algorithm. Like a model of spatiotemporal chaos so called coupled map lattices are used.
Main aim of this investigation was to show that evolutionary algorithms are capable of
deterministic chaos control when cost function is properly defined. Investigation consists
of four different case studies with increasing calculation complexity. For both algorithms
each simulation was 50 times repeated to show and check robustness of used methods.
Copyright © 2005 IFAC

Keywords: spatiotemporal chaos, coupled map lattices, evolution, optimisation,
differential evolution, SOMA.

1. INTRODUCTION

The term deterministic chaos control (DCC) was
first coined by Ott E., Greboki C., Yorke J.A. in (Ott
et all, 1990). It represents a process in which such
control law is derived and used so that originally
chaotic process would stabilize itself on constant
level of output value or in n-periodic cycle. Since
the first experiments of DCC many methods how to
derive control law were developed and based on the
first one (Ott et all, 1990). There are for example:
pole placement (Greboki, Lai, 1999) and delay
feedback (Just, Lai, 1999). Many of published
methods were (originally developed for classic DCC)
adapted for so called spatiotemporal chaos
represented by coulpled map lattices (CML), given
by (1). Models of this kind are based on set of
spatiotemoporal (for 1D, Fig. 1) or spatial (for 2D,
Fig. 2) cells which represents apropriate state of
system elements. Typical example is CML based on
so called logistic equation (Hilborn 1994, Chen
2000), which is used to simulate behaviour of system

which consists of n mutually joined cells – logistic
equations.

(1)

0 100 200 300 400 500 600
Iterations

0

10

20

30

40

50

60

noitauqE
oN
.

Fig. 1 1D CML with pattern T1S2

Control laws derived for CML controlling are usually
based on knowledge of existing system structure
(Schuster, 1999), or on use of an external observer
(Chen, 2000). Main aim of this participation is to
show that evolutionary algorithms (EA) are capable
to control (as was also shown in (Hendrik, 2000),
(Hendrik, 2002), (Hendrik, 2000a)) deterministic
chaos and also CML as well as deterministic methods

)))1(())1(((
2

))(()1()(1 ++−+−=+ ixfixfixfix nnnn

εε

without internal system knowledge and operate with
CML as with blackbox. Ability of EAs to succesfully
work with problem kind of blackbox was many times
proved, see for example realtime control of plasma
reactor (Zelinka, Nolle, 2004).

0 20 40 60 80 100 120
Equation No.

0

20

40

60

80

100

120

n
o
it

a
uq

E
o
N
.

Fig. 2 2D CML with pinning imported through

lattice on position (0,0). Resulting control
pattern (left) is visible as well as spatiotemporal
chaos (right)

2. PROBLEM DESIGN

2.1 Problem selection and case studies

The class of CML problems chosen for this
comparative study was based on case studies
reported in (Schuster, 1999). In general, CML
control means setting of such pinnings (control CML
sites) and their pining values (control values) so that
system stabilizes itself on expected spatiotemporal
pattern. CML as an object of study was chosen
because it shows chaotic behaviour and its level of
complexity can be quite rich. Investigation consists
of four parts in increasing order from calculational
complexity point of view and was based on paper
(Hu et all, 1999). The first one is focused on pinig
values estimation for a priori given pinning sites. In
the second one pinning sites with a priori given
pinning values were estimated by EA. The third
simulation was enlargement of the previous
simulation – EA was used to find minimal number of
pinning sites and the fourth simulation was focused
on mutual estimation of pinning sites and values, i.e.
EA was searching for the minimal number of pinning
sites and optimal (as much as possible) pinning
values. All simulations were based on the same
model and 50 times repeated for each EA with new
initial conditions for each simulation. In total 400
independent simulations of spatiotemporal DCC
were carried out.

2.2 The Cost Function

The fitness (cost function) has been calculated
according to using the distance between desired
CML state and actual CML output (2). The minimal
value of this cost function, guarantee the best
solution, is 0. The aim of all simulations was to find
the best solution, i.e. a solution that returns the cost

value 0. This cost function was used for the first two
case studies (pinning values setting, pinning sites
setting). In the next (last) two case studies cost
function (3) was used. It is synthesized from cost
function (2) so that two penalty terms are added. The
first one (“p1”) represents number of pinning sites in
CML. The second one (“p2”) is added here to
“attract attention” of evolutionary process on main
part of cost function. If this would not be done, then
mainly p1 would be optimized and results would not
be acceptable (proved by simulations). Indexes i and
j are coordinates of lattice element, i.e. CMLi,j is ith
site (equation) in jth iteration. All simulations TSi,j
was set to 0.75, i.e. CML behaviour was controlled to
this state.

CML controlled of state actual - CML

CML of state target - TS

ji,

ji,

210

1

100

80
,,cos ∑∑

= =

−=
i j

jijit CMLTSf

 (2)

constant set weightlly heuristica 100, - p2

sites pinning selectedactually ofnumber - p1

CML controlled of state actual - CML

CML of state target - TS

21

ji,

ji,

2
10

1

100

80
,,cos

−++= ∑∑

= =i j
jijit CMLTSppf

 (3)

2.3 Used Algorithm and Parameter Setting

For the experiments described here, stochastic
optimisation algorithms, such as Differential
Evolution (DE) (Price, 1999) and Self-Organizing
Migrating Algorithm (SOMA) (Zelinka, 2004), had
been used. Alternative algorithms, like Genetic
Algorithms (GA) and Simulated Annealing (SA), are
now in process, and results are hoped to be presented
soon.

Differential Evolution (Price, 1999) is a population-
based optimization method that works on real-
number coded individuals. For each individual xi,G in
the current generation G, DE generates a new trial
individual x’i,G by adding the weighted difference
between two randomly selected individuals xr1,G and
xr2,G to a third randomly selected individual xr3,G. The
resulting individual x’i,G is crossed-over with the
original individual xi,G. The fitness of the resulting
individual, referred to as perturbated vector ui,G+1, is
then compared with the fitness of xi,G. If the fitness of
ui,G+1 is greater than the fitness of xi,G, xi,G is replaced
with ui,G+1, otherwise xi,G remains in the population
as xi,G+1. Deferential Evolution is robust, fast, and
effective with global optimization ability. It does not
require that the objective function is differentiable,
and it works with noisy, epistatic and time-dependent
objective functions.

SOMA is a stochastic optimization algorithm that is
modelled on the social behaviour of co-operating
individuals (Zelinka, 2004). It was chosen because it
has been proved that the algorithm has the ability to
converge towards the global optimum (Zelinka,
2004). SOMA works on a population of candidate
solutions in loops called migration loops. The
population is initialized randomly distributed over
the search space at the beginning of the search. In
each loop, the population is evaluated and the
solution with the highest fitness becomes the leader
L. Apart from the leader, in one migration loop, all
individuals will traverse the input space in the
direction of the leader. Mutation, the random
perturbation of individuals, is an important operation
for evolutionary strategies (ES). It ensures the
diversity amongst the individuals and it also provides
the means to restore lost information in a population.
Mutation is different in SOMA compared with other
ES strategies. SOMA uses a parameter called PRT to
achieve perturbation. This parameter has the same
effect for SOMA as mutation has for GA.

The novelty of this approach is that the PRT Vector
is created before an individual starts its journey over
the search space. The PRT Vector defines the final
movement of an active individual in search space.
The randomly generated binary perturbation vector
controls the allowed dimensions for an individual. If
an element of the perturbation vector is set to zero,
then the individual is not allowed to change its
position in the corresponding dimension. An
individual will travel a certain distance (called the
path length) towards the leader in n steps of defined
length. If the path length is chosen to be greater than
one, then the individual will overshoot the leader.
This path is perturbed randomly. For an exact
description of use of the algorithms see (Price, 1999)
for DE and (Zelinka, 2004) for SOMA.

The control parameter settings have been found
empirically and are given in Table 1 (SOMA) and
Table 2 (DE). The main criterion for this setting was
to keep the same setting of parameters as much as
possible and of course the same number of cost
function evaluations as well as population size
(parameter PopSize for SOMA, NP for DE).
Individual length represents number of optimized
parameters (number of pining sites, values, …).

Table 1: SOMA setting for case studies A, B, C & D

 A B C D
PathLength 3 3 3 3
Step 3 3 3 3
PRT 0.1 0.1 0.1 0.1
PopSize 20 20 20 20
Migrations 10 10 10 10
MinDiv 0.1 0.1 0.1 0.1
Individual Length 1 10 10 20
CF Evaluations 1900 1900 1900 1900

Table 2: DE setting for case studies A, B, C & D

 A B C D
NP 20 20 20 20
F 0.8 0.8 0.8 0.8
CR 0.2 0.2 0.2 0.2
Generations 100 100 100 100
Individual Length 1 10 10 20
CF Evaluations 2000 2000 2000 2000

3. EXPERIMENTAL RESULTS

Both algorithms (SOMA, DE) have been applied 50
times in order to find the optimum of all CML DCC
problems. The primary aim of this comparative study
is not to show which algorithm is better and worst,
but to show that evolutionary DCC (EDCC) can be
really used for different problems of spatiotemporal
chaos control based at least on CML. Outputs of all
simulations are depicted in Fig. 4-21. Fig. 4-17 show
results of all 50 simulations for each case study.
Fig. 18 shows a mutual comparison of algorithm
performance in the point of view of the number of
estimated pinning sites.

3.1 Case study A - Pinning Value Estimation.

In this case study SOMA and DE were used to
estimate pining value for CML. Pining sites were a
priori set according to (Hu et all, 1999). Estimated
pinning value was used for all a priori defined
pinning sites (each odd). Calculation was 50 times
repeated and from the last population in each
simulation was recorded the best, the worst and the
average result (individual). All fifty triplets (best,
worst, average) were used to create Fig. 4 and 5. For
results verification dependance of cost value
(according to (2)) on pining value was calculated and
is depicted in Fig. 3. Optimal pining values are in
interval 2.1 – 3.6 (cost value is 0, i.e. minimal
difference between CML behaviour and desired
behaviour). Based on Fig. 4 and 5 it can be stated
that in all simulations were suitable pining values
estimated because according to (Hu et all, 1999)
suitable pining value (equal to 3) was used and here
in each simulation the best values are around 2.5 and
average values around 2.9.

0 1 2 3 4 5
Pining value

0

50

100

150

200

250

CV

Fig. 3 Dependance of costvalue on pinning values

0 10 20 30 40 50
Experiment No.

2

2.5

3

3.5

4

4.5

PV

Fig. 4 Estimated pinning values by SOMA

0 10 20 30 40 50
Experiment No.

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

PV

Fig. 5 Estimated pinning values by DE

3.2 Case study B - Pinning Sites Position

Estimation.

Based on results from previous case study, this case
study B was designed. SOMA and DE were used to
estimate pining sites for CML. Pining values were a
priori set equal 3 for all estimated sites according to
(Hu et all, 1999). Calculation was again 50 times
repeated and the best solution (pining sites) from
each simulation was used to create Fig. 6 and 8.
Columns represents the best solution from actual
simulation and black squares in columns represent
active input for pining and white squares nonused
inputs, i.e. inputs without pinings.

0 10 20 30 40 50
Experiment No.

0

2

4

6

8

10

Site

Fig. 6 Estimated pinning sites by SOMA

For better visibility of reached results also histogram
(Fig. 7 and 9) was created, showing frequency of
estimated pining sites. As Fig. 6 and 8 show, it can
be stated that in both cases (SOMA, DE) were
estimated redundant pining sites, because according
to (Hu et all, 1999) certainly it is enough if pinings
are at each odd (or even) site (equation, pining
input). To improve this, a case study C was designed.

6 7 8 9 10
Pinings

0

5

10

15

20

Frequency

Fig. 7 Histogram of estimated pinning sites by

SOMA

0 10 20 30 40 50
Experiment No.

0

2

4

6

8

10

Site

Fig. 8 Estimated pinning sites by DE

6 7 8 9 10
Pinings

0

5

10

15

20

Frequency

Fig. 9 Histogram of estimated pinning sites by DE

3.3 Case study C - Minimal Pinning Sites Position

Estimation.

This case study was designed to improve previous
results from case study B. Cost function (2) was
modified to (3) as described in section 2.2. All other
conditions were kept the same. Again the same
figures were created (pinning sites - Fig. 10 and 12,
histograms – Fig. 11 and 13). Fig. 10 and 12 show
surprisingly nice structure of pinning sites. Both
algorithms had found in all 50 simulations pinning
sites which are on odd sites or on even sites, which is
in excellent coincidence with results from (Hu et all,
1999). Because CML used here had so called cyclic
boundary ((Hu et all, 1999), x(L+1) = x(1)), then it
can be stated that all these solutions are equal. Based
on histograms (Fig. 11 and 13) can be also made
conclusion that both algorithms had almost the same
performance.

0 10 20 30 40 50
Experiment No.

0

2

4

6

8

10

Site

Fig. 10 Estimated pinning sites by SOMA

5.2 5.4 5.6 5.8 6
Pinings

0

10

20

30

40

50

Frequency

Fig. 11 Histogram of estimated pinning sites by

SOMA

0 10 20 30 40 50
Experiment No.

0

2

4

6

8

10

Site

Fig. 12 Estimated pinning sites by DE

3.5 4 4.5 5 5.5 6 6.5
Pinings

0

10

20

30

40

50

Frequency

Fig. 13 Histogram of estimated pinning sites by DE

3.4 Case study D - Minimal Pinning Values and

Sites Position Estimation.

The last case study was dedicated to estimation of
minimal number of pinning sites and different
pinning values. Comparing with previous case
studies, for each estimated pinning site a unique
pinning value was estimated here. All simulations
were repeated under the same conditions as in the
case study C and the same kind of figures (Fig. 14
and 16, Fig. 15 and 17) was created. In Fig. 14 and
16 are again observable pinning patterns showing
that both algorithms have found the same solution
more times.

0 10 20 30 40 50
Experiment No.

0

2

4

6

8

10

Site

Fig. 14 Estimated pinning sites by SOMA

5.2 5.4 5.6 5.8 6
Pinings

0

10

20

30

Frequency

Fig. 15 Histogram of estimated pinning sites by

SOMA

0 10 20 30 40 50
Experiment No.

0

2

4

6

8

10

Site

Fig. 16 Estimated pinning sites by DE

3.5 4 4.5 5 5.5 6 6.5
Pinings

0

10

20

30

40

50

Frequency

Fig. 17 Histogram of estimated pinning sites by DE

4. SELECTED MUTUAL COMPARISON

Complexity of all four case studies has increased.
Based on data from all simulations two comparison
can be done. The first one is from pining sites point
of view. As is depicted in Fig. 18 both algorithms are
comparable in performance (with small deviations).
It is also visible that changes in cost functions can
significantly improve estimated solutions (case C/D).

Case B
SOMA

Case B
DE

Case C
SOMA

Case C
DE

Case D
SOMA

Case D
DE

CASE STUDY ê Algorithm

5

6

7

8

9

10

CFE

Fig. 18 Number of used pinning sites in cases B, C

and D

To check that estimated pinning sites and pinning
values really cause that CML will be stabilised, 400
figures were generated (4 cases × (50 + 50
simulations)) on data from all simulations. In all 400
simulations CML was stabilised on desired
behaviour. For comparison with deterministic CML
control (Hu et all, 1999) Fig. 19 was created and as a
typical example of EDCC Fig. 20 and Fig. 21 are
also depicted here.

0 20 40 60 80 100
Iteration

0

2

4

6

8

10

noi
tauqE

oN
.

Fig. 19 Control by deterministic control law

0 20 40 60 80 100
Iterations

0

2

4

6

8

10

noitauqE

Fig. 20 Control by SOMA

0 20 40 60 80 100
Iterations

0

2

4

6

8

10

noitauqE

Fig. 21 Control by DE

5. CONCLUSIONS

The method of evolutionary deterministic chaos
control described here is relatively simple, easy to
implement and easy to use. Based on its principles
and its possible universality (it was tested with 2
evolutionary algorithms – SOMA and DE) it can be
stated that evolutionary deterministic chaos control is
capable to solve class of CML deterministic chaos
control problems. The main aim of this paper was to
show how various CML control problems were
solved by means of evolutionary algorithms.
Evolutionary deterministic chaos control was used
here in four basic comparative simulations. Each
comparative simulation was 50 times repeated and
all 400 results (50 simulations for each algorithm and
for each problem) were used to create graphs for
evolutionary deterministic chaos control performance
evaluation. For the comparative study two
algorithms were used - DE (Price, 1999) and SOMA
(Zelinka, 2004). They were chosen to show that
evolutionary deterministic chaos control can be
regarded as a “blackbox” method and that it can be
implemented using arbitrary evolutionary algorithms.
As a conclusion the following statements are
presented:

1. Reached results. Based on results reported in

Fig. 4 - 21 it can be stated that all simulations
give satisfactory results and thus evolutionary
deterministic chaos control is capable of solving
this class of problems.

2. Mutual comparison. When comparing both
algorithms, then it is visible that both algorithms
give good results. Parameter setting for both
algorithms was based on heuristically approach
and thus there is a possibility that better settings
can be found there.

Future research is one of the key activities in the
frame of evolutionary deterministic chaos control.
According to all results obtained during time it is
planned that the main activities would be focused
expanding of this comparative study for genetic
algorithms and simulated annealing. More
complicated patterns are also planned to be
controlled like T1S2, etc.

ACKNOWLEDGEMENT

This work was supported by grant of the Grant
Agency of the Czech Republic GACR 102/03/0070
and GACR 202/03/0789.

REFERENCES

Greboki C., Lai Y.C. Controlling Chaos, In: Schuster

H.G., Handbook of Chaos Control, Wiley-Vch,
ISBN 3-527-29436-8, 1999

Guanrong Chen, Controlling Chaos and Bifurcations
in Engineering Systems, CRC Press, ISBN 0-
8493-0579-9, 2000

Hendrik Richter & Kurt J. Reinschke: Optimization
of local control of chaos by an evolutionary
algorithm. Physica D144 (2000), 309-334.

Hendrik Richter & Kurt J. Reinschke: Optimization
of local control of chaos by an evolutionary
algorithm. Physica D144 (2000a), 309-334.

Hendrik Richter: An evolutionary algorithm for
controlling chaos: The use of multi-objective
fitness functions. In: Parallel Problem Solving
from Nature-PPSN VII. (Eds.: Merelo Guervós,
J.J.; Panagiotis, A.; Beyer, H.G.; Fernández
Villacanas, J.L.; Schwefel, H.P.), Lecture Notes
in Computer Science, Vol. 2439, Springer-
Verlag, Berlin Heidelberg New York, 2002, 308-
317

Hilborn R.C.1994, Chaos and Nonlinear Dynamics,
Oxford University Press, ISBN 0-19-508816-8,
1994

Hu G., Xie F., Xiao J., Yang J., Qu Z., Control of
Patterns and Spatiotemporal Chaos and its
Application, In: Schuster H.G., Handbook of
Chaos Control, Wiley-Vch, ISBN 3-527-29436-8,
1999

Just W., Principles of Time Delayed Feedback
Control, In: Schuster H.G., Handbook of Chaos
Control, Wiley-Vch, ISBN 3-527-29436-8, 1999

Ott E., Greboki C., Yorke J.A., Controlling Chaos,
Phys. Rev. Lett. 64, 1196, (1990)

Price K. 1999, An Introduction to Differential
Evolution, in New Ideas in Optimization, D.
Corne, M. Dorigo and F. Glover, Eds., s. 79–108,
McGraw-Hill, London, UK, 1999. ISBN 007-
709506-5

Schuster H.G., Handbook of Chaos Control, Wiley-
Vch, ISBN 3-527-29436-8, 1999

Zelinka I., Nolle L. (2004), „Plasma Reactor
Optimizing Using Differential Evolution“, In:
Price K.V., Lampinen J., Storn R., Differential
Evolution : Global Optimization for Scientists
and Engineers, Springer-Verlag, in print

Zelinka Ivan, 2004, SOMA – Self Organizing
Migrating Algorithm“,Chapter 7, 33 p. in: B.V.
Babu, G. Onwubolu (eds), New Optimization
Techniques in Engineering, Springer-Verlag,
ISBN 3-540-20167X

