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Abstract: This contribution introduces an investigation on deterministic spatiotemporal 
chaos control based on evolutionary algorithms use. Two evolutionary algorithms are 
used for chaos control here: differential evolution and self-organizing migrating 
algorithm. Like a model of spatiotemporal chaos so called coupled map lattices are used. 
Main aim of this investigation was to show that evolutionary algorithms are capable of 
deterministic chaos control when cost function is properly defined. Investigation consists 
of four different case studies with increasing calculation complexity. For both algorithms 
each simulation was 50 times repeated to show and check robustness of used methods. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The term deterministic chaos control (DCC) was 
first coined by Ott E., Greboki C., Yorke J.A. in (Ott 
et all, 1990). It represents a process in which such 
control law is derived and used so that originally 
chaotic process would stabilize itself on constant 
level of output value or in n-periodic cycle.  Since 
the first experiments of DCC many methods how to 
derive control law were developed and based on the 
first one (Ott et all, 1990). There are for example: 
pole placement (Greboki, Lai, 1999) and delay 
feedback (Just, Lai, 1999). Many of published 
methods were (originally developed for classic DCC) 
adapted for so called spatiotemporal chaos 
represented by coulpled map lattices (CML), given 
by (1).  Models of this kind are based on set of 
spatiotemoporal (for 1D, Fig. 1) or spatial (for 2D, 
Fig. 2) cells which represents apropriate state of 
system elements. Typical example is CML based on 
so called logistic equation (Hilborn 1994, Chen 
2000), which is used to simulate behaviour of system 

which consists of n mutually joined cells – logistic 
equations.  
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Fig. 1 1D CML with pattern T1S2 
 
Control laws derived for CML controlling are usually 
based on knowledge of existing system structure 
(Schuster, 1999), or on use of an external observer 
(Chen, 2000). Main aim of this participation is to 
show that evolutionary algorithms (EA) are capable 
to control (as was also shown in (Hendrik, 2000), 
(Hendrik, 2002), (Hendrik, 2000a)) deterministic 
chaos and also CML as well as deterministic methods 
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without internal system knowledge and operate with 
CML as with blackbox. Ability of EAs to succesfully 
work with problem kind of blackbox was many times 
proved, see for example realtime control of plasma 
reactor (Zelinka, Nolle, 2004). 
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Fig. 2 2D CML with pinning imported through 

lattice on position (0,0). Resulting control 
pattern (left) is visible as well as spatiotemporal 
chaos (right) 

 
 

2. PROBLEM DESIGN 
 
2.1 Problem selection and case studies 
 
The class of CML problems chosen for this 
comparative study was based on case studies 
reported in (Schuster, 1999). In general, CML 
control means setting of such pinnings (control CML 
sites) and their pining values (control values) so that 
system stabilizes itself on expected spatiotemporal 
pattern. CML as an object of study was chosen 
because it shows chaotic behaviour and its level of 
complexity can be quite rich. Investigation consists 
of four parts in increasing order from calculational 
complexity point of view and was based on paper 
(Hu et all, 1999). The first one is focused on pinig 
values estimation for a priori given pinning sites. In 
the second one pinning sites with a priori given 
pinning values were estimated by EA.  The third 
simulation was enlargement of the previous 
simulation – EA was used to find minimal number of 
pinning sites and the fourth simulation was focused 
on mutual estimation of pinning sites and values, i.e. 
EA was searching for the minimal number of pinning 
sites and optimal (as much as possible) pinning 
values. All simulations were based on the same 
model and 50 times repeated for each EA with new 
initial conditions for each simulation. In total 400 
independent simulations of spatiotemporal DCC 
were carried out. 
 
2.2 The Cost Function 
 
The fitness (cost function) has been calculated 
according to using the distance between desired 
CML state and actual CML output (2). The minimal 
value of this cost function, guarantee the best 
solution, is 0. The aim of all simulations was to find 
the best solution, i.e. a solution that returns the cost 

value 0. This cost function was used for the first two 
case studies (pinning values setting, pinning sites 
setting). In the next (last) two case studies cost 
function (3) was used. It is synthesized from cost 
function (2) so that two penalty terms are added. The 
first one (“p1”) represents number of pinning sites in 
CML. The second one (“p2”) is added here to 
“attract attention” of evolutionary process on main 
part of cost function. If this would not be done, then 
mainly p1 would be optimized and results would not 
be acceptable (proved by simulations). Indexes i and 
j are coordinates of lattice element, i.e. CMLi,j is ith 
site (equation) in jth iteration. All simulations TSi,j 
was set to 0.75, i.e. CML behaviour was controlled to 
this state.  
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2.3 Used Algorithm and Parameter Setting 
 
For the experiments described here, stochastic 
optimisation algorithms, such as Differential 
Evolution (DE) (Price, 1999) and  Self-Organizing 
Migrating Algorithm (SOMA) (Zelinka, 2004), had 
been used. Alternative algorithms, like Genetic 
Algorithms (GA) and Simulated Annealing (SA), are 
now in process, and results are hoped to be presented 
soon.  
 
Differential Evolution (Price, 1999) is a population-
based optimization method that works on real-
number coded individuals. For each individual xi,G in 
the current generation G, DE generates a new trial 
individual x’i,G by adding the weighted difference 
between two randomly selected individuals xr1,G and 
xr2,G to a third randomly selected individual xr3,G. The 
resulting individual x’i,G is crossed-over with the 
original individual xi,G. The fitness of the resulting 
individual, referred to as perturbated vector ui,G+1, is 
then compared with the fitness of xi,G. If the fitness of 
ui,G+1 is greater than the fitness of xi,G, xi,G is replaced 
with ui,G+1, otherwise xi,G remains in the population 
as xi,G+1. Deferential Evolution is robust, fast, and 
effective with global optimization ability. It does not 
require that the objective function is differentiable, 
and it works with noisy, epistatic and time-dependent 
objective functions. 



 

     

 
SOMA is a stochastic optimization algorithm that is 
modelled on the social behaviour of co-operating 
individuals (Zelinka, 2004). It was chosen because it 
has been proved that the algorithm has the ability to 
converge towards the global optimum (Zelinka, 
2004). SOMA works on a population of candidate 
solutions in loops called migration loops. The 
population is initialized randomly distributed over 
the search space at the beginning of the search. In 
each loop, the population is evaluated and the 
solution with the highest fitness becomes the leader 
L. Apart from the leader, in one migration loop, all 
individuals will traverse the input space in the 
direction of the leader. Mutation, the random 
perturbation of individuals, is an important operation 
for evolutionary strategies (ES). It ensures the 
diversity amongst the individuals and it also provides 
the means to restore lost information in a population. 
Mutation is different in SOMA compared with other 
ES strategies. SOMA uses a parameter called PRT to 
achieve perturbation. This parameter has the same 
effect for SOMA as mutation has for GA. 
 
The novelty of this approach is that the PRT Vector 
is created before an individual starts its journey over 
the search space. The PRT Vector defines the final 
movement of an active individual in search space. 
The randomly generated binary perturbation vector 
controls the allowed dimensions for an individual. If 
an element of the perturbation vector is set to zero, 
then the individual is not allowed to change its 
position in the corresponding dimension. An 
individual will travel a certain distance (called the 
path length) towards the leader in n steps of defined 
length. If the path length is chosen to be greater than 
one, then the individual will overshoot the leader. 
This path is perturbed randomly. For an exact 
description of use of the algorithms see (Price, 1999) 
for DE and (Zelinka, 2004) for SOMA. 
 
The control parameter settings have been found 
empirically and are given in Table 1 (SOMA) and 
Table 2 (DE). The main criterion for this setting was 
to keep the same setting of parameters as much as 
possible and of course the same number of cost 
function evaluations as well as population size 
(parameter PopSize for SOMA, NP for DE). 
Individual length represents number of optimized 
parameters (number of pining sites, values, …). 
 
Table 1: SOMA setting for case studies A, B, C & D 
 
 A B C D 
PathLength 3 3 3 3 
Step 3 3 3 3 
PRT 0.1 0.1 0.1 0.1 
PopSize 20 20 20 20 
Migrations 10 10 10 10 
MinDiv 0.1 0.1 0.1 0.1 
Individual Length 1 10 10 20 
CF Evaluations 1900 1900 1900 1900 

 
Table 2: DE setting for case studies A, B, C & D 

 
 A B C D 
NP 20 20 20 20 
F 0.8 0.8 0.8 0.8 
CR 0.2 0.2 0.2 0.2 
Generations 100 100 100 100 
Individual Length 1 10 10 20 
CF Evaluations 2000 2000 2000 2000 

 
 

3. EXPERIMENTAL RESULTS 
 
Both algorithms (SOMA, DE) have been applied 50 
times in order to find the optimum of all CML DCC 
problems. The primary aim of this comparative study 
is not to show which algorithm is better and worst, 
but to show that evolutionary DCC (EDCC) can be 
really used for different problems of spatiotemporal 
chaos control based at least on CML. Outputs of all 
simulations are depicted in Fig. 4-21. Fig. 4-17 show 
results of all 50 simulations for each case study.  
Fig. 18 shows a mutual comparison of algorithm 
performance in the point of view of the number of 
estimated pinning sites. 
 
3.1 Case study A - Pinning Value Estimation. 
 
In this case study SOMA and DE were used to 
estimate pining value for CML. Pining sites were a 
priori set according to (Hu et all, 1999). Estimated 
pinning value was used for all a priori defined 
pinning sites (each odd). Calculation was 50 times 
repeated and from the last population in each 
simulation was recorded the best, the worst and the 
average result (individual). All fifty triplets (best, 
worst, average) were used to create Fig. 4 and 5. For 
results verification dependance of cost value 
(according to (2)) on pining value was calculated and 
is depicted in Fig. 3. Optimal pining values are in 
interval 2.1 – 3.6 (cost value is 0, i.e. minimal 
difference between CML behaviour and desired 
behaviour). Based on Fig. 4 and 5 it can be stated 
that in all simulations were suitable pining values 
estimated because according to (Hu et all, 1999) 
suitable pining value (equal to 3) was used and here 
in each simulation the best values are around 2.5 and 
average values around 2.9. 
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Fig. 3 Dependance of costvalue on pinning values  
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Fig. 4 Estimated pinning values by SOMA 
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Fig. 5 Estimated pinning values by DE 
 
3.2 Case study B - Pinning Sites Position 

Estimation. 
 
Based on results from previous case study, this case 
study B was designed. SOMA and DE were used to 
estimate pining sites for CML. Pining values were a 
priori set equal 3 for all estimated sites according to 
(Hu et all, 1999). Calculation was again 50 times 
repeated and the best solution (pining sites) from 
each simulation was used to create Fig. 6 and 8. 
Columns represents the best solution from actual 
simulation and black squares in columns represent 
active input for pining and white squares nonused 
inputs, i.e. inputs without pinings. 
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Fig. 6 Estimated pinning sites by SOMA 
 
For better visibility of reached results also histogram 
(Fig. 7 and 9) was created, showing frequency of 
estimated pining sites. As Fig. 6 and 8 show, it can 
be stated that in both cases (SOMA, DE) were 
estimated redundant pining sites, because according 
to (Hu et all, 1999) certainly it is enough if pinings 
are at each odd (or even) site (equation, pining 
input). To improve this, a case study C was designed. 
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Fig. 7 Histogram of estimated pinning sites by 

SOMA 
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Fig. 8 Estimated pinning sites by DE 
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Fig. 9 Histogram of estimated pinning sites by DE 
 
3.3 Case study C - Minimal Pinning Sites Position 

Estimation. 
 
This case study was designed to improve previous 
results from case study B. Cost function (2) was 
modified to (3) as described in section 2.2. All other 
conditions were kept the same. Again the same 
figures were created (pinning sites - Fig. 10 and 12, 
histograms – Fig. 11 and 13). Fig. 10 and 12 show 
surprisingly nice structure of pinning sites. Both 
algorithms had found in all 50 simulations pinning 
sites which are on odd sites or on even sites, which is 
in excellent coincidence with results from (Hu et all, 
1999). Because CML used here had so called cyclic 
boundary ((Hu et all, 1999), x(L+1) = x(1)), then it 
can be stated that all these solutions are equal. Based 
on histograms (Fig. 11 and 13) can be also made 
conclusion that both algorithms had almost the same 
performance.  
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Fig. 10 Estimated pinning sites by SOMA 
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Fig. 11 Histogram of estimated pinning sites by 

SOMA 
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Fig. 12 Estimated pinning sites by DE 
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Fig. 13 Histogram of estimated pinning sites by DE 
 
3.4 Case study D - Minimal Pinning Values and 

Sites Position Estimation. 
 
The last case study was dedicated to estimation of 
minimal number of pinning sites and different 
pinning values. Comparing with previous case 
studies, for each estimated pinning site a unique 
pinning value was estimated here. All simulations 
were repeated under the same conditions as in the 
case study C and the same kind of figures (Fig. 14 
and 16, Fig. 15 and 17) was created. In Fig. 14 and 
16 are again observable pinning patterns showing 
that both algorithms have found the same solution 
more times. 
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Fig. 14 Estimated pinning sites by SOMA 
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Fig. 15 Histogram of estimated pinning sites by 

SOMA 
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Fig. 16 Estimated pinning sites by DE 
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Fig. 17 Histogram of estimated pinning sites by DE 
 

4. SELECTED MUTUAL COMPARISON 
 
Complexity of all four case studies has increased. 
Based on data from all simulations two comparison 
can be done. The first one is from pining sites point 
of view. As is depicted in Fig. 18 both algorithms are 
comparable in performance (with small deviations). 
It is also visible that changes in cost functions can 
significantly improve estimated solutions (case C/D). 
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Fig. 18 Number of used pinning sites in cases B, C 

and D 
 
To check that estimated pinning sites and pinning 
values really cause that CML will be stabilised, 400 
figures were generated (4 cases × (50 + 50 
simulations)) on data from all simulations. In all 400 
simulations CML was stabilised on desired 
behaviour. For comparison with deterministic CML 
control (Hu et all, 1999) Fig. 19 was created and as a 
typical example of EDCC Fig. 20 and Fig. 21 are 
also depicted here. 
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Fig. 19 Control by deterministic control law 
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Fig. 20 Control by SOMA 
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Fig. 21 Control by DE 

 
5. CONCLUSIONS 

 
The method of evolutionary deterministic chaos 
control described here is relatively simple, easy to 
implement and easy to use.  Based on its principles 
and its possible universality (it was tested with 2 
evolutionary algorithms – SOMA and DE) it can be 
stated that evolutionary deterministic chaos control is 
capable to solve class of CML deterministic chaos 
control problems. The main aim of this paper was to 
show how various CML control problems were 
solved by means of evolutionary algorithms. 
Evolutionary deterministic chaos control was used 
here in four basic comparative simulations. Each 
comparative simulation was 50 times repeated and 
all 400 results (50 simulations for each algorithm and 
for each problem) were used to create graphs for 
evolutionary deterministic chaos control performance 
evaluation.  For the comparative study two 
algorithms were used - DE (Price, 1999) and SOMA 
(Zelinka, 2004). They were chosen to show that 
evolutionary deterministic chaos control can be 
regarded as a “blackbox” method and that it can be 
implemented using arbitrary evolutionary algorithms. 
As a conclusion the following statements are 
presented: 
 
1. Reached results. Based on results reported in 

Fig. 4 - 21 it can be stated that all simulations 
give satisfactory results and thus evolutionary 
deterministic chaos control is capable of solving 
this class of problems. 

2. Mutual comparison. When comparing both 
algorithms, then it is visible that both algorithms 
give good results. Parameter setting for both 
algorithms was based on heuristically approach 
and thus there is a possibility that better settings 
can be found there. 

 
Future research is one of the key activities in the 
frame of evolutionary deterministic chaos control. 
According to all results obtained during time it is 
planned that the main activities would be focused 
expanding of this comparative study for genetic 
algorithms and simulated annealing. More 
complicated patterns are also planned to be 
controlled like T1S2, etc. 
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