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Abstract: We present a novel algorithm for the computation of explicit optimal
control laws for piecewise affine (PWA) systems with linear performance indices.
The algorithm is based on dynamic programming (DP) and represents an extension
of ideas initially proposed in (Kerrigan and Mayne, 2002; Baotić et al., 2003).
Specifically, we show how to exploit the underlying geometric structure of the
optimization problem in order to significantly improve the efficiency of the off-line
computations. An extensive case study is provided, which clearly indicates that
the algorithm proposed in this paper is preferable to other schemes published in
the literature. Copyright c©2005 IFAC.
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1. INTRODUCTION

In the last decades, hybrid systems have been
the subject of intensive research activities in the
control community. In this paper we focus on
a specific class of discrete time hybrid systems,
namely, the class of constrained piecewise affine
(PWA) systems. PWA systems are defined by
a series of affine systems whereby each affine
dynamic is defined over a polyhedral set in the
state-input space. PWA systems are important
because they are equivalent to a broad class of
hybrid systems (Heemels et al., 2001) and useful
for modelling nonlinear systems (Sontag, 1981).

Constrained finite time optimal control (CFTOC)
of PWA systems has been widely addressed in
the literature, e.g. (Borrelli, 2003; Kerrigan and
Mayne, 2002; Baotić et al., 2003; Mayne and
Raković, 2002). The explicit off-line solution to
the CFTOC problem can be obtained by solving
a multi-parametric mixed-integer linear program
(mpMILP) for linear performance indices (Dua
and Pistikopoulos, 2000), or, in theory, a multi-
parametric mixed-integer quadratic program (mp-

MIQP) for a quadratic cost . In (Borrelli, 2003),
the author proposed a computational scheme for
obtaining quadratic optimal controllers for PWA
systems which was based on dynamic program-
ming (DP). For PWA systems and linear per-
formance indices, a DP-based approach was in-
troduced in (Kerrigan and Mayne, 2002), where
the authors consider the optimal control of PWA
systems affected by bounded disturbances. The
scheme proposed in (Kerrigan and Mayne, 2002)
uses a series of multi-parametric linear programs
(mpLPs) instead of one mpMILP. Though giving
general ideas about the DP-based concept and the
character of the solution for linear performance
objectives, computational issues are not addressed
in (Kerrigan and Mayne, 2002). An implementa-
tion of the DP-based algorithm in (Kerrigan and
Mayne, 2002) for performance indices based on 1
and ∞ norms is described in detail in (Baotić et
al., 2003). Practical experience with these com-
putation schemes shows that for PWA systems of
higher dimensions and a large number of affine
dynamics, the off-line computation of the explicit



optimal control law may become too demanding
to be applicable in practice.

Therefore, in this paper, we address the efficiency
of the off-line computation of the CFTOC law.
We show how to exploit problem convexity, such
that fewer mpLPs need to be solved. For this
new formulation, we show how to reduce the
number of constraints defining polyhedral critical
regions in the explicit control law by exploiting
region adjacency information. Finally, we present
an extensive case study in which we compare
the runtime of the algorithm in (Kerrigan and
Mayne, 2002; Baotić et al., 2003) with the runtime
of the algorithm proposed here.

2. PROBLEM STATEMENT AND
PRELIMINARY RESULTS

In this section we will define the CFTOC problem
and give preliminary results which characterize its
explicit solution. Also, we will shortly describe the
DP-based algorithm in (Baotić et al., 2003).

2.1 Problem Statement and Properties of the
Solution

Constrained discrete-time PWA systems are de-
fined by the following set of equations:

x(k + 1) = fPWA(x(k),u(k))

= A{i}x(k) +B{i}u(k) + f{i},

if
[

x(k)
u(k)

]

∈ D{i},

D{i} := {[ xu ] | [ (Px){i} (Pu){i} ] [ xu ] ≤ (P0){i}}

(1)

where k ≥ 0, x ∈ Rn is the state vector, u ∈ Rm

is the control vector and
{

D{i}
}D

i=1
is a bounded

polyhedral partition of (x,u) ⊂ Rn+m space. The
constraints (Px){i}x + (Pu){i}u ≤ (P0){i} define
both regions in which a particular state update
equation is valid as well as constraints on the state
and input variables. Consider the following cost
function:

J(UN−1
0 ,x(0)) := ‖PNx(N)‖`+

+

N−1
∑

k=0

‖Qx(k)‖` + ‖Ru(k)‖`,
(2)

where N is the time horizon, PN is a matrix
defining the weight on the terminal state x(N),
‖ · ‖` denotes the vector norm with ` ∈ {1,∞}

and UN−1
0 =

[

uT (0), . . . ,uT (N − 1)
]T
∈ RmN is

the vector of control inputs. The goal of CFTOC
is to minimize the cost function (2), i.e.:

J∗
N (x(0)) := min

U
N−1
0

JN (UN−1
0 ,x(0)), (3a)

subj. to

{

x(k + 1) = fPWA(x(k),u(k)),
x(N) ∈ Tset,

(3b)

where Tset is a terminal set, i.e. the set of ad-
missible states at the final time instance N . The
following theorem characterizes the solution of the
CFTOC problem (1)-(3).

Theorem 2.1. ((Borrelli, 2003), Theorem 7.4.1). The
solution to the optimal control problem (1)–(3)
with ` ∈ {1,∞} is a polyhedral piecewise affine
(PPWA) (affine in every polyhedron) state feed-
back control law of the form:

u∗(k) = F
{i}
k x(k) +G

{i}
k if x(k) ∈ R

{i}
k , (4)

whereR
{i}
k , i = 1, . . . , Rk are polyhedra defining a

polyhedral partition of the set Xk of feasible states
x(k) at time step k = 0, . . . , N − 1. ¤

The PPWA solution to the CFTOC problem can
be obtained by formulating the problem as a
DP and solving a number of mpLPs (Kerrigan
and Mayne, 2002; Baotić et al., 2003). In each
mpLP, the state vector x is considered to be a
vector of parameters and the control input u is
the optimization variable. For further discussion,
we will need the following result related to the
character of the solution of an mpLP:

Theorem 2.2. ((Borrelli, 2003), Theorems 1.3.3-4).
Consider the mpLP:

J∗(x) = min
z

J(z,x) = cT z,

subj. to Gz ≤ Sx+W,
(5)

where z ∈ Rs is a vector of optimization variables,
x ∈ Rn is a vector of parameters, J(z,x) : Rs ×
Rn → R is the objective function and G ∈ Rq×s,
S ∈ Rq×n, W ∈ Rq. Let P∗ be the set of
parameters x for which the linear program (5) has
a finite optimal solution. Then:

i) P∗ is a closed polyhedral set in Rn,
ii) The value function J∗(x) is convex and

PPWA over P∗, i.e.

J∗(x) = α{i}x+ β{i}, if x ∈ CR{i}, (6)

where
{

CR{i}
}R

i=1
, are polyhedra and P∗ =

⋃R
i=1 CR

{i}. ¤

Polyhedra CR{i}, defining the partition of the
feasible set of parameters P∗, are known in the
theory of parametric programming as critical re-
gions. To make a clear distinction between the
solution of a single mpLP and the general solution
to a CFTOC problem (1)-(3), i.e. between critical

regions CR{i}, and regions R
{k}
k in Theorem 2.1,

we will refer to R
{i}
k as controller regions. Note

also that the convexity results given in Theorem
2.2 are valid only for the solution of a single mpLP.
The set of feasible parameters and the value func-
tion of the CFTOC problem (1)-(3) are in general



non-convex. For more details about the theory of
mpLP, the reader is referred to (Gal, 1995; Bor-
relli, 2003).

2.2 DP-Based Algorithm with Affine “Cost-To-Go”

In this subsection we briefly describe the DP-
based algorithm previously published in (Kerrigan
and Mayne, 2002; Baotić et al., 2003). Problem (3)
can be stated as an equivalent dynamic program:

J∗
k (x(k)) := min

u(k)
‖Qx(k)‖` + ‖Ru(k)‖`

+ J∗
k+1(fPWA(x(k),u(k))),

(7a)

subj. to fPWA(x(k),u(k)) ∈ Xk+1, (7b)

for k = N − 1, . . . , 0, with boundary conditions

XN = Tset, and J∗
N (x) = ‖PNx‖`,

where

Xk = {x ∈ Rn | ∃u, fPWA(x,u) ∈ Xk+1} (8)

is the set of all initial states for which the problem
(7) is feasible. The term J∗

k+1(x(k + 1)), repre-
senting the cost of all future control actions, is
commonly referred to as “Cost-To-Go”. Since the
set Xk+1 and J∗

k+1(x(k + 1)) are in general non-
convex for PWA systems, mpLP solvers cannot
be applied directly to solve (7). Instead, the non-
convex problem (7) is split into a number of con-
vex sub-problems by formulating one mpLP for
each controller region obtained at the previous
iteration of the DP:

J∗
k (x(k)) :=min

u(k)
‖Qx(k)‖` + ‖Ru(k)‖`+

+α
{r}
k+1x(k + 1) + β

{r}
k+1,

(9a)

s. t. x(k + 1) = fPWA(x(k),u(k)) ∈ R
{r}
k+1, (9b)

In (9) the non-convex PWA “Cost-To-Go” has

been replaced by the affine term J∗
k+1 = α

{r}
k+1x(k+

1)+β
{r}
k+1. This way, problem (9) needs to be solved

for all controller regions
{

R
{r}
k+1

}Rk+1

r=1
and all dy-

namics
{

D{i}
}D

i=1
. The result of each of Rk+1 ·D

mpLPs (9) is a closed polyhedral partition P
{i}
k ,

the union of which is the set of feasible parameters

in step k, i.e. Xk =
⋃Rk+1·D
i=1 P

{i}
k . Note that the

partitions P
{i}
k will overlap, in general. In order to

obtain a suitable target partition for the next step
of the DP, it is therefore necessary to compare the
cost J∗

k (x) wherever controller regions overlap and
to remove the controller regions which are not cost
optimal. Detection of overlapping critical regions

within partitions P
{i}
k and comparison of the cost

are done by solving a (possibly large) number of
LPs ( (Borrelli, 2003), pg. 158-160). The compu-
tational complexity of removing overlaps grows
exponentially with the number of regions covering
any given state x. As the number of mpLPs solved

in one step of the DP grows with each iteration
of the DP, the number of overlaps grows as well.
Thus, a significant amount of time is spent on the
removal of overlaps.

3. DYNAMIC PROGRAMMING WITH
CONVEX PWA “COST-TO-GO”

In this section we present the main contribution
of the paper. We show how to reformulate the DP
problem presented in the previous section such
that number of mpLPs which need to be solved
is reduced. Before stating the algorithm formally,
we will give a simple example to illustrate the key
ideas.

Consider a one-dimensional PWA system and a
single DP iteration of the CFTOC problem for
the i−th dynamic of the system:

J∗
k (x(k)) := min

u(k)
J∗
k+1(x(k + 1)), (10a)

s.t. x(k + 1) = fPWA(x(k), u(k)) ∈ Xk+1 (10b)

For the sake of simplicity, we consider only the
minimization of the “cost-to-go” J∗

k+1(x(k + 1)).
The target set Xk+1 is assumed to be convex and
consisting of two subsets (see Fig. 1):

X
{1}
k+1 := {x | x ∈ Xk+1 ∧ x ≤ xc} ,

X
{2}
k+1 := {x | x ∈ Xk+1 ∧ x ≥ xc}

We further assume that J∗
k+1 is non-convex on

Xk+1 and affine in each of the subsets. The con-
straints (10b) define a polyhedron Π in (x, u)
space (Fig. 1), the projection of which to the
x space defines the set of parameters (system
states) P for which the optimization problem (10)
is feasible. We split this non-convex problem into
two subproblems by considering each segment of
the target set separately, as explained in Subsec-
tion 2.2. A cut x(k + 1) = xc in (x, u)−space

PSfrag replacements

Π{1}

Π{2}

Π

P{2}

P{1}

P{1} ∩ P{2}

P

x(
k
+
1)
=

xc

u(k)

x(k)

Xk+1

X
{1}
k+1

X
{2}
k+1

J∗
k+1

x(k + 1)xc

Fig. 1. DP-based algorithm with affine “cost-to-
go”: for two adjacent target sets, two overlap-
ping partitions P{1} and P{2} are generated.

separates polyhedron Π into two polyhedra Π{1}

and Π{2} (see Fig. 1). Projections of these polyhe-
dra to x−space define sets P{1} and P{2}, which
represent sets of feasible states for each mpLP



subproblem. In general, the cut introduced by the
additional constraint x(k + 1) = xc separates the
polyhedron Π in such a way that the sets P{1} and
P{2} overlap. On the other hand, if J∗

k+1 is convex
PWA in Xk+1, one can formulate the problem as
a single mpLP and obtain the solution as a set of
non-overlapping critical regions whose union is P.
This will be shown in the following section.

3.1 Dynamic Programming with Convex PWA
“Cost-To-Go”

Consider the DP formulation of the CFTOC prob-
lem (7) and assume that a terminal set is given by:

XN = Tset =
CN
⋃

c=1

P
{c}
N , (11)

where P
{c}
N are closed polyhedral sets. Further-

more, assume that the value functions (J∗
N ){c}

defined over each subset P
{c}
N are convex PPWA,

i.e.:

(J∗
N ){c}(x) = α{r,c}x+β{r,c}, if x ∈ R

{r,c}
N (12)

where r = 1, . . . , R
{c}
N is the number of polyhedral

regions in P
{c}
N =

⋃R
{c}

N

r=1 R
{r,c}
N .

Being convex and PWA affine, each (J∗
N ){c} can

be written as (Schechter, 1987):

(J∗
N ){c}(x) = max

r∈{1,...,R
{c}

N
}

α
{r,c}x+ β{r,c},

and the problem:

min
x

(J∗
N ){c}(x), s.t. x ∈ P

{c}
N (13)

can be equivalently formulated as:

min
γ

γ

s.t. α{r,c}x+ β{r,c} ≤ γ,
(14)

where r = 1, . . . , R
{c}
N . This is a well-known

minimax principle for the minimization of PWA
convex functions.

By taking into account Theorem 2.2, the non-
convex problem (7) can be split into a number
of c = 1, . . . , Ck+1 mpLP subproblems of the
following form:

(J∗
N ){c}(x) :=min

u,γ
‖Qx‖` + ‖Ru‖` + γ, (15a)

s.t. x(k + 1) = fPWA(x(k),u(k)) ∈ P
{c}
k+1, (15b)

α
{r,c}x(k + 1) + β{r,c} ≤ γ,

∀r ∈ {1, . . . , R
{c}
k+1}, (15c)

where Ck+1 denotes the number of polyhedral

target partitions P
{c}
k+1 from iteration k + 1 and

R
{c}
k+1 corresponds to the number of polyhedral

regions in P
{c}
k+1. Hence, it is necessary to solve

Ck = Ck+1 · D mpLPs in order to obtain the

solution to (15). The Ck resulting partitions will
overlap, in general, and a comparison of the mpLP
solutions needs to be performed in order to get the
solution of the original CFTOC problem, i.e. it is
still necessary to remove overlaps in the partitions.
So far, the only difference to the scheme described
in Section 2.2 is that we consider only large convex

controller partitions P
{c}
k as target sets, instead

of the smaller convex controller regions. In order
to avoid exponential growth of the number of

partitions P
{c}
k with each iteration (mpLPs which

need to be solved in each step of the DP), it
is advisable to remove partitions which do not
contain any optimal critical region, i.e. if for all

x ∈ P
{n}
k there exists a partition P

{m}
k and a

corresponding value function (J∗
k )

{m} such that

x ∈ P
{m}
k and (J∗

k (x))
{n} > (J∗

k (x))
{m}, then

the partition P
{n}
k can be removed. Detection of

suboptimal partitions can be done by using the
value functions (J∗

k )
{c} as a selection criterion and

solving a (possibly large) number of LPs. Note
that in the worst-case, it may not be possible to
discard any partitions.

Comparing the new algorithm (15) to the ap-
proach in Section 2.2, it is obvious that the mpLPs
in (15) are more complex, since the number of
constraints is (considerably) higher due to the
introduction of value function constraints (15c).
As a remedy, we propose the following scheme
based on region adjacency information.

3.2 Constraint Reduction Using Adjacency List

Using algebraic manipulations, the mpLP (15) can
be put into the form (5). For further discussion we
will need the notion of active constraints.

Definition 1. (Active Constraints). The set of ac-
tive constraints A(x) for a given state x of prob-
lem (5) is defined as:

A(x) := {i ∈ I | ∀z : Jk(x, z) = J∗
k (x),

G(i)z− S(i)x−W(i) = 0
} (16)

where G(i), S(i) and W(i) denote the i−th row
of matrices G,S and W respectively, and I =
{1, . . . , q}.

Critical regions, defining the solution of the
mpLP, are constructed as follows. For a given
state (parameter) x∗ an LP is solved and a set of
active constraints A(x∗) is identified. For the con-
struction of the critical region, the set of inactive
constraints N (x∗) = I\A(x∗) is used, defining
qN half-spaces whose intersection describes the
polyhedral critical region, i.e. the cardinality of
N is qN . In order to obtain the minimal rep-
resentation of the critical region, all redundant
half-spaces need to be removed, so that the final



representation of the critical region is defined as
an intersection of q∗N ≤ qN half-spaces. This pro-
cedure requires the solution to qN LPs per critical
region (Borrelli, 2003). In our case, qN increases
with the number of value function constraints,
i.e. the number of critical regions in the target
partitions from the previous step of the DP, which
may grow exponentially with each DP iteration. In
the following we show how to reduce the number
of initial half-spaces qN by using region adjacency
information, and thus significantly decrease the
number of LPs which need to be solved per mpLP
subproblem.

Before proceeding further, it is necessary to point
out that, in the strict sense, critical regions are
open sets. However, for any practical computation
and analysis, a critical region is usually replaced
by its closure. In the rest of the text, when
speaking of a critical region, we will consider its
closure.

Definition 2. (Adjacent regions). Polyhedral crit-

ical regions CR{i} and CR{j} are called adjacent
if they share a common facet.

In the following, the term adjacent constraints will
be used for value function constraints (15c) which
correspond to adjacent critical regions. Let A(x∗)
be a set of active constraints for a given x∗ ∈

CR
{l}
k , where CR

{l}
k is the critical region whose

polyhedral representation we want to compute.

The critical region CR
{l}
k can be obtained as a

projection from (x, z)-space to x-space of the
polyhedron defined by:

G{i}z− S{i}x=W{i}, i ∈ A(x∗), (17a)

G{j}z− S{j}x≤W{j}, j ∈ N (x∗). (17b)

The representation of the critical region CR
{l}
k

(i.e. the projection of (17)) remains the same if
the set N is reduced to those constraints which
become active on the facets of the region CR

{l}
k .

Consider now only the value function constraints
(15c), and, for the moment, assume that only
one value function constraint is in the set of ac-
tive constraints. When computing a critical re-

gion CR
{l}
k , the active value function constraint

is known and enforced in (17a). This active value
function constraint directly identifies the region

CR
{r∗,c}
k+1 containing the state at time k + 1. All

inactive value function constraints are forced to be
inactive by (17b). Geometrically, the value func-
tion constraints in (15c) represent a polyhedra in
(x,u,γ)-space, whereby the active value function
constraint in (17a) defines one of it’s facets. It
now follows directly from convexity of the value
function J∗

k+1, that all value function constraints
which do not originate from regions adjacent to

this facet (which corresponds to region CR
{r∗,c}
k+1 ),

are redundant (e.g., see also (14)). Hence, it is
sufficient to consider only the value function con-
straints in (17b) which originate from regions ad-

jacent to CR
{r∗,c}
k+1 .

A list of adjacent regions for every critical region
can be obtained when solving an mpLP at no
additional computational cost (Borrelli, 2003). An
example of the solution of an mpLP and the
constructed adjacency list is shown on Fig. 2.
The approach described above is easily extended

1
2

5
4
3

6
7

region adjacent regions
6
6
4, 6
3, 7
7
1, 2, 3, 7
4, 5, 6

5

4

3

2

7

6

1

Fig. 2. Critical regions and the corresponding
adjacency list

to cases where more than one value function
constraint is active. It is then sufficient to consider
only those value function constraints in N , which
are adjacent to at least one of the active value
function constraints.

3.3 A Note on Complexity

No tight bounds on the computational complex-
ity of solving multi-parametric programs exist.
Hence, it is not possible to perform a detailed
complexity comparison of the two algorithms de-
scribed here. Instead we will discuss the two most
crucial aspects of complexity from an intuitive
point of view.

Using an affine cost-to-go as in Section 2.2, the
CFTOC computation requires the solution to
Rk+1 · D mpLPs, while the proposed algorithm
with a piecewise affine cost-to-go solves Ck+1 ·D
mpLPs, with an additional variable γ and consid-
erably more constraints. If the adjacency scheme
in Section 3.2 is applied, the run times for solving
the mpLPs do not differ significantly for the two
approaches. It always holds that Ck+1 ≤ Rk+1

and in practice it generally holds that Ck+1 ¿
Rk+1. Hence, fewer mpLPs need to be solved for
our algorithm, i.e. the PWA cost-to-go approach.

The other critical component of the CFTOC algo-
rithms in terms of overall runtime is the removal of
overlapping partitions, i.e. associating the unique
optimal feedback law to each state. On one hand,
the affine cost-to-go algorithm solves more mpLPs
and is hence likely to produce more controller re-
gions and thus more overlaps. On the other hand,
our algorithm solves mpLPs for larger volume
target sets, leading to larger volume partitions.



Thus, it is possible that more controller regions
will cover any given state. Therefore, we cannot
draw theoretical conclusions on the complexity of
overlap removal, although extensive simulations
clearly suggest the PWA cost-to-go approach to
be superior.

4. NUMERICAL EXAMPLES

In order to demonstrate the efficiency of the
proposed algorithm, we show the results of an
extensive case study. An ∞-norm performance
objective with Q = P = I and R = I was used
in formulating the CFTOC problem. The total
computation run times were measured for the
proposed algorithm and the algorithm presented
in Section 2.2. Both algorithms are implemented
using the Multi Parametric Toolbox (Kvasnica et
al., 2003) for Matlab. The explicit control laws
were computed for 20 randomly generated 2D
PWA systems with 4 affine dynamics and for
20 randomly generated 3D PWA systems with 6
affine dynamics. The horizons N = 7 and N = 3
were used for 2D and 3D systems respectively. The
results are shown on Figure 3 for computations
run on a Pentium 4 PC, 3GHz, using Matlab 6.5
and the NAG LP solver.

5. CONCLUSION

In this paper, a novel algorithm was proposed to
solve CFTOC problems for discrete-time PWA
systems. The algorithm exploits problem struc-
ture (i.e. region adjacency information and con-
vexity) to yield faster run times than previously
published algorithms. For the analyzed 3rd or-
der PWA systems, the speedup with the new
algorithm is typically of one order of magnitude.
We cannot claim that the proposed algorithm
will outperform alternative schemes in every case,
though it was true for all examples studied.
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