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Abstract: In this paper, novel repetitive controllers are proposed based on perfect
tracking control (PTC) in order to reject high-order repeatable runout (RRO) of
hard disk drives. First, the feedback approach of the repetitive PTC (RPTC) is
developed with internal model of periodic disturbance. Although this method has
performance robustness against small plant variation, the internal model worsens
the stability robustness for big modeling error. Then, the feedforward approach
of RPTC is introduced with switching mechanism such that the high-order RRO
can be rejected without any sacrifice of the closed-loop characteristics. In both
approaches, multirate feedforward control is utilized to overcome the unstable
zero problem of discrete-time plant. Finally, the advantages and disadvantages are
demonstrated through simulations and experiments. Copyright c© 2005 IFAC
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1. INTRODUCTION

In the head-positioning system of hard disk
drives (HDDs), the head position is detected by
the discrete servo signals embedded in the disks.
Thus, the control period (Tu) to update the force
command signal can be set shorter than the sam-
pling period (Ty) of position error signal. There-
fore, multirate controllers with the constraint of
Tu < Ty have been applied both to track-seeking
and track-following modes in HDDs [Takakura,
1999, Wu and Tomizuka, 2003, Lee and Tomizuka,
2003, Hirata et al., 2003]. The author has applied
perfect tracking control (PTC) to seeking mode
with multirate feedforward compensation [Fuji-
moto et al., 1999]. This paper applies PTC to
track-following mode. In this mode, two-degree-of-
freedom (2DOF) controller is generally supposed
to be inapplicable since the reference signal called
track runout is immeasurable in HDDs. However,
this paper introduces novel control schemes with
switching mechanism and feedforward compensa-

tion, which makes the 2DOF PTC be applicable
to repeatable runout rejection control of track-
following mode.

Repetitive control is a widely used technique to
reject periodic disturbances or to track a periodic
reference signal [Chew and Tomizuka, 1990, Hara
et al., 1988]. Although this control scheme has
excellent performance for low order disturbance
modes, it cannot reject relatively higher frequency
modes. The reasons of this difficulty are (1) the de-
lay caused by zero-order hold of plant input when
the high-order mode is close to Nyquist frequency,
(2) the low-pass filter is required to maintain the
stability robustness, and (3) approximated inverse
is implemented to deal with the unstable zero of
discrete-time plant in the conventional discrete-
time repetitive controller [Chew and Tomizuka,
1990]. This paper overcomes these problems by
introducing novel control schemes named repeti-
tive perfect tracking control (RPTC).
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The recent development of computer technology
enabled to set the control period Tu shorter than
the sampling period Ty when the sensor speed
is restricted. In this paper, the above-mentioned
problem (1) is overcome by the multirate input
control (Tu < Ty).

In the conventional digital repetitive control
[Chew and Tomizuka, 1990], the discrete-time dis-
turbance model (zNd − 1)−1 is implemented in
feedback-loop as the internal model. Although the
sensitivity function becomes zero at the distur-
bance harmonics frequencies, the sensitivity has
big amplitude at the other frequency band, which
causes severe damage in total tracking accuracy.
Moreover, the closed-loop system could become
unstable because the peak gain of internal model
excites the unmodeled dynamics. Therefore, low-
pass filter is usually implemented in repetitive
control to assure the stability robustness at the
sacrifice of high-frequency disturbance rejection
performance. On the other hand, this paper intro-
duces novel switching schemes to achieve repeti-
tive disturbance rejection by feedforward control.

The problem (3) of discrete-time unstable zero
was not crucial in the conventional feedback repet-
itive control because the stability can be assured
even when the approximated zero-phase-error
(ZPE) inverse is utilized [Chew and Tomizuka,
1990]. However, when the feedforward scheme is
introduced with switching scheme, the gain char-
acteristics of ZPE [Tomizuka, 1987] causes the
tracking error especially for high-order distur-
bance. Therefore, in the proposed methods, the
perfect tracking control which was proposed by
authors in Fujimoto et al. [2001] is utilized with
multirate input control to obtain the ideal inner-
loop system in discrete-time domain.

2. REPETITIVE PERFECT TRACKING
CONTROL (RPTC)

In this paper, it is assumed that the control in-
put can be changed N times during the sampling
period of output signal Ty. For simplification, the
input multiplicity N is set to be equal with the
order of nominal plant n since N ≥ n is the
necessary condition of perfect tracking [Fujimoto
et al., 2001]. But, by using the formulation of
Fujimoto et al. [2001], this assumption can be
relaxed to deal with more general system with
N �= n.

Consider the continuous-time nth-order plant
described by

ẋ(t) = Acx(t) + bcu(t), p(t) = ccx(t) (1)

The discrete-time state equation discretized by
the shorter period Tu becomes

x[k + 1] = Asx[k] + bsu[k], (2)

where x[k] = x(kTu) and

As := eAcTu , bs :=

Tu∫
0

eAcτbcdτ. (3)

By calculating the state transition from t = iTy =
kTu to t = (i + 1)Ty = (k + n)Tu in Fig. 1, the
discrete-time plant P [z] can be represented by

x[i + 1] = Ax[i] + Bu[i], p[i] = cx[i], (4)

where x[i] = x(iTy), z := esTy , and multirate
input vector u is defined in the lifting form as

u[i] := [u1[i], · · · , un[i]]T

= [u(kTu), · · · , u((k + n − 1)Tu)]T (5)

and the coefficients are given by

A = An
s , B = [An−1

s bs, A
n−2
s bs, · · · , Asbs, bs],(6)

c = cc.

2.1 Design of RPTC

In Fujimoto et al. [2003a], the author proposed
inter-sample disturbance rejection (IDR) control
to cancel high order RRO, where the periodic
disturbance was modeled as Fourier series and
the unknown amplitude and phase were estimated
by the observer. This method was very effective
when the number of selected modes is small to
cancel the several disturbance modes. However,
when the number is not small enough, the on-
line computation cost of the observer is not neg-
ligible. In this section, a novel repetitive control
is proposed based on perfect tracking controller
(PTC) [Fujimoto et al., 2001] with periodic signal
generator (PSG) [Kempf et al., 1993]. Because the
PSG can be constructed by the series of memories
z−1, the computation cost is very low.

First, the PTC is designed using multirate feed-
forward control as minor-loop system to obtain
the ideal command response. The measured out-
put y[i] is assumed to have the output disturbance
d[i] as

y[i] = p[i]− d[i] := cx[i] − d[i], (7)

where p[i] is the plant output 1 . In this section, the
disturbance is assumed to be repetitive signal with

1 In the application to HDD, p(t) is the head position, d(t)

is the track runout, and y(t) is the position error.
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period Td. From (4), the transfer function from
x[i + 1] ∈ Rn to the multirate input u[i] ∈ Rn

can be derived as

u[i] = B−1(I − z−1A)x[i + 1] (8)

=
[

O −A

B−1 B−1

]
x[i + 1]. (9)

From the definition in (6), the nonsingularity of
matrix B is assured for a controllable plant. From
(9), all poles of the transfer function (8) are zero.
Hence, (8) is a stable inverse system. Then, if the
control input is calculated by (10) as shown in
Fig. 2, perfect tracking is guaranteed at sampling
points for the nominal system because (10) is the
exact inverse plant [Fujimoto et al., 2001].

u0[i] = B−1(I − z−1A)r[i] (10)

Here, r[i](:= xd[i + 1]) is previewed desired tra-
jectory of plant state. The nominal output can be
calculated as

y0[i] = cxd[i] = z−1 c r[i]. (11)

When the tracking error y[i] − y0[i] is caused by
unmodeled disturbance or modeling error, it can
be attenuated by the robust feedback controller
C2[z], as shown in Fig. 2.

Second, the periodic signal generator is designed
to generate desired trajectory r[i]. Because perfect
tracking (x[i] = xd[i] or x[i] = z−1r[i]) is assured,
the minor-loop nominal system is expressed as

y[i] = z−1r[i]− d2[i], r[i] := cr[i], (12)

where d2[i] := (1−P [z]C2[z])−1d[i] and P [z] is the
single-rate plant with Ty if the minor-loop feed-
back controller C2[z] is a single-rate system. In the
proposed RPTC, two schemes can be considered:
the feedback and feedforward approaches. In case
of feedback scheme (FB–RPTC), the switch of
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Fig. 4. FF–RPTC algorithm.

Fig. 2 is always on-state. The PSG can be designed
as the outer-loop controller by

r[i] = − z

zNd − 1
y[i], (13)

where the integer Nd is defined as Td/Ty. From
(12) and (13), the total closed-loop system is
represented by

y[i] = −zNd − 1
zNd

d2[i] (14)

Therefore, the repetitive disturbance which is
modeled as d[i] = (zNd − 1)−1 is completely re-
jected at every sampling point in steady-state.

In (12), there exists redundancy to decide r[i] ∈
Rn from the PSG output r[i] since we have
freedom to select the state variable x. In order
to make the multirate input smooth, it should
be given as the derivative form x = [p, ṗ, p̈, · · ·].
Fig. 3 shows one example of the 2nd order plant
with x = [p, ṗ], in which the velocity command is
generated by ṗd[i] = (pd[i + 1]− pd[i − 1])/2Ty.

However, the internal model (13) damages the
closed-loop characteristics such as stability ro-
bustness since the gain of PSG becomes infinity
at high order harmonics of periodic disturbance.
Therefore, the feedforward algorithm of RPTC
(FF–RPTC) is proposed with switching mecha-
nism. Fig. 4 is a simple simulation result to explain
this algorithm. The single mode disturbance of 70
[Hz] sinusoidal signal is added with 20 [nm] am-
plitude. The other simulation condition is almost
same with the next section.

The disturbance is injected at t = 0 when the
switch of Fig. 2 takes off-state. After the transient
response of the minor-loop system with C2[z] and
Pc(s), the measured output y[i] becomes steady-
state response. Then, the switch turns on to store
the output during one disturbance period Td.
After that, it turns off and keeps off-state. By
using the stored signal, the PSG can reproduce
the feedforward signal r[i] expressed in (13), as
long as the disturbance is periodic. The dashed
line of Fig. 4 means y0[i](= r[i − 1]). Here, the
PTC generates control input u0[i] to cancel the
periodic steady error. Thus, the plant output p[i]
perfectly tracks the periodic disturbance d[i] and
the tracking error becomes zero at every sampling
point (y[i] = 0).

Since the switch turns on just Nd sampling time,
the Nd memories work as complete feedforward
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Fig. 6. Sensitivity functions S[z], T [z]

compensator. Therefore, the disturbance can be
rejected at every sampling point without sacrifice
of the feedback characteristics. Note that the
signal y0[i] is generated to prevent the additional
transient response after the switch turns off.

3. APPLICATIONS TO RRO REJECTION IN
HDD

3.1 Control system design and simulations

In the track-following mode of HDD, two kinds
of disturbance which is injected at the plant
output should be considered; repeatable runout
(RRO) and non-repeatable runout (NRRO). While
RRO is synchronous with the disk rotation,
NRRO is not synchronous. Although there are
many techniques to reject the RRO in low fre-
quency region [Kempf et al., 1993], the high fre-
quency RRO is hard to reject by conventional
technologies. However, the effect of high-order
RRO cannot be neglected since the required servo
accuracy is getting drastically severe. Therefore,
this paper applies the proposed multirate repeti-
tive controllers both to FB and FF–RPTC.

The plant is a 2.5-in prototype HDD with
450[nm] track pitch. The sampling period of this
drive is Ty = 210.08 [µs], and the control input is
changed N = 2 times during this period. In the
design of controller, the nominal plant Pn(s) is
modeled as double integrator system. The simula-
tion model Pa(s) includes the dead-time and gain
variation as follows.

Pn(s) =
kpn

ms2
, Pa(s) =

kp

ms2
e−Ls (15)

The rotation frequency of spindle motor is 70[Hz]
and the number of sector is Nd = 68. The
minor-loop FB controller C2[z] is designed by
the lead-lag compensator with 450[Hz] cross-over
frequency.
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Fig. 7. Small variation
(kp = 1.1kpn, L = 43.26[µs])
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Fig. 8. FFT of Fig. 7(b)

Fig. 5 ∼ 9 shows the simulation results. The
injected disturbance signal is calculated from the
approximate inverse of sensitivity function and
position error signal (PES) obtained from exper-
iments. As the effect of NRRO is considered in
the next experiments, the simulations use the only
RRO signal which is extracted from experimental
data by the averaging operation of total PES.

Fig. 5 shows the time response of FF–RPTC
for the nominal plant. The time origin (t = 0) is
at the instance that the switch turns on to start
the compensation. While the swith takes on-state
only one disturbance period Td = 14.3[ms] in FF–
RPTC, the FB–RPTC keeps the on-state all the
time. As shown in Fig. 5, the PTC works from
t = Td to perfectly tracks the RRO with zero
error.

Fig. 6 shows the sensitivity S[z] and comple-
mentary sensitivity T [z] of the total closed-loop
systems including PSG. In FB–RPTC, the sen-
sitivity is zero at the harmonics of 70 [Hz] as
(14) since the PSG is the internal model of the
periodic disturbance. On the other hand, since the
PSG becomes pure feedforward controller in FF–
RPTC as stated above, the closed-loop character-
istics are determined by the minor-loop with C2[z]
and P [z]. Thus, the fine closed-loop frequency
response can be reserved by the C2[z] which can
be designed independently.

Fig. 7 is the case with the dead-time L =
43.26[µs] and small gain variation of 10[%]. Al-
though the little oscillation is generated, the error
of FB–RPTC converges to zero by internal model
principle. However, the tracking performance is
worsen by the plant variation in FF–RPTC. To
investigate the reason, the FFT analysis of Fig.
7(b) is shown in Fig. 8. The figure (b) is obtained
form the PES after the switch turn on and the
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Fig. 9. Big variation (kp = 1.4kpn, L = 43.26[µs])

figure (a) is without the compensation. In the
feedforward control, the variation of command
response against plant variation is determined by
the sensitivity (1−P [z]C2[z])−1 which is shown in
the solid line of Fig. 6(b). Thus, the performance
becomes poor in high sensitivity band while the
RRO is attenuated well in control bandwidth. In
order to overcome this drawback of feedforward
control, the author has proposed the adaptive
technique [Fujimoto et al., 2003b] to reduce the
modeling error and to recover the performance.

Fig. 9 shows the simulation results with big gain
variation of 40[%]. FB–RPTC becomes unstable
since the stability robustness is worsen by PSG
which has infinite gain at harmonic frequencies.
This can also be understood from the comple-
mentary sensitivity shown in Fig. 6(a) that has
no roll-off in high frequency. On the other hand,
the FF–RPTC can keep the stability for the big
plant uncertainty, as shown in Fig. 9(b).

3.2 Experiments on RPTC

In this section, the proposed methods are veri-
fied through experiments. The experiments of FB–
RPTC became unstable since it had small stabil-
ity margin as stated above. To make it stable, we
need a low-pass filter (LPF) to eliminate the peak
gain at high-order modes and to assure the stabil-
ity robustness. Thus, the specific LPF called Q–
filter [Chew and Tomizuka, 1990] is implemented
as

pf [i] =
z + γ + z−1

γ + 2
pd[i] (16)

ṗf [i] =
z + γ + z−1

γ + 2
ṗd[i], (17)

where r[i] = [pf [i], ṗf [i]]T is utilized instead of
= [pd[i], ṗd[i]]T in Fig. 2. The smaller γ(≥ 2)
has bigger roll-off and bigger stability although
the disturbance rejection performance becomes
poorer [Chew and Tomizuka, 1990]. The frequency
response of Q–filter is shown in Fig. 10. On the
other hand, this LPF is not required in the pro-
posed FF–RPTC because of the switching scheme.

Experimental results both of FB and FF–RPTC
are shown in Fig. 11 ∼ 13. In FF–RPTC, the
RRO signals which are averaged with respect to
the sector number are stored in the PSG. The
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Fig. 10. Q–filter. (γ = 2)

figures (a) are only with the lead-lag compensator
as C2[z]. The figures (b) and (c) are the FB
and FF–RPTCs, respectively. From Fig. 11(b),
we find that the RRO components of FB–RPTC
are almost zero because of the internal model
principle. On the other hand, the proposed FF–
RPTC has small position error which is caused
by the modeling error of the plant. This is the
disadvantage of feedforward approach.

As shown in Fig. 12(b), however, NRRO com-
ponents of FB–RPTC are greatly amplified than
the original C2[z] of Fig. 12(a). The reason is that
the internal model worsens the total sensitivity
function in NRRO frequencies by the Bode’s in-
tegral theorem, as shown in Fig. 6(a). Since the
FF–RPTC overcomes this problem by the switch-
ing mechanism, Fig. 12(c) has the almost same
response with Fig. 12(a). As shown in Fig. 13, the
total tracking accuracy is improved 32.6 % by the
proposed switching methods as ±3σ=51.5[nm],
although that of the FB–RPTC is worsen 19.8 %
than the original C2[z].

4. CONCLUSION

In this paper, two switching based repetitive
controllers named FB–RPTC and FF–RPTC were
proposed to reject high-order repetitive distur-
bances. The advantages and disadvantages of
these schemes were discussed. By internal model
principle, the FB approach can assure the con-
vergence to zero tracking error against the small
plant variation as long as the stability robustness
is reserved. However, it needs Q–filter to keep the
stability in the experiments. Moreover, it amplifies
the NRRO since the total sensitivity is worsen by
the internal model. These disadvantages are not
only for the FB–RPTC but also for all the con-
ventional repetitive controllers which have one-
degree-of-freedom structure.

On the other hand, the FF–RPTC enabled the
feedforward controller to make the repetitive com-
pensation by the switching mechanism. Thus, the
stability robustness can be preserved by the in-
dependent feedback controller. However, the per-
formance robustness of periodic disturbance rejec-
tion is worsen over the minor-loop bandwidth.

The future works will be the reduction of mod-
elling error by the adaptive scheme and dead-time
compensation, and effective rejection of NRRO.



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Frequency  (Hz)

Am
p.

  (
nm

)

(a) Lead-Lag only

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Frequency  (Hz)

Am
p.

  (
nm

)

(b) FB–RPTC

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Frequency  (Hz)

Am
p.

  (
nm

)

(c) FF–RPTC

Fig. 11. Experimental results of RPTC. (RRO components)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Frequency  [Hz]

Am
p.

  [
nm

]

(a) Lead-Lag only

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Frequency  [Hz]

Am
p.

  [
nm

]

(b) FB–RPTC

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Frequency  [Hz]

Am
p.

  [
nm

]

(c) FF–RPTC

Fig. 12. Experimental results of RPTC. (NRRO components)

0 0.5 1 1.5
−60

−40

−20

0

20

40

60

time[s]

[n
m

]

(a) Lead-Lag (±3σ=76.4[nm])

0 0.5 1 1.5
−60

−40

−20

0

20

40

60

time[s]

[n
m

]

(b) FB–RPTC(±3σ=91.5[nm])

0 0.5 1 1.5
−60

−40

−20

0

20

40

60

time[s]

[n
m

]

(c) FF–RPTC(±3σ=51.5[nm])

Fig. 13. Experimental results of RPTC. (time response)

Finally, the authors wish to thank Dr. S. Nak-
agawa and Dr. A. Okuyama of Hitachi for their
support and the author’s former student, Mr. F.
Kawakami, for the helps in experiments.

REFERENCES

Chew, K.K. and M. Tomizuka (1990). Digital control of
repetitive errors in disk drive systems. IEEE Contr.

Syst. Mag., 10(1):16–20.
Fujimoto, H., Y. Hori and A. Kawamura (2001). Perfect

tracking control based on multirate feedforward control
with generalized sampling periods. IEEE Trans. Indus-

trial Electronics, 48(3):636–644.
Fujimoto, H., Y. Hori, T. Yamaguchi and S. Nakagawa

(1999). Proposal of perfect tracking and perfect distur-
bance rejection control by multirate sampling and ap-

plications to hard disk drive control. In Conf. Decision
Contr., pages 5277–5282.

Fujimoto, H., F. Kawakami and S. Kondo (2003a). Mul-
tirate repetitive control and applications – verification

of switching scheme by HDD and visual servoing –. In

Amer. Control Conf., pages 2875–2880.
Fujimoto, H., F. Kawakami and S. Kondo (2003b). Repeti-

tive control of hard disk drive based on switching scheme

and gain adaptation. In IEE of Japan Technical Meeting

Record, number IIC-03-92, pages 1–6.
Hara, S., Y. Yamamoto, T. Omata and M. Nakano (1988).

Repetitive control system – a new-type servo system.
IEEE Trans. Automat. Contr., 33:659–668.

Hirata, M., M. Takiguchi and K. Nonami (2003). Track-
following control of hard disk drives using multi-rate

sampled-data H∞ control. In Conf. Decision Contr.,
pages 3414–3419.

Kempf, C., W. Messner, M. Tomizuka and R. Horowitz
(1993). Comparison of four discrete-time repetitive

algorithms. IEEE Contr. Syst. Mag., 13(5):48–54.
Lee, D.J. and M. Tomizuka (2003). Multirate optimal state

estimation with sensor fusion. In Amer. Control Conf.,
pages 2887–2892.

Takakura, S. (1999). Design of the tracking system using N-
Delay two-degree-of-freedom control and its application

to hard disk drives. In IEEE Conf. Control Applica-
tions, pages 170–175.

Tomizuka, M. (1987). Zero phase error tracking algorithm
for digital control. ASME, J. Dynam. Syst., Measur.,

and Contr., 109:65–68.
Wu, S.C. and M. Tomizuka (2003). Multi-rate digital

control with interlacing and its application to hard disk
drive servo. In Amer. Control Conf., pages 4347–4352.


