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Abstract: The decentralized navigation function methodology, established in
previous work for navigation of a multi-agent system with single integrator
dynamics is extended to the case of double integrator. The main motivation of this
work lies in the fact that acceleration control is more implementable in multiple
vehicle systems than velocity control. Each agent plans its actions without knowing
the destinations of the others. The stability of the overall system is guaranteed
by LaSalle’s Invariance Principle. The collision avoidance and global convergence
properties are verified through simulations. Copyright c©2005 IFAC.
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1. INTRODUCTION

Navigation of mobile agents has been an area of
significant interest in robotics and control com-
munities. Most efforts have focused on the case
of a single agent navigating in an environment
with obstacles (Latombe (1991)). In the past few
years, navigation for multiple agents has been
considered by many researchers, mainly in the
context of cooperative and formation control of
multiple agents; see for example (Egerstedt and
Hu (2001),Lin et al. (2003)). Recently, decentral-
ized navigation for multiple agents has gained
increasing attention (Feddema and Schoenwald
(2002),Lawton et al. (2003),Saber and Murray
(2003),Tanner et al. (2003)). The motivation
comes from many application domains among
which decentralized conflict resolution in Air Traf-
fic Management(ATM) is one of the most impor-
tant ones. Decentralized control in ATM has been
considered in (Bicchi and Pallottino (2000),Inal-
han et al. (2002)), under a game theoretic per-
spective.

Decentralized navigation approaches are more ap-
pealing to centralized ones, due to their reduced
computational complexity and increased robust-
ness with respect to agent failures. In (Dimarogo-
nas et al. (2003)),the centralized navigation func-
tion methodology established in (Koditscheck and
Rimon (1990)) for a single point agent navigating
in a static environment and in (Loizou and Kyri-
akopoulos (2002)) for multiple holonomic agents,
was extended to the case of decentralized navi-
gation of a multi-agent team. The decentraliza-
tion factor lied in the fact that each agent had
no knowledge of the desired destinations of the
others.

The dynamics of the agents in these papers were
single integrator and the control inputs were the
velocity of each agent. In practice however, multi-
agent systems and especially moving vehicles are
controlled through their acceleration due to the
fact that the real dynamics have to be taken
into account. It is therefore both motivating and
natural to extend this methodology to the case



of a multi-agent system with double integrator
dynamics where the control input will be the
acceleration of each agent.

Taking those aspects into consideration, we con-
sider in this paper the decentralized conflict avoid-
ance problem for the case of a multi-agent system
with double integrator dynamics. The problem
that we treat can be stated as follows: “Derive a
set of control laws (one for the acceleration of each
agent) that drives a team of n agents from any
initial configuration to a desired goal configuration
avoiding at the same time collisions.” We make
the following assumptions:

• Each agent has global knowledge of the po-
sition and velocity of the others at each time
instant.

• Each agent has knowledge only of its own
desired destination but not of the others.

• We consider spherical agents.
• The workspace is bounded and spherical.

Our assumption that we have spherical agents
does not constrain the generality of this work
since it has been proven that navigation properties
are invariant under diffeomorphisms (Koditscheck
and Rimon (1990)). Arbitrarily shaped agents
diffeomorphic to spheres can be taken into ac-
count. Methods for constructing analytic diffeo-
morphisms are discussed in (Rimon and Koditscheck
(1992)) for point agents and in (Tanner et al.
(2001)) for rigid body agents.

The second assumption makes the problem decen-
tralized. Clearly, in the centralized case a central
authority has knowledge of everyones goals and
positions at each time instant and it coordinates
the whole team so that the desired specifications
(destination convergence and collision avoidance)
are fulfilled. In the current situation no such au-
thority exists and we have to deal with the limited
knowledge of each agent.

The rest of the paper is organized as follows:
Section 2 provides a review of the concept of
decentralized navigation functions and introduces
the terminology and mathematical tools required
for the analysis. Section 3 states the problem in
hand and presents the proposed control scheme.
The stability properties of the system are exam-
ined in Section 4. Section 5 presents simulation
results for a number of non-trivial multi agent
navigational tasks. Finally, section 6 summarizes
the conclusions and indicates our current research.

2. DECENTRALIZED NAVIGATION
FUNCTIONS

In this section, we review the decentralized nav-
igation function method used in Dimarogonas

et al. (2003) for the case of multiple holonomic
agents with single integrator dynamics. A detailed
analysis of the concepts described in the follow-
ing analysis can be found in Dimarogonas et al.
(2004).

Navigation functions are real valued maps realized
through cost functions, whose negated gradient
field is attractive towards the goal configuration
and repulsive wrt obstacles. It has been shown
by Koditschek and Rimon that almost global
navigation is possible since a smooth vector field
on any sphere world with a unique attractor,
must have at least as many saddles as obstacles
(Koditscheck and Rimon (1990)).

Consider a system of N agents operating in the
same workspace W ⊂ R2. Each agent i occupies
a disk: R = {q ∈ R2 : ‖q − qi‖ ≤ ri} in the
workspace where qi ∈ R2 is the center of the disk
and ri is the radius of the agent. The motion of
each agent is described by q̇i = ui and the config-
uration space is spanned by q = [q1, . . . , qn]T .The
decentralized navigation function ϕi is defined as

ϕi =
γdi + fi

((γdi + fi)k + Gi)1/k
(1)

The term γdi = ‖qi − qdi‖2 in the potential
function is the squared metric of the agent’s i
configuration from its desired destination qdi. The
exponent k is a scalar positive parameter. The
function Gi expresses all possible collisions of
agent i with the others, while fi guarantees that
the ϕi attains positive values whenever collisions
with respect to i tend to occur, even when i has
already reached its destination.

2.1 Construction of the Gi function

We review now the construction of the “collision”
function Gi for each agent i. The “Proximity
Function”between agents i and j is given by

βij = ‖qi − qj‖2 − (ri + rj)2

We will use the term relation to describe the
possible collision schemes that can occur in a
multiple agents scene with respect to agent i.
A binary relation is a relation between agent i
and another. We will call the number of binary
relations in a relation, the relation level. With this
terminology in hand, the relation of figure (1a) is
a level-1 relation (one binary relation) and that
of figure (1b) is a level-3 relation (three binary
relations), always with respect to the specific
agent R. A “Relation Proximity Function” (RPF)
provides a measure of the distance between agent
i and the other agents involved in the relation.
Each relation has its own RPF. Let Rk denote the
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Fig. 1. Part a represents a level-1 relation and part
b a level-3 relation wrt agent R.

kth relation of level l. The RPF of this relation is
given by:

(bRk
)l =

∑

j∈(Rk)l

βij

A “Relation Verification Function” (RVF) is de-
fined by:

(gRk
)l = (bRk

)l +
λ(bRk

)l

(bRk
)l + (BRC

k
)1/h
l

where λ, h are positive scalars and (BRC
k
)l =∏

m∈(RC
k

)l
(bm)l where (RC

k )l is the complemen-
tary set of relations of level-l, i.e. all the other
relations with respect to agent i that have the
same number of binary relations with the relation
Rk. It is obvious that for the highest level l = n−1
only one relation is possible so that (RC

k )n−1 = ∅
and (gRk

)l = (bRk
)l for l = n − 1. The function

Gi is now defined as

Gi =
ni

L∏

l=1

ni
Rl∏

j=1

(gRj )l

where ni
L the number of levels and ni

Rl
the number

of relations in level-l with respect to agent i.

The definition of the G function in the multiple
moving agents situation is slightly different than
the one introduced by the authors in (Koditscheck
and Rimon (1990)). The collision scheme in that
approach involved a single moving point agent in
an environment with static obstacles. A collision
with more than one obstacle was therefore im-
possible and the obstacle function was simply the
product of the distances of the agent from each
obstacle. In our case however, this is inappropri-
ate, as can be seen in figure 2. The control law
of agent A should distinguish when agent A is in
conflict with B, C, or B and C simultaneously.
Mathematically, the first two situations are level-
1 relations and the third a level-2 relation with
respect to A. Whenever the latter occurs, the RVF
of the level-2 relation tends to zero while the RVFs
of the two separate level-1 relations (A,B and A,C)
are nonzero. The key property of an RVF is that it
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Fig. 2. I,II are level-1 relations with respect to A,
while III is level-2. The RVFs of the level-1
relations are nonzero in situation III.

tends to zero only when the corresponding relation
holds. Hence it serves as an analytic switch that
is activated (tends to zero) only when the relation
it represents is realized.

2.2 Construction of the fi function

The key difference of the decentralized method
with respect to the centralized case is that the
control law of each agent ignores the destinations
of the others. By using ϕi = γdi

((γdi)
k+Gi)1/k as a

navigation function for agent i, there is no po-
tential for i to cooperate in a possible collision
scheme when its initial condition coincides with
its final destination. In order to overcome this
limitation,we add a function fi to γi so that the
cost function ϕi attains positive values in prox-
imity situations even when i has already reached
its destination. A preliminary definition for this
function was given in (Dimarogonas et al. (2003)).
Here, we modify the previous definitions to ensure
that the destination point is a non-degenerate
local minimum of ϕi with minimum requirements
on assumptions. We define the function fi by:

fi(Gi) =





a0 +
3∑

j=1

ajG
j
i , Gi ≤ X

0, Gi > X

where X,Y = fi(0) > 0 are positive parameters
the role of which will be made clear in the follow-
ing. The parameters aj are evaluated so that fi

is maximized when Gi → 0 and minimized when
Gi = X. We also require that fi is continuously
differentiable at X. Therefore we have:

a0 = Y, a1 = 0, a2 =
−3Y

X2
, a3 =

2Y

X3

The parameter X serves as a sensing parameter
that activates the fi function whenever possible
collisions are bound to occur. The only require-
ment we have for X is that it must be small
enough whenever the system has reached its equi-
librium so that fi vanishes whenever all agents
converge to their goal configuration. In mathemat-
ical terms:

X < Gi (qd1, . . . , qdN ) ∀i



That’s the minimum requirement we have regard-
ing knowledge of the destinations of the team.
Intuitively, the destinations should be far enough
from one another.

A key feature of navigation functions and in par-
ticular, DNF’s, is that their gradient motion is
repulsive with respect to the boundary of the free
space. The free space for each agent is defined
as the subset of W which is free of collisions
with the other agents. Hence collision avoidance is
reassured. For further information regarding ter-
minology the reader is referred to (Dimarogonas
et al. (2003), Dimarogonas et al. (2004)).

3. THE CASE OF DOUBLE INTEGRATOR
DYNAMICS

In this section, we assume that the spherical
agents’ motion is described by the double inte-
grator:

q̇i = vi

v̇i = ui
, i ∈ {1, . . . , N} (2)

For the case of single integrator kinematics de-
scribed in the previous section the control law had
the simple form vi = −Ki

ϑϕi

ϑqi
. In the present situ-

ation, agents are controlled through their acceler-
ation and a different controller design is applied.

Specifically, we will show that the system is
asymptotically stabilized under the control law

ui = −Ki
∂ϕi

∂qi
+ θi

(
vi,

∂ϕi

∂t

)
− givi (3)

where Ki, gi > 0 are positive gains,

θi

(
vi,

∂ϕi

∂t

)
∆= − cvi

tanh
(
‖vi‖2

)
∣∣∣∣
∂ϕi

∂t

∣∣∣∣

and
∂ϕi

∂t
=

∑

j 6=i

∂ϕi

∂qj
q̇j

The first term of equation (3) corresponds to the
potential field (decentralized navigation function)
described in section 2. The second term exploits
the knowledge each agent has of the velocities of
the others, and is designed to guarantee conver-
gence of the whole team to the desired configura-
tions. The last term serves as a damping element
that ensures convergence to the destination point
by suppressing oscillatory motion around it.

By using the notation x =
[
xT

1 , . . . , xT
N

]T , xT
i =[

qT
i vT

i

]
the closed loop dynamics of the system

can be rewritten as

ẋ = ξ(x) =
[
ξT
1 (x), . . . , ξT

N (x)
]T

(4)

with

ξi(x) =




vi

−Ki
∂ϕi

∂qi
− cvi

tanh
(
‖vi‖2

)
∣∣∣∣
∂ϕi

∂t

∣∣∣∣− givi




We will use the function V =
∑
i

Kiϕi + 1
2

∑
i

‖vi‖2

as a candidate Lyapunov function to show that
the agents converge to their destinations points
. We will check the stability of the multi-agent
system with LaSalle’s Invariance Principle.

4. STABILITY ANALYSIS

In the following we prove the following theorem:
Theorem 4.1 The system (4) is asymptotically
stabilized to

[
qT
d 0

]
,qd = [qd1, . . . , qdN ]T up to

a set of initial conditions of measure zero if the
exponent k assumes values bigger than a finite
lower bound and c > maxi(Ki).
Proof : The candidate Lyapunov Function we use
is V =

∑
i

Kiϕi + 1
2

∑
i

‖vi‖2 and by taking its

derivative we have

V =
∑

i

Kiϕi +
1
2

∑

i

‖vi‖2 ⇒

V̇ =
∑

Kiϕ̇i +
∑

vT
i v̇i =

∑
Ki

(
∂ϕi

∂t
+ vT

i

∂ϕi

∂qi

)

+
∑

vT
i

(
−Ki

∂ϕi

∂qi
+ θi

(
vi,

∂ϕi

∂t

)
− givi

)

⇒ V̇ =
∑ (

Ki
∂ϕi

∂t
+ vT

i θi

(
vi,

∂ϕi

∂t

)
− gi ‖vi‖2

)

Using the notation Bi
∆= Ki

∂ϕi

∂t + vT
i θi

(
vi,

∂ϕi

∂t

)

we first show that
∑
i

Bi ≤ 0 if c > maxi(Ki):

∂ϕi

∂t
> 0 :

c > max
i

(Ki) ⇒ c > Ki

tanh
(
‖vi‖2

)

‖vi‖2

⇒ Ki >
c ‖vi‖2

tanh
(
‖vi‖2

) sgn
(

∂ϕi

∂t

)

⇒ Ki
∂ϕi

∂t
+ vT

i θi

(
vi,

∂ϕi

∂t

)
< 0∀i :

∂ϕi

∂t
> 0

∂ϕi

∂t
< 0 :

c > 0 ⇒ c > −Ki

tanh
(
‖vi‖2

)

‖vi‖2

⇒ Ki >
c ‖vi‖2

tanh
(
‖vi‖2

) sgn
(

∂ϕi

∂t

)

⇒ Ki
∂ϕi

∂t
+ vT

i θi

(
vi,

∂ϕi

∂t

)
< 0∀i :

∂ϕi

∂t
< 0

Of course, Ki
∂ϕi

∂t +vT
i θi

(
vi,

∂ϕi

∂t

)
= 0 for ∂ϕi

∂t = 0.
In the preceding equations we used the fact that



0 ≤ tanh(x)
x ≤ 1∀x ≥ 0. So we have

∑
i

Bi ≤ 0 with

equality holding only when ∂ϕi

∂t = 0∀i. We have

V̇ =
∑

i

Bi −
∑

i

gi ‖vi‖2 ≤ 0

Hence, by LaSalle’s Invariance Principle, the state
of the system converges to the largest invariant set
contained in the set

S =
{

q, v :
(

∂ϕi

∂t
= 0

)
∧ (vi = 0) ∀i

}
=

= {q, v : (vi = 0) ∀i}

because by definition the set
{

q, v :
(

∂ϕi

∂t = 0
)
∀i

}

is contained in the set {q, v : (vi = 0) ∀i}. For this
subset to be invariant we need

v̇i = 0 ⇒ ∂ϕi

∂qi
= 0∀i

In (Dimarogonas et al. (2003)) we have proven
that this situation occurs whenever the potential
functions either reach the destination or a saddle
point. By bounding the exponent k from below
by a finite number, ϕi becomes a navigation
function, hence its critical points are isolated
(Koditscheck and Rimon (1990)). Thus the set of
initial conditions that lead to saddle points are
sets of measure zero (Milnor (1963)). Hence the
largest invariant set contained in the set ∂ϕi

∂qi
= 0∀i

is simply qd♦

5. SIMULATIONS

To demonstrate the navigation properties of our
decentralized approach, we present a simulation of
four holonomic agents that have to navigate from
an initial to a final configuration, avoiding colli-
sion with each other. Each agent has no knowledge
of the desired destinations of the other agents. In
this picture I− i,T − i denote the initial condition
and desired destination of agent i respectively.
The chosen configurations constitute non-trivial
setups since the straight-line paths connecting
initial and final positions of each agent are ob-
structed by other agents. The following conditions
have been chosen for the simulation of figure 3:
Initial Conditions:

q1(0) =
[
.1232 −.1

]T
, q2(0) =

[−.1 −.1
]T

,

q3(0) =
[−.1232 .1

]T
, q4(0) =

[
.1 .1

]T

u1(0) = u2(0) = u3(0) = u4(0) =
[
10−3 0

]

Final Conditions:

qd1 =
[−.1232 .1

]T
, qd2 =

[
.1 .1

]T
,

qd3 =
[
.1732 −.1

]T
, qd4 =

[−.1 −.1
]T

Fig. 3. Simulation 1

Screenshots A-F of Figure 3 show the evolution
of the team configuration in time. Screenshot A
shows the initial and final destination of each
agent, whilst B-E show the conflict resolution
procedure. The agents converge to their targets
in screenshot F.

In the second simulation we show the influence of
the f function in the collision avoidance proce-
dure. The initial and final condition for agent 4
are the same in this case:
Initial Conditions:

q1(0) =
[
.1732 −.1

]T
, q2(0) =

[−.15 −.15
]T

,

q3(0) =
[−.1232 .1

]T
, q4(0) =

[
0 0

]T

u1(0) = u2(0) = u3(0) = u4(0) =
[
10−3 −10−3

]

Final Conditions:

qd1 =
[−.1732 .1

]T
, qd2 =

[
.15 .15

]T
,

qd3 =
[
.1732 −.1

]T
, qd4 =

[
0 0

]T

Screenshots A-F of Figure 4 show the evolution of
the team configuration in time. One can see that
agent 4 cooperates with the rest of the team in
the conflict resolution procedure.

6. CONCLUSIONS

The decentralized navigation function methodol-
ogy, established in previous work for navigation
of a multi-agent system with single integrator
dynamics has successfully been extended to the
case of double integrator. The main motivation



Fig. 4. Simulation 2

of this work lies in the fact that acceleration
control is more implementable in multiple vehicle
systems than velocity control. The stability of
the overall system has been proven by LaSalle’s
Invariance Principle. The collision avoidance and
global convergence properties have been verified
through computer simulations.

Current research aims at limiting the sensing
capabilities each agent has for the rest of the
team,i.e. increasing the decentralization of the
whole scheme. This has been accomplished for
the case of single integrator dynamics in a recent
paper (Dimarogonas and Kyriakopoulos (2005)).
Another interesting issue that has to be dealt with
is acceleration control for the case of nonholo-
nomic dynamics.
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