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Abstract: In this paper the input design and non-parametric identification of a 6-
input, 6-output Stewart Platform is considered. The approach takes into account
the information matrix for the choice of realization combination of experiments.
It considers as well a least squares recovery of frequency domain components.
This approach makes maximum use of periodic excitations taking into account
the constraints on the experimental conditions imposed over the system such as
limited velocity and acceleration in order to recover the frequency response of the
system from closed-loop data. Copyright c©2005 IFAC
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1. INTRODUCTION

The SIMONA research project (SIMONA stands
for the Institute for Research in SImulation, MO-
tion and NAvigation) has as one of its objectives
the study in the field of simulation and pilot train-
ing by use of an advanced flight-simulator. This
simulator (Figure 1) is composed of a light-weight
cockpit (3500 kg) mounted over a six degree of
freedom motion platform driven by six 1.20m-
stroke hydraulic servo actuators. It is desired that
this simulator has a wider bandwidth than con-
ventional simulators to simulate special condi-
tions. Therefore, the simulator is lighter and more
flexible introducing important flexible dynamics
to be considered for high performance control.
At present, an approximation of the real system
considering only the rigid body motion platform
dynamics has been used for an initial control
design (Koekebakker, 2001),(Valk, 2004). Better
approximations of the dynamics of the whole sys-
tem are necessary for increasing the performance
in the entire working envelope to fulfil bandwidth

Fig. 1. Left: SIMONA Research Simulator,
Right: Smaller Platform

requirements. For identification and control stud-
ies also a scaled (3:1) Stewart platform has been
built.

The derivation of accurate dynamical models
for mechanical systems based on black box sys-
tem identification techniques has acquired more
and more importance in recent years where



high performance objectives are needed for high-
precision mechanical servo systems. In this frame-
work many system identification techniques have
been addressed by several authors (Ljung, 1987),
(McKelvey, 2002), (Pintelon and Schoukens, 2001).
Additionally, in the last decade, a lot of research
activity is to be found in the frequency domain
system identification ((Pintelon and Schoukens,
2001), (McKelvey, 2002)). Having advantages
such as delay modelling, shorter data sequences
and straightforward superposition of experiment
results which are preferred in many cases. How-
ever, much less research is found on multi-input,
multi-output mechanical systems and most of
the multivariable identification applications on
real systems have a limited number of inputs
and outputs and only two or three degrees-of-
freedom (Callafon et al., 1996), (Ninness and
Gomez, 1995), (Liu and Wu, 1982). Frequency
domain multi-variable identification provides a
viable approach for high dimensional mechani-
cal systems with efficient data processing with
the advantages of good superposition possibili-
ties. Moreover, combined with the use of peri-
odical excitation, it is considered highly appro-
priate and optimally informative when properly
designed for the identification of multivariable sys-
tems ((Schoukens et al., 1994)).

Considering the above observations this paper ad-
dresses the estimation of a non-parametric multi-
variable frequency response of the 6-input, 6-
output SIMONA Research Simulator motion sys-
tem that has a Stewart Platform configuration.
It is chosen to have a representation prior to
model fitting enabling the reduction or elimina-
tion of error sources prior to fitting. The errors
due to model structure selection and order thus
are isolated from errors in excitation and mea-
surement. For this purpose the following steps
will be considered: First, the input signal design
will be considered reaching towards informative
experiments. Then, general experimental consid-
erations will be addressed. Followed by a pro-
cedure for processing of the measured data and
the estimation of frequency domain closed-loop
responses. Additional analysis will be performed
over some of the data sequences to give a measure
of the approximated non-linear behaviour. Finally
the open-loop response for the flight simulator
system will be recovered from the previous found
responses and conclusions will be drawn.

2. INFORMATION MATRIX

Considering the identification of systems it is of
importance that the information that can be ex-
tracted from an experiment is as good as possible.
The information that is related to the variance of

the parameters of the final model, is defined by
the Cramer Rao lower bound and it depends on
parameters that can be adjusted when designing
the input signals for the system identification ex-
periment and when performing the experiment.

It has also to be considered that the input design
has to take into account the constraints imposed
in the experimental conditions. In the identifica-
tion of the Stewart Platform the constraints are
given by maximum acceleration and speed as a
function of a position in the working envelope of
the Stewart platform configuration.

In the multivariable case the matrix R0(ω) defin-
ing the Fourier Transform of different realization
sequences of a exciting reference is defined as (1).

R0(ω) =
[

R0,1(ω) R0,2(ω) · · · R0,n(ω)
]

(1)

where Ro,i(ω) is the Fourier transform of the
exciting reference of the ith experiment realization
at frequency ω and n is the number of realiza-
tions. The determinant of matrix R0(ω) is related
to the information matrix so that an optimal
input design will have a maximum |det(R0(ω))|
(Guillaume et al., 1996). The maximization of the
determinant of matrix R0 can be considered in
two different parts as given by (2), where a(ω)
is the maximum amplitude for a given frequency
and Q is a matrix composed of -1 and 1 elements.

R0(ω) = a(ω)Q (2)

The maximization of a(ω) which will be con-
strained by the maximum energy and amplitude
to be used in the experiment. The maximization
of det|Q| will be given by the chosen combination
sequence of experiment realizations that will pro-
vide better conditioning of the experiments as well
as improved information for the same independent
signal amplitude.

The maximization of a(ω) is done by using en-
ergy compressed signals that use efficiently the
energy applied to the excitation for a given limit
in the amplitude of the excitation signals. This
is equivalent to having signals with a low crest
factor. There are several methods for optimiza-
tion of multisine signals in order to minimize the
crest factor ((Morelli, 2003), (van den Bos, 1987),
(Guillaume et al., 1991)). However most of these
non-linear optimizations result in non-acceptable
local minima or involve high computational effort
as it is shown by Table 1. Table 1 illustrates the
average results of different self-implementation
of the referred methods in Matlab applied to
20-component multisines with different frequency
distributions.

In this application a minimization by selection of
φ1 as given in Schroeder’s equation (3) provided



Table 1. Crest Factor minimization

Schroeder (Schroeder, 1970) 1.8622

Levenberg-Marquardt (Guillaume et al., 1991) 1.7998

Simplex (Morelli, 2003) 1.8397

Iterative Least Squares (van den Bos, 1987) 1.7807

a acceptable crest factor in an almost direct way
(Schroeder, 1970).

φn = φ1 −
πn2

N
(3)

In (3), φn is the phase of the nth frequency com-
ponent in the Schroeder multisine, N is the total
number of frequency components and φ1 is the
first component phase.

The second part considers a sequence combination
matrix Q (Guillaume et al., 1996) composed only
of 1 and -1 elements. There are several choices that
can be made, one of this choices is given by the
combination matrix, Q6 in (4), which will provide
a maximum in det|Q6|.

Q6 =

















1 −1 −1 1 −1 −1
1 1 −1 −1 −1 −1
1 −1 1 −1 −1 −1
1 1 1 1 1 −1
1 −1 −1 −1 1 1
1 1 1 1 −1 1

















(4)

3. EXPERIMENT CONSIDERATIONS

The signal design for the system identification of
the flight simulator dynamics is based on multi
sine use, the number of frequency components in
the multi sine is enough to assure the persistence
of excitation for the overall experiment. Several
considerations have to be taken into account in
order to make the approximations more reliable.

1. A base frequency is to be chosen, all other
frequencies should be integer multiples of the base
frequency. The selection of the base frequency
is the maximum resolution that can be reached
between successive frequency points. A small fre-
quency will give a high resolution but will increase
the experiment time.

2. Multiple frequency points are designed to cover
the frequency range of interest. Frequency domain
measurements can be adapted to particular fre-
quency spectra resulting in good signal to noise
ratios on the frequencies of interest (Schoukens et
al., 1994). In this paper a non uniformly spaced
frequency distribution from 0.1 to 650 Hz with
uniform amplitude spectra was applied.

3. Frequency domain experiment results can be
superposed. This allows the choice of different

Fig. 2. Measurement configuration

resolutions for different experiments or frequency
ranges. A good selection will reduce the experi-
ment time considerably. In this paper a division of
frequency ranges is considered. The low frequency
range with high resolution (0.1 to 24) and the high
frequency range with low resolution (25 to 650
Hz).

4. The measurements will be taken during an
integer number of periods to avoid leakage effects
that would introduce errors in the estimation of
the frequency domain Fourier coefficients.

5. Via the automated script function in Matlab
using the real time control system of the simulator
the measurements will be synchronized and no
further estimation errors due to an inaccurate
trigger on the measurements is going to be consid-
ered (Guillaume et al., 1991). The measurement
configuration will be given by figure (2). The
measured signals are u(t) and y(t) generated by
excitation signal in the force level r(t). The exci-
tation signal is a multi-sine thus in the frequency
domain we will have a collection of dirac functions
representing it.

4. DATA PROCESSING

The approach taken for data processing is the
least squares projection of each of the measured
signals in a basis composed by the frequency
components known to be present in the excitation
signal. The basis will be composed additionally by
a first column element that takes into account the
mean value that could be present on the data.
The general form of the basis used is given by
(5), where fi is the ith frequency component of
the exciting n-component signal and by linear
mapping also the frequency components of the
measured signals.

H =
[

1 cos(f1t) sin(f1t) cos(f2t) · · · sin(fnt)
]

(5)
The same basis is also used to test the level of
non-linearities present in the measurements.

The illustrative experiment to be considered spans
a frequency range from 0.2 to 24 Hz with a reso-
lution (basic harmonic) of 0.2 Hz. This frequency
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Fig. 3. Measured Output and Estimated Residuals
(Time Domain)

range corresponds to one of the high resolution
experiments.

Using the basis previously defined the Fourier
coefficients (YF ) that are main components of the
measurement (y(t)) are estimated.

y(t) = HYF + e(t) (6)

YF = (H
TH)−1HT y(t) (7)

e are the residuals considered to be a quasi-
stationary signal orthogonal to YF . The following
matrix computations are then of interest:

(HTH)−1HT (Projector) (8)

e = (I −H(HTH)−1HT )y(t)(Residuals) (9)

Using this least squares projection in place of a
Fast Fourier Transform the effects of random noise
and other disturbances are diminished.

Applying the projector (8), composed of the fre-
quency points contained in the excitation signal,
to all outputs we estimate the residuals as given
by (9). As it can be seen in Figure(3), for the
average case of the diagonal terms, the level of
noise in the measurement signal amounts to less
than 1% of the total signal amplitude, this gives a
good measure of the signal to noise ratio present
in the experiments.

5. LINEAR APPROXIMATION OF
NON-LINEAR BEHAVIOUR

The mildly non-linear real plant is approximated
by a linear mapping. In order to analyze the
degree of non-linearity, the residuals of the first
base frequency projection are again projected into
a basis defined by second and third order har-
monics of the base frequency components. These
components will be used to evaluate the level of
non-linearity of the system for a given working
point and amplitude gain. Non-linearities like fric-
tion can be reduced with a higher amplitude but
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Fig. 5. Fourier Coefficients Third Order Harmon-
ics (1600 N gain)

then the position dependent non-linear effects also
increase. An optimal balance between these two
effects is to be found.

An additional basis defined by the second order
harmonics from the first basis is then created.
Then the components of the estimated residuals
(Figure 3) corresponding to the second harmonics
are estimated. The Fourier coefficients for the
second basis are comparatively small as it can
be seen on figure 4. In this figure, the projection
corresponding to the first diagonal element output
is shown, as it represents the average case for all
diagonal terms.

Further the residuals are projected into a basis
defined by third harmonics frequencies. The third
harmonic components of the residuals are even
smaller than the second order harmonic compo-
nents and amount to less than 1% of the signal
energy. In figure 5 the projection corresponding
to the first diagonal element output is shown.

Moreover the components are in the same am-
plitude level as the remaining residuals. There
also may be nonlinear effects in the main fre-
quency components. For the purpose of analyzing
this effect additional measurements were taken
using half the gain in the exciting signals and
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Fig. 6. Basic harmonic components for the output
measurement at different amplitudes (scaled
to basic amplitude)
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Fig. 7. Basic harmonic components for the output
measurement at different amplitudes (scaled
to basic amplitude)

also a negative gain. In Figure (6) the responses
to all different gain experiments are scaled to
base amplitude and superposed. It is clear that
even though the gain is varying the superposition
principle of linear systems is still an accurate de-
scription. Additionally, when using different gains
the amplitude of the noise changes accordingly
to the gain which makes us think of small non-
linear components. There are small differences for
the output description in terms of base frequency
components. This would indicate the presence
of slight noise plus non-linearities. However the
transfer function between output and inputs is
consistent for all experimented gains.

In the case of non-diagonal elements the noise
component and non-linearities are as low as in
the diagonal case, however the magnitude of the
basic components is in the level of the noise and
more dissimilarities are found when comparing the
experiment for different amplitudes, due to the
lower signal to noise ratio achieved. The average
case for the non-diagonal element projection can
be found on Figure (7).

6. OPEN-LOOP RESPONSE RECOVERY
FROM CLOSED-LOOP DATA

The reference, input and output measurements
denoted by R0(ω), U0(ω) and Y0(ω) respectively,
are defined in a similar manner as (1) for the
collection of data in the frequency domain of all
necessary experiment realizations.
The estimator from the data contained in 6 lin-
ear independent realizations under the specified
experiment considerations can be written for the
closed loop (T (ω)) and process sensitivity (S(ω))
transfer function matrices as given in (10) and
(11).

T̂ (ω) = Y(ω)R−1(ω) (10)

Ŝ(ω) = U(ω)R−1(ω) (11)

Further a non-parametric estimate of the open-
loop plant can be found indirectly as (12).

P̂ (ω) = T̂ (ω)Ŝ−1(ω) (12)

In figure (8) all the measurements are combined
to generate a non-parametric representation of the
6-degrees-of-freedom Stewart Platform.

7. CONCLUSIONS

The input signal design based on the informa-
tion matrix provides a good alternative for the
selection of experiment combinations relevant for
multi-input systems. The advantages of low crest
factor signals are further emphasized by the use
of an appropriate sequence of experiment real-
izations that will provide good conditioning for
the further estimation of non-parametric or para-
metric models. Additionally, in this setting the
given experiment constraints are taken into ac-
count which allow the user to design efficient fea-
sible experiments to be applied in practical servo-
mechanical systems in an automated iterative way
that has proven to be efficient.

The a priori knowledge of excitation signal fre-
quency contents provides a useful tool for the
analysis of the frequency response focused on the
excited dynamics and thus reducing the effects
of noise. The effects of random noise are further
reduced by the use of the least squares projec-
tion of the measured signals in an appropriately
chosen basis. The frequency content of the mea-
sured signals was recovered with the least squares
projection taking into account in some measure
the effects of random white noise effects, and the
effects of means. This gives better results than
using the Fast Fourier Transform.

The level of approximated non-linearities for the
Stewart Platform motion system is low enough to
permit a linear approximation of models for an
specific operation point.
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Fig. 8. Non-parametric representation of the Stewart Platform dynamics. Closed-loop (black,¤), Process
Sensitivity (red,o) and Open-loop recovered response (blue, ∆).

The quality of the signal recovery makes possible
the use of straightforward least squares estimators
for the recovery of the frequency response of the
open loop plant.
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