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Abstract: This paper proposes a hierarchical formation stabilization method for
vehicles having nonlinear dynamics. Supposing that the formation control problem
is already solved for the case of linear vehicle dynamics, the method proposes a
dynamic inversion based low-level control, which linearizes, at least approximately,
the original vehicle dynamics so that the formation control can be applied. In this
way a hierarchical control system is obtained, which is then completed with a
passivity based stabilization procedure for the stability of the entire system can
be guaranteed. Copyright c©2005 IFAC.
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1. INTRODUCTION

In the last years the increased computational ca-
pabilities of computer systems and the rapid de-
velopment in the communication and sensor tech-
nologies have made it possible to build highly au-
tonomous unmanned vehicles, which can perform,
individually or cooperating in a group, complex
tasks (traffic on an automated highway, motion in
a platoon formation, etc.) in the presence of un-
certainty and disturbances (e.g. (Li et al., 2002)).
The control of autonomous vehicles is generally
hierarchical, where the components on the lower
levels are local, in the sense that they depend on
the particular - and generally nonlinear - vehi-
cle dynamics. These local controllers modify the
original vehicle dynamics so that the dynamic
behavior of the closed loop can be modelled by
a linear system. This linear model, which can be
the same for different vehicles, is then used in
the design of the higher-level control components,
which depend on the prescribed cooperative tasks.

Therefore it is sufficient to solve the complex,
task-dependent control problem for the case of
linear systems only, and the obtained controllers
will be independent from the particular vehicles
(for high-level control design see e.g. (Borrelli et

al., 2004), which proposes a model predictive con-
trol method or (Tanner et al., 2003), which uses
artificial potential functions).

It is clear that the stability of the entire hierar-
chically controlled formation is a key issue in the
controller design. Despite of this, the cooperative
control literature concentrates mainly on the high-
level control and the stability problem of the cou-
pled system remains open in most cases.

This paper proposes a dynamic inversion based
low-level control, which fits to the most high-level
control framework and it can be completed with
a passivity based stabilization procedure, which
guarantees the stability of the entire formation.



2. PROBLEM FORMULATION AND THE
OUTLINE OF SOLUTION

Suppose there is given a formation control prob-
lem, which has to be solved by vehicles moving
on a 2D plane (in 3D a similar argument can be
applied.) This control problem generally a pre-
scribed cooperative motion, e.g. a geometric for-
mation shaping, obstacle avoidance, cooperative
trajectory tracking, or a simple collective motion
called ’flocking’. We do not need to specify this
problem more precisely, since in this paper we
assume that this control problem has already been
solved for the special case when every vehicle has
the following simple double-integrator dynamics

q̇i = pi ṗi = vi (1)

where qi, pi, vi ∈ R
2 denote the vector of posi-

tion, velocity and acceleration of vehicle i defined
in a fixed coordinate frame K0. In most cases
the formation control problem is formulated in
a moving coordinate system K, the orientation
and the origin of which are given by the time-
varying functions ϕK(t) and qK(t) respectively.
The equations (1) in K can be expressed in the
following form:

q̃i =R−ϕd
(qi − qd)

˙̃qi = Ṙ−ϕd
(qi − qd) +R−ϕd

(pi − pd) := p̃i

˙̃pi = R̈−ϕd
(qi − qd) + 2Ṙ−ϕd

(pi − pd)

+R−ϕd
(vi − q̈d) (2)

By setting

vi = q̈d +R−1
−ϕd

[

−R̈−ϕd
(qi − qd)

−2Ṙ−ϕd
(pi − pd) + ṽi

]

(3)

we get the equivalent of dynamics (1) in K:

˙̃q = p̃ ˙̃p = ṽ (4)

where q̃ = [q̃1, . . . , q̃N ], p̃ = [p̃1, . . . , p̃N ], and
ṽ = [ṽ1, . . . , ṽN ]. Due to our assumption the for-
mation control problem is solved, i.e. there exists a
formation controller ṽ = ṽc(q̃, p̃), generated by an
appropriate, but arbitrary control algorithm, s.t.
the coupled system (4) is asymptotically stable
with appropriate Lyapunov function V(q̃, p̃), and
the trajectories of (4) converge to a state (q̃∗, p̃∗)
representing the prescribed formation.

Our purpose is to apply the above formation con-
trol method for vehicles having nonlinear dynam-
ics and to ensure the asymptotic stability of the
coupled dynamics obtained.

Suppose that the dynamics of the vehicles can be
given in the following form:

y = x1

ẋ1 = h(Cx2)

ẋ2 =A(ρ(t))x2 +B(ρ(t))u (5)

where x1, ẋ1 represent the position- and velocity
vector of the vehicle in a fixed coordinate system;
both are supposed to be measured by appropriate
inertial and/or GPS sensors. The output map h(·)
represents an invertible coordinate transformation
and the matrix C ∈ R

k1×k2 , k1 < k2 is constant.
We assume that the time-varying parameters col-
lected in the vector ρ(t) are also available for mea-
surement. The class of systems determined by (5)
is able to describe the dynamics of the most aerial
and road vehicles (Kiencke and Nielsen, 2000),
that is why it was chosen in our work.

To solve the formation stabilization problem for-
mulated above a two level hierarchical control
framework is proposed. In this framework the
formation control designed for the simplified ve-
hicle dynamics forms the high-level controller. On
the low-level a dynamic inversion based control is
applied to transform the nonlinear dynamics (5)
to the required double integrator form (Sec.3) It
will be seen that this linearization can be solved
approximately only, i.e. the resulted double in-
tegrator will be coupled with the dynamics of
the estimation error of the unmeasured states in
(5). Due to the presence of this additional error
dynamics the simple connection of the high-level
and the low-level controllers does not necessarily
yields globally stable closed loop behavior. Thus,
in the second step of the design procedure (Sec.
4), we design a passivity-based external controller,
which stabilizes the entire system. The obtained
control structure is then tested on a formation
control problem of road vehicles (Sec. 5).

3. DYNAMIC INVERSION BASED
LOW-LEVEL CONTROLLER DESIGN

In this section a dynamic inversion based lineariz-
ing low-level controller is applied to transform, at
least approximately, the nonlinear vehicle dynam-
ics into simple double integrator. (The detailed
discussion of inversion can be found e.g. in (Szabó
et al., 2003)). Following the control design proce-
dure discussed in detail in (Péni and Bokor, 2004b)
we first apply the following state transformation
in order to separate the output-related, measur-
able states from the others:

Φ :

[
x1 = y

x2

]

7→





z1 = x1 = y

z2 = ẋ1 = h(Cx2)
z3 = C⊥x2



 (6)

where

[
C

C⊥

]

is invertible. The original system can

be rewritten in z coordinates as



ż1 = z2

ż2 = JCAC̃h−1(z2) + JCAC̃⊥z3 + JCBu

= Jf2(z2) + JA2z3 + JB2u

ż3 =C⊥AC̃h−1(z2) + C⊥AC̃⊥z3 + C⊥Bu

= f3(z2) +A3z3 +B3u (7)

where

[
C

C⊥

]−1

=
[

C̃ C̃⊥
]

and J = ∂h
∂Cx2

. It is

important to keep in mind that the matrices in
the above equations are not constant, they depend
on the time-varying parameter ρ and/or the state
variables x̃2 = Cx2.

By inverting the dynamics (7) the linearizing dy-
namic controller can be obtained in the following
form :

uc =B−1
2 J−1(−Jf2(z2)− JA2z3c + v)

ż3c = f3(z2) +A3z3c +B3uc − w =

= (A3 −B3B
−1
2 A2)z3c + f3(z2)

−B3B
−1
2 f2(z2)−B3B

−1
2 J−1v − w

= (A3 −B3B
−1
2 A2)z3c + u∗c (8)

where v and w are additional control inputs de-
rived later on. For the applicability of uc it has to
be bounded, which follows if u∗c is bounded and
the internal dynamics

ż3c = (A3 −B3B
−1
2 A2)z3c (9)

– which is, in fact, the zero dynamics ((Isidori,
1995)) of the original system (7) – is stable. From
now on we suppose that the stability of (9) holds.

Applying the controller (8) to the system (7) we
get the following closed-loop dynamics

ż1 = z2

ż2 = JA2(z3 − z3c) + v

ż3 − ż3c =A3(z3 − z3c) + w (10)

Denoting the position z1 and the velocity z2, as
before, by q and p the dynamics of the controlled
vehicles can be written as

q̇i = pi

ṗi = vi + JiA2,iei

ėi =A3,iei + wi (11)

which is, apart from the dynamics of the approx-
imation error, equivalent to a double-integrator.

4. PASSIVITY BASED FORMATION
STABILIZATION

Now, being in possession of the high-level forma-
tion and the low-level linearizing controllers we

can build up the hierarchical control structure. For
this, let us substitute ṽc

i into (11) and apply (2)
to get the vehicle dynamics in K:

˙̃qi = p̃i

˙̃pi = ṽc
i (q̃, p̃) +R−ϕd

JiA2,iei

ėi =A3,iei + wi (12)

If q̃ = [q̃1, . . . , q̃N ], p̃ = [p̃i, . . . , p̃N ], Ã2 =
diag(R−ϕd

JiA2,i) and Ã3 = diag(A3,i) the equa-
tions above take the following more compact form:

˙̃q = p̃

˙̃p= ṽc(q̃, p̃) + Ã2e

ė= Ã3e+ w (13)

The system we got is the coupled dynamics of
the formation, which has to be asymptotically
stabilized by appropriate external control input
w.

Notice that the equations (13) realizes a partial
interconnection of the following subsystems

1. ė = Ã3e+ w 2. ˙̃q = p̃
˙̃p = ṽc(q̃, p̃)

We solve the stabilization problem by using
passivity-based technique in the following way:
first new inputs and outputs are chosen for the
subsystems with respect to which they will be
passive. Then the control input w is set so that
the dynamics (13) realizes a negative feedback
interconnection of the subsystems, which conse-
quently will be asymptotically stable (van der
Schaft, 2000).

Since we have supposed in section SEC that
the subsystem 2 is asymptotically stable with
Lyapunov function V(q̃, p̃), then by calculating the
time derivative of V we get hints for the choose of
input u2 and output y2:

dV

dt
=
∂V(q̃, p̃)

∂q̃
p̃+

∂V(q̃, p̃)

∂p̃
ṽc

︸ ︷︷ ︸

<0

+
∂V(q̃, p̃)

∂p̃
Ã2

︸ ︷︷ ︸

yT

2

e
︸︷︷︸

u2

≤ yT
2 u2 (14)

i.e. the subsystem 2 is passive with storage func-
tion V. In order to carry out a similar in-
put/output selection procedure for the subsystem
1, it is needed to be asymptotically stable. For this
we assume that the dynamics of the approxima-
tion error ėi = A3,iei is quadratically stable for all
i with Lyapunov functions Wi = 1

2e
T
i Wiei. Thus

the coupled error dynamics is also quadratically
stable with Lyapunov function W(e) = 1

2e
TWe,

where W = diag(Wi). By deriving the Lyapunov



function we can chose appropriate input and out-
put, i.e.

dW

dt
= eTWÃ3e

︸ ︷︷ ︸

<0

+ eT

︸︷︷︸

yT

1

Ww
︸︷︷︸

u1

≤ yT
1 u1 (15)

So, the subsystem 1 is also passive with respect to
the chosen input u1 and output y1 with storage
function W(e).

Notice that the partial interconnection of subsys-
tem 1 and 2, coming from the original structure
(13), can be expressed by the following relation
u2 = y1. (The interconnected structure is depicted
in Fig. 1) In order to achieve the negative feedback
interconnection we have to set u1 = −y2 as it can
be seen in Fig. 1. This means that the external
control input w has to be chosen as follows

w = −W−1ÃT
2

∂V(q̃, p̃)

∂p̃
(16)

To prove the asymptotic stability of the entire
system we prove first that the interconnected
system is passive with storage function V(q̃, p̃) +
W(e) and then we will see that this function can
serve as Lyapunov function in our special case. Let
us introduce two new, external inputs denoted by
ue1 and ue2 respectively according to Fig. 1. By
calculating the time-derivative of V(q̃, p̃) +W(e):

d

dt
{V(q̃, p̃) +W(e)} =

∂V

∂q̃
p̃+

∂V

∂p̃
ṽc

︸ ︷︷ ︸

<0

+ eTWÃ3e
︸ ︷︷ ︸

<0

+yT
2 u2e + yT

1 u1e ≤
[
yT
1 yT

2

]
[
u1e

u2e

]

(17)

i.e. the interconnected system is passive with

respect to input

[
u1e

u2e

]

and output

[
y1
y2

]

with

storage function V(q̃, p̃) +W(e). In our case the
external inputs ue1 and ue2 are 0 thus V̇(q̃, p̃) +
Ẇ(e) ≤ 0. Since V̇(q̃, p̃)+Ẇ(e) = 0 only if q̃ = q̃∗,
p̃ = p̃∗ and e = 0 the asymptotic stability of the
prescribed formation (q̃, p̃, e) = (q̃∗, p̃∗, 0) follows.

˙̃q = p̃
˙̃p = ṽc + Ã2u2

y2 = ÃT
2

∂V
∂p̃

ė = Ã3e + W−1u1

y1 = e

�

--ue1

ue2

y1

u2y2

u1

6–

�

Fig. 1. Interconnection of passive subsystems

5. FORMATION CONTROL OF ROAD
VEHICLES

As an illustrative example for the presented
method we solve in this section a formation sta-
bilization problem of road vehicles. Suppose that
there is given 5 vehicles in an arbitrary config-
uration on the 2D plane and we intend to steer
them to a straight row, which is perpendicular to
a time-varying spatial trajectory qd(t) prescribed
for the entire group to follow. Suppose the vehicle
dynamics is described by the nonlinear single-
track model, given in the form of (5) as follows:

y = x1

ẋ1 =

[
ẋ

ẏ

]

=

[
v cos(β + ψ)
v sin(β + ψ)

]

= h(β + ψ, v)

= h(

[
1 0 0 0
0 1 0 0

]

x2) = h(Cx2) (18a)

ẋ2 =







β̇ + ψ̇

v̇

β̇

ṙ






=










0 0
a11

v

a12

v2

0 0 0 0

0 0
a11

v

a12

v2
− 1

0 0 a21
a22

v
















β + ψ

v

β

r







+










b1

v
0

0 1
b1

v
0

b2 0










[
δ

α

]

= A(v)x2 +B(v)u (18b)

where (x, y) denotes the position of the vehicle
on the plane in a fixed coordinate frame K0 and
v, β, r, ψ are the velocity, slideslip angle, yaw rate
and orientation respectively. The control inputs
are the steering angle (δ) and acceleration (α). As
outputs the position coordinates x and y were cho-
sen, both are are supposed to be measured by ap-
propriate inertial and/or GPS sensors. Through-
out the paper we moreover assume that the length
(v) and the arc (β + ψ) of the velocity vector are
also measured and available. The remaining pa-
rameters of the model are constant and supposed
to be known. Notice that in (18) the time-varying
parameter – denoted by ρ in (5) – equals to a state
variable (v), so the dynamics (18b) represents a
quasi-LPV system.

High-level control design In order to solve
the formation control problem formulated above,
we have to solve it first for the case of vehicles
having double integrator dynamics. For this, we
first rewrite the position, velocity and acceleration
of the vehicles in a moving coordinate frame K,
which is fixed to the formation so that at time
t its origin is qd(t) and its axes are assigned by
the vectors pd(t) and p⊥d (t) (see Fig. 2). In K the
position, velocity and acceleration of vehicle i are
denoted as before by q̃i, p̃i and ũi respectively. In



K the formation is a fixed straight line coinciding
with the vertical axis. The problem of finding a
control input, which steers the vehicles in a row
along the vertical axis can be easily solved by
considering the vehicles as simple point masses
and constructing an artificial potential field hav-
ing minimum at the desired configuration. It can
be easily checked that the following function is
a possible candidate to determine the potential
field:

V (q̃) =
N∑

i=1



µ(δ(q̃i)) +
∑

j,j 6=i

µ(d− ‖q̃i − q̃j‖)





(19)

where d denotes the prescribed inter-vehicle dis-
tance and δ(q̃i) is the distance of vehicle i from
the formation defined as in Fig. 2 i.e.

δ(q̃i) =







∥
∥
∥
∥
q̃i −

[
0

sign(q̃i,y) · 2d

]∥
∥
∥
∥

if |q̃i,y| > 2d

q̃i,x if |q̃i,y| ≤ 2d

and µ(·) : R → R
+ is an appropriately constructed

continuous scaling function satisfying the follow-
ing conditions: µ(x) = 0 if x ≤ 0 and µ′(x) > 0 if
x > 0. In this paper

µ(x) =







0 if x < 0
1

2
mx2 if 0 ≤ x ≤

M

m

Mx−
1

2

M2

m
if

M

m
< x

(20)

If the total energy of the point-mass system is
chosen as Lyapunov function for the formation i.e.

V(q̃, p̃) = V (q̃) +
1

2
‖p̃‖2 (21)

the control input

ṽ =−
∂V (q̃)

∂q̃
− kp̃ k > 0 (22)

i.e. ṽi = −
∂V (q̃i)

∂q̃i

−kp̃i will stabilize the formation

by rendering the time derivative of V(q̃, p̃) nega-
tive:

V̇(q̃, p̃) =
∂V

∂q̃
p̃− p̃T ∂V

∂q̃
− kp̃T p̃

=−k‖p̃‖2 ≤ 0 (23)

Low-level control design. Expressing the ve-
hicle dynamics in z-coordinates, we get

K0

qd(t)

K

d

δδδδ i

δδδδ i

M

µ(µ(µ(µ(x))))

µµµµ'((((x))))

Fig. 2. Intended formation and calculation of δ(·)
and µ(·)

ż1 = z2

ż2 = J

[a11

v

a12

v2

0 0

]

z3 + J

[
b1

v
0

0 1

]

u

= JA2z3 + JB2u

ż3 =





a11

v

a12

v2
− 1

a21
a22

v



 z3 +

[
b1

v
0

b2 0

]

u

=A3z3 +B3u (24)

where J = ∂h =

[
−v sin(β + ψ) cos(β + ψ)
v cos(β + ψ) sin(β + ψ)

]

In

this case the dynamic controller (8) can be given
by:

uc =B−1
2 J−1(−JA2z3c + v) (25)

ż3c = (A3 −B3B
−1
2 A2)z3c +B3B

−1
2 J−1v − w

For the boundedness of uc the stability of the
dynamics

ż3c = (A3 −B3B
−1
2 A2)z3c (26)

=





0 −1

a21 −
b2a11

b1

1

v
(a22 −

b2a12

b1
)



 z3c

has to be checked. Notice that (26) is not the zero-
dynamics now, since the zero output involves zero
velocity, where the vehicle model (5) is not valid.

It was already shown in (Péni and Bokor, 2004a)
that the dynamics (26) is globally quadratically
stable independently from the actual values of the
parameters ai, aij .

Formation stabilization. Applying the pro-
posed passivity based stabilizing procedure the
following external input w can be obtained:

w=−W−1ÃT
2

∂V

∂p̃

⇓

wi =−W
−1
i (R−ϕd

JiA2,i)
T p̃i (27)

where Wi =
1
2e

T
i Wiei is an appropriate Lyapunov

function proving the stability of the LPV error
dynamics
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Fig. 3. Simulation results. The motion of the ve-
hicles along the prescribed trajectory (top),
tracking of the velocity reference signal
pd(t) = [pd,x(t) pd,y(t)] (centre) and control
inputs δ and α (bottom).

ėi =A3,iei =





a11,i

v

a12,i

v2
− 1

a21,i

a22,i

v



 ei (28)

Simulation results The formation control was
tested by numerical simulation. The vehicles in
the formation have the following identical mod-
elling parameters obtained by identifying a heavy-
duty vehicle: (Rödönyi, 2003):

a11 = −147.1481 a12 = 0.0645 a21 = 0.0123
a22 = −147.1494 b1 = 66.2026 b2 = 31.9835

If in this case 1 ≤ v ≤ 25 the dynamics (28) is
quadratically stable with Lyapunov function

Wi = e
T

i

[

246.7608 −4.7350

−4.7350 247.7231

]

ei ∀i

The common trajectory qd(t) was constructed as
a concatenation of polynomials of first and second
order, which were defined so that the trajectory
fits smoothly to the following reference points:

[
s1 . . . s7

]
=

[

0 60 100 150 180 220 300

0 50 30 30 −10 −40 0

]

The simulation results in case of controller pa-
rameters M = 6, d = 4, m = 2, k = 2 can be
seen in Fig.3. It can be seen that the vehicles
follow the prescribed trajectory in the intended
formation while the control inputs remain in a
realizable range.

6. CONCLUSIONS AND FURTHER WORK

This paper proposed a hierarchical formation sta-
bilization method for vehicles having nonlinear
dynamics. The method makes it possible to design
the high- and the low-level control algorithms
independently, while the stability of the entire

system is guaranteed. Through an application ex-
ample we showed that the nonlinear single-track
model of road vehicles satisfies the requirements of
the control method so it suits well to this control
framework. It is important to keep in mind that
the availability of a precise vehicle model was as-
sumed during the controller design. For the practi-
cal applicability the presented methods, especially
the low-level controller, are expected to be robust
against disturbances and modelling uncertainties.
However the increase of robustness of the dynamic
inversion based controllers is generally a complex
problem, which requires further researches.
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