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Abstract: We consider adaptive control of discrete-time nonlinear systems with
unknown parameters and with bounded noise. In the single parameter case, we
demonstrate that the necessary and sufficient condition for the existence of a robust
feedback stabilizer is that the nonlinear growth rate of the system dynamics is less
than 4. This result further confirms the conclusion of (Guo, 1997) where Gaussian
noise were considered. In the multiple parameter case, the necessary and sufficient
condition turns out to be governed by a polynomial rule, which is identical to the
one obtained in (Xie and Guo, 1999) where also Gaussian noise were considered
but only the necessity part was proved. To the authors’ knowledge, the stabilizing
controller constructed in this paper seems the first capable of dealing with any
nontrivial noise in the multiple parameter case. Copyright c©2005 IFAC
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1. INTRODUCTION

On nonlinear adaptive control, much less re-
sults are available in the literature for discrete-
time systems, compared with continuous-time sys-
tems. The difficulty involved with adaptive con-
trol of discrete-time nonlinear systems was clearly
demonstrated by the negative conclusion drawn
in (Guo, 1997), which states that it is impossible
in general to stabilize a discrete-time nonlinear
system with even only one unknown parameter if
the nonlinear growth rate is too high. In contrast,
for a continuous-time counter-part, no matter how
high the nonlinear growth rate is, it can always be
stabilized by, say, a nonlinear damping controller
with a higher order.

1 Partially supported by the National Natural Science
Foundation of China.

The benchmark model considered by (Guo, 1997)
is as follows:

yt+1 = θyb
t + ut + wt+1, t = 0, 1, . . . (1)

where, ut, yt and wt are the system input, output
and noise respectively, θ is an unknown param-
eter, and the exponent b ≥ 1 is a known real
number and is regarded as the nonlinear growth
rate of the system.

For the system (1), under the assumption that
both the unknown parameter θ and the noise {wt}
are Gaussian distributed, (Guo, 1997) proved that
if the nonlinear growth rate b ≥ 4, then for any
causal feedback control, there always exists a set
with positive probability, on which the closed-loop
dynamics is unstable. On the other hand, if b < 4,
it was shown in (Guo, 1997) that the standard
least-square-based adaptive control scheme can
ensure the closed-loop stability almost surely.



Later on, (Xie and Guo, 1999) extended the
negative conclusion of (Guo, 1997) to systems
with multiple unknown parameters:

yt+1 = θ1y
b1
t +θ2y

b2
t + · · ·+θpy

bp

t +ut +wt+1 (2)

and proved a polynomial rule: (4) is not almost
surely stabilizable if P (x) < 0 for some x ∈ [1, b1],
where

P (x) = xp+1− b1x
p +(b1− b2)xp−1 + · · ·+ bp (3)

which implies that generally linear growth condi-
tion is indispensable for almost sure stability if no
constraint is exerted on the number of unknown
parameters. This negative polynomial rule was
further extended in (Xie and Guo, 2000a) to the
case where the uncertain parameters are known a
priori to lie in a bounded region and the systems
are allowed to have more general structures:

yt+1 = θT f(yt, yt−1, . . . , yt−p+1) + ut + wt+1 (4)

All these results mentioned above assume Gaus-
sian distributed noise. It would be interesting to
ask what happens if the noise are bounded. Are
there still negative conclusions that prevent the
existence of a stabilizing feedback controller for
any nonlinear growth rate? If yes, do they have the
same constraints on the nonlinear growth rate?

We still take the model (1) as the starting point
to answer these questions. Here in this paper, in-
stead, we assume bounded noise. One may suspect
that the boundedness assumption on the noise
wt would be helpful for designing feedback sta-
bilizers, which would at least result in a looser
requirement on the nonlinear growth rate b. In
fact, we will demonstrate the contrary. We will
show that b < 4 is still necessary for the exis-
tence of a feedback stabilizer, even if the noise are
assumed to be uniformly bounded and with the
bound known a priori. However, the boundedness
assumption on the noise will indeed be helpful in
designing much simpler feedback stabilizers when
b < 4.

In the multiple parameter case, interestingly, we
not only can show the necessity but also the suf-
ficiency of the polynomial rule (3) when bounded
noise are considered. Moreover, to the authors’
knowledge, the stabilizing controller constructed
in this paper seems the first capable of deal-
ing with any nontrivial noise in the multiple pa-
rameter case. This certainly raises the question
whether the polynomial rule (3) is also the suffi-
cient condition for the Gaussian noise case. This
calls for further study.

Other related works include some papers consider-
ing noise-free models (see e.g. (Guo and Wei, 1996;
Kanellakopoulos, 1994; Zhao and Kanellakopou-
los, 2002)). But there is a fundamental drawback
with such models. The trick lies in that without

noise, the parameters are completely solvable with
linear equations. For example, without w1 in (1),
θ can be completely determined by y1, y0 and u0

with the equation

y1 = θyb
0 + u0.

Of course this kind of equation-solving methods
are not useful in practice due to that they are
not robust to the noise. While all the authors
realized this and thereby came up with some other
(mostly recursive) types of parameter estima-
tion algorithms, it is always impossible to justify
the robustness of those algorithms thus obtained
without explicitly considering noise. A good ex-
ample is the weighted-least-square-based adaptive
controller constructed in (Kanellakopoulos, 1994),
which was shown capable of stabilizing (1) for any
nonlinear growth rate b ≥ 1, but with all wt = 0.
Interestingly, one implication of the results in this
paper is just that such a controller cannot be
robust to bounded noise at least for the case b ≥ 4.

2. MAIN RESULTS

2.1 One parameter case

Consider the system (1) with the following as-
sumptions.

A1) At the time t = 0, the a priori knowledge
about the unknown parameter θ is that it can
be any value on some interval [θ, θ] ⊂ R1 with
θ − θ > 0.

A2) The noise are assumed to be uniformly
bounded with the bound w > 0, i.e.,

sup
t≥1

|wt| ≤ w. (5)

We are interested in designing a feedback control
law which robustly stabilizes the system (1) with
respect to any possible θ and {wt} under the
assumptions A1)-A2).

First, we restate the definition of a feedback
control law, which has appeared in (Xie and
Guo, 2000b).

Definition 2.1. A sequence {ut} is called a feed-
back control law if at any time t ≥ 0, ut is a
(causal) function of all the observations up to the
time t: {yi, i ≤ t}, i.e.,

ut = ht(y0, · · · , yt) (6)

where ht(·) : Rt+1 → R1 can be any (nonlinear)
mapping.

Although there is no unified definition of adaptive
control, it is generally thought of as a combina-
tion of two parts: online parameter estimation
plus controller design with updated parameter



estimates. Anyway, it must be causal. That is,
whatever the adaptive control law designed, it is
one feedback control law in Definition 2.1.

Definition 2.2. The system (1) under the assump-
tions A1)-A2) is said to be robust feedback sta-
bilizable, if there exists a feedback control law
{ut} such that for any y0 ∈ R1 and any θ, {wt}
satisfying A1)-A2), the outputs of the closed-loop
system are uniformly bounded as follows:

sup
t≥0

|yt| < ∞. (7)

Theorem 2.1. The system (1) under the assump-
tions A1)-A2) is robust feedback stabilizable if
and only if b < 4.

Next, consider a more general model:

yt+1 = θf(yt) + ut + wt+1 (8)

where f : R1 → R1 is a known nonlinear mapping.
We consider the following assumptions on f(·).
A3) There exist a1 > 0, b > 0 and M1 > 0 such

that

|f(x)| ≤ a1|x|b, for |x| ≥ M1; (9)

and sup
|x|≤M1

|f(x)| < ∞. (10)

A4) There exist a2 > 0, b > 0 and M2 > 0 such
that

|f(x)| ≥ a2|x|b, for |x| ≥ M2. (11)

Intuitively, the assumption A3) exerts an upper
bound on the growth rate of the system dynamics;
and conversely, the assumption A4) exerts a lower
bound on the growth rate of the system dynamics.
For either of them, we have one corresponding
conclusion as follows.

Theorem 2.2. The system (8) under the assump-
tions A1)-A3) is robust feedback stabilizable if
b < 4.

Theorem 2.3. The system (8) under the assump-
tions A1)-A2) and A4) is not robust feedback
stabilizable if b ≥ 4.

The combination of Theorems 2.2 and 2.3 imme-
diately leads to the following conclusion.

Corollary 2.1. The system (8) under the assump-
tions A1)-A4) is robust feedback stabilizable if
and only if b < 4.

2.2 Multiple parameter case

Consider the system

yt+1 = θ1y
b1
t +θ2y

b2
t +· · ·+θpy

bp

t +ut+wt+1 (12)

where p ≥ 2, and the exponents are real numbers
and are arranged in decreasing order: b1 > b2 >
· · · > bp > 0 with b1 > 1, and the unknown
parameters and the noise are assumed to satisfy:

A5) At the time t = 0, the a priori knowledge
about the unknown parameter θi is that it can
be any value on some interval [θi, θi] ⊂ R1 with
θi − θi > 0, for any i = 1, 2, . . . , p.

A6) The noise are assumed to be uniformly
bounded with the bound w > 0, i.e.,

sup
t≥1

|wt| ≤ w. (13)

Theorem 2.4. The system (12) under the assump-
tions A5)-A6) is robust feedback stabilizable if
and only if

P (x) > 0 for any x ∈ [1, b1] (14)

where
P (x) = xp+1 − b1x

p + (b1 − b2)xp−1 + · · ·
+(bp−1 − bp)x + bp

Remark 2.1. For p = 1, P (x) = x2 − b1x + b1.
Then the condition (14) is equivalent to b1 < 4.

At last, we remark that extensions to systems with
more complex structures can be done similarly as
in the one parameter case.

3. PROOF OF THE THEOREMS

The proofs of Theorems 2.1-2.3 can be found in
(Li and Xie, 2004).

Before presenting the proof of Theorem 2.4, we
first introduce two lemmas.

Let

z =
(

p!
p

p− 1

) 1
min1≤k≤p−1(bk − bk+1) .

Lemma 3.1. Let ai ∈ R1, i = 1, 2, . . . , p satisfy
|ai| > z|ai+1|, i = 1, 2, · · · , p− 1 and |ap| ≥ 1. Let

D =

∣∣∣∣∣∣∣∣∣∣

ab1
1 ab2

1 · · · a
bp

1

ab1
2 ab2

2 · · · a
bp

2
...

...
. . .

...
ab1

p ab2
p · · · abp

p

∣∣∣∣∣∣∣∣∣∣
then we have

1
p

p∏
s=1

|as|bs < |D| < 2
p∏

s=1

|as|bs

Proof: Obviously, D is a summation of terms of
the form

(−1)r

p∏
s=1

a
bjs
s (15)



where r = 0 or 1, (j1, j2, . . . , jp) = π(1, 2, . . . , p),
and πX denotes a permutation of vector X. Tak-
ing logarithm on the absolute value of (15), we

have: log |
p∏

s=1
a

bjs
s | =

p∑
s=1

bjs
log |as|. Since

b1 > b2 > · · · > bp

log |a1| > log |a2| > · · · > log |ap|
by the inequality in (Mitrinovic, 1970, p.341), we
have

p∑
s=1

bjs log |as| ≤
p∑

s=1

bs log |as|

which means |ab1
1 ab2

2 ab3
3 · · · abp

p | is the maximum

term. For any other
p∏

s=1
|as|bjs with (bj1 , . . . , bjp

) 6=
(b1, . . . , bp), let jm be the first one different from
m in {j1, j2, . . . , jp}, 1 ≤ m ≤ p − 1, i.e., js = s

for s < m, and jm = n > m, then
∣∣∣∣

p∏
s=1

abs
s

∣∣∣∣ is no

larger than∣∣∣ab1
1 · · · abm−1

m−1 abn
m abm

m+1a
bm+1
m+2 · · · abn−1

n a
bn+1
n+1 · · · abp

p

∣∣∣
for which, we have the following uniform bound:∣∣∣∣

p∏
s=1

abs
s

∣∣∣∣
∣∣∣ab1

1 · · · abm−1
m−1 abn

m abm
m+1a

bm+1
m+2 · · · abn−1

n a
bn+1
n+1 · · · abp

p

∣∣∣
≥

∣∣∣abm−bn
m a

bm+1−bm

m+1 · · · abn−bn−1
n

∣∣∣
=

∣∣∣abm−bm+1+···+bn−1−bn
m a

bm+1−bm

m+1 · · · abn−bn−1
n

∣∣∣
≥ βδmβ2δm+1 · · ·β(n−m)δn−1

≥ β(n−m)(n−m+1)δ/2

≥ βδ

= p!
p

p− 1
where, δm := bm − bm+1, m = 1, . . . , p − 1 and
δ := min1≤k≤p−1 δm. So we have

|D| ≥
p∏

s=1

|as|bs


1−

∑

(j1,...,jp)=π(1,...,p)
(j1,...,jp) 6=(1,...,p)

|
p∏

s=1
a

bjs
s |

|
p∏

s=1
abs

s |




>

p∏
s=1

|as|bs

(
1− (p!− 1)

p− 1
pp!

)
>

1
p

p∏
s=1

|as|bs

and similarly,

|D|<
p∏

s=1

|as|bs

(
1 + (p!− 1)

p− 1
pp!

)
< 2

p∏
s=1

|as|bs

Lemma 3.2. Under the conditions of Lemma 3.1,
let Dk,l be the kl-th minor of D, we have

1
p

l−1∏
s=1

|as|bs

p−1∏

s=l

|as|bs+1 <

p∑

k=1

|Dk,l|

< 2
l−1∏
s=1

|as|bs

p−1∏

s=l

|as|bs+1

(16)

Proof : The terms of Dk,l, k = 1, 2, . . . , p have the
form

(−1)r

p∏
s=1

a
bjs
s

where r = 0 or 1, (j1, j2, . . . , jp) = π(1, . . . , l −
1, l + 1, . . . , p + 1). Since

b1 > · · · > bl−1 > bl+1 > · · · > bp > bp+1 = 0
log |a1| > log |a2| > · · · > log |ap|

Hence, the term in
p∑

k=1

|Dk,l| with the maximum

absolute value is
l−1∏
s=1

|as|bs

p−1∏
s=l

|as|bs+1 . There are

(p!−1) other terms
p∏

s=1
|as|bjs with (bj1 , . . . , bjp

) 6=
(b1, . . . , bl−1, bl+1, . . . , bp+1) and each of them is of
an absolute value less than

p− 1
p!p

l−1∏
s=1

|as|bs

p−1∏

s=l

|as|bs+1

which can be similarly proved as in Lemma 3.1.
So (16) follows immediately.

Proof of Theorem 2.4.

For any t ≥ 1, let

i1(t) := argmax
0≤i≤t−1

|yi|. (17)

ij(t) := argmax
0≤i≤t−1

z|yi|<|yij−1(t)|

|yi|. 2 ≤ j ≤ p (18)

and
|yip(t)| ≥ 1 (19)

Let u0 = u1 = · · · = up−2 = 0. Starting with
t = p, if ij(p), 1 ≤ j ≤ p as defined in (17)-(19)
can not be found, then let ut−1 = 0, t = p, p +
1, . . . until ij(t), 1 ≤ j ≤ p can be found. If ij(t)
can never be found for any t, then it is easy to
show that supt≥0 |yt| < ∞. We can prove this by
contradiction. In fact, if supt≥0 |yt| = ∞, then it is
easy to find ki, i = 1, 2, . . . , p such that |yk1 | ≥ 1
and z|yki−1 | < |yki |, i = 2, . . . , p. Obviously, for
t = kp + 1, ij(t) in (17)-(19) are well defined.
Moreover, it is obvious that ij(t) are well defined
for all t > kp + 1.

So we only need to consider the case where start-
ing from some t0, ij(t) in (17)-(19) are all well
defined. Then for any t ≥ t0, we have

yi1(t)+1 = θ1y
b1
i1(t)

+ · · ·+ θpy
bp

i1(t)
+ ui1(t) + wi1(t)+1

yi2(t)+1 = θ1y
b1
i2(t)

+ · · ·+ θpy
bp

i2(t)
+ ui2(t) + wi2(t)+1

...

yip(t)+1 = θ1y
b1
ip(t) + · · ·+ θpy

bp

ip(t) + uip(t) + wip(t)+1

That is






yb1
i1(t)

yb2
i1(t)

· · · y
bp

i1(t)

yb1
i2(t)

yb2
i2(t)

· · · y
bp

i2(t)

...
...

. . .
...

yb1
ip(t) yb2

ip(t) · · · y
bp

ip(t)







θ1

θ2

...
θp




=




yi1(t)+1 − ui1(t) − wi1(t)+1

yi2(t)+1 − ui2(t) − wi2(t)+1

...
yip(t)+1 − uip(t) − wip(t)+1




(20)

Let

D(t) =

∣∣∣∣∣∣∣∣∣∣∣

yb1
i1(t)

yb2
i1(t)

· · · y
bp

i1(t)

yb1
i2(t)

yb2
i2(t)

· · · y
bp

i2(t)

...
...

. . .
...

yb1
ip(t) yb2

ip(t) · · · y
bp

ip(t)

∣∣∣∣∣∣∣∣∣∣∣
and let Dl(t) denote D(t) with the l-th column
replaced by the R.H.S of (20).

By (17)-(19) and Lemma 3.1, we have

|D(t)| > 1
p

p∏
s=1

|yis(t)|bs > 0. (21)

Hence by the Cramer principle,

θl =
Dl(t)
D(t)

At the time t, let the parameter estimate be

θ̂l(t) , D̂l(t)
D(t)

,

with
D̂l(t) =∣∣∣∣∣∣∣∣∣∣∣

yb1
i1(t)

· · · y
bl−1

i1(t)
yi1(t)+1 − ui1(t) y

bl+1

i1(t)
· · · y

bp

i1(t)

yb1
i2(t)

· · · y
bl−1

i2(t)
yi2(t)+1 − ui2(t) y

bl+1

i2(t)
· · · y

bp

i2(t)

...
. . .

...
...

...
. . .

...
yb1

ip(t) · · · y
bl−1

ip(t) yip(t)+1 − uip(t) y
bl+1

ip(t) · · · y
bp

ip(t)

∣∣∣∣∣∣∣∣∣∣∣
where all the data are available at time t. Let
θ̃l(t) = θ− θ̂l(t). Let Dk,l(t) be the kl-th minor of
D(t), i.e. by taking out the k-th row and the l-th
column of D(t). Hence, the estimation error is

θ̃l(t) =
p∑

k=1

(−1)k+l+1wik(t)+1
Dk,l(t)
D(t)

(22)

By (17)-(19), (21), (22) and Lemma 3.2, we have

|θ̃l(t)ybl
t | ≤

p∑
k=1

|Dk,l(t)|
|D(t)| w|yt|bl

<

2p
l−1∏
s=1

|yis(t)|bs ·
p−1∏
s=l

|yis(t)|bs+1

1
p

p∏
s=1

|yis(t)|bs

w|yt|bl

= 2p2w
∣∣∣ yt

yil(t)

∣∣∣
bl

p−1∏

s=l

∣∣∣ yis(t)

yis+1(t)

∣∣∣
bs+1

(23)

Now we define

ut = −
p∑

l=1

θ̂l(t) · ybl
t for any t ≥ t0 (24)

So the closed-loop dynamics is

yt+1 =
p∑

l=1

θ̃l(t) · ybl
t + wt+1 (25)

We use a contradiction argument to prove that
supt≥0 |yt| < ∞. Suppose there exist some y0 ∈
R1, {θl, l = 1, 2, · · · , p} and a sequence of
{wt}, such that for the control defined in (24),
supt≥0 |yt| = ∞. From this sequence {|yt|, t ≥ t0},
we can pick out a monotonously increasing subse-
quence {|ytk

|, k ≥ 1} with

|yt1 | > 3p3zb1w (26)

tk+1 = inf{t > tk : |yt| > z|ytk
|} (27)

For any k ≥ p+1, let m = tk+1− 1, and it is easy
to check that

|ym| ≤ z|ytk
| (28)

|ytk−1 | ≤ |yi1(m)| ≤ z|ytk
| (29)

|ytk−j
| ≤ |yij(m)| for any j = 1, 2, . . . , p (30)

In fact, (28) is obvious, and (29) follows by tk−1 ≤
tk−1 ≤ tk+1−2 = m−1, and (30) can be proved
by induction: By (29),

z|ytk−2 | < |ytk−1 | ≤ |yi1(m)| ⇒ |ytk−2 | ≤ |yi2(m)|
and this can be continued for j = 3, 4, . . . , p.

Hence by (23), (28)-(30), for any k ≥ p + 1, we
have

|ytk+1 | ≤
p∑

l=1

|θ̃l(m)||ym|bl + w

≤ 2p2w

p∑

l=1

∣∣∣ ym

yil(m)

∣∣∣
bl

p−1∏

s=l

∣∣∣ yis(m)

yis+1(m)

∣∣∣
bs+1

+ w

= 2p2w

p∑

l=1

|ym|bl

p−1∏

s=l

1
|yis(m)|bs−bs+1

1
|yip(m)|bp

+ w

≤ 2p2wzb1

p∑

l=1

|ytk
|bl

p−1∏

s=l

1
|ytk−s

|bs−bs+1

1
|ytk−p

|bp
+ w

= 2p2wzb1

p∑

l=1

∣∣∣ ytk

ytk−l

∣∣∣
bl

p−1∏

s=l

∣∣∣ ytk−s

ytk−s−1

∣∣∣
bs+1

+ w

≤ 2zb1p3w
∣∣∣ ytk

ytk−1

∣∣∣
b1 ∣∣∣ytk−1

ytk−2

∣∣∣
b2 · · ·

∣∣∣ytk−p+1

ytk−p

∣∣∣
bp

+ w(31)

where the last inequality follows from the mono-
tonicity of the terms



∣∣∣ ytk

ytk−l−1

∣∣∣
bl+1

p−1∏

s=l+1

∣∣∣ ytk−s

ytk−s−1

∣∣∣
bs+1

=
∣∣∣ytk−l

ytk

∣∣∣
bl−bl+1

∣∣∣ ytk

ytk−l

∣∣∣
bl

p−1∏

s=l

∣∣∣ ytk−s

ytk−s−1

∣∣∣
bs+1

<
(1

z

)bl−bl+1
∣∣∣ ytk

ytk−l

∣∣∣
bl

p−1∏

s=l

∣∣∣ ytk−s

ytk−s−1

∣∣∣
bs+1

<
∣∣∣ ytk

ytk−l

∣∣∣
bl

p−1∏

s=l

∣∣∣ ytk−s

ytk−s−1

∣∣∣
bs+1 ∀ l = 1, . . . , p− 1

Since zb1p3
∣∣∣ ytk

ytk−1

∣∣∣
b1∣∣∣ytk−1

ytk−2

∣∣∣
b2 · · ·

∣∣∣ytk−p+1

ytk−p

∣∣∣
bp

> 1,

by (31) we have

|ytk+1 | ≤ 3zb1p3w
∣∣∣ ytk

ytk−1

∣∣∣
b1 ∣∣∣ytk−1

ytk−2

∣∣∣
b2 · · ·

∣∣∣ytk−p+1

ytk−p

∣∣∣
bp

(32)

Let ak = ln |ytk
| − ln 3zb1p3w > 0. By (26)-(27),

{ak} is monotone increasing with a1 > 0 and by
(32), we have

ak+1 ≤ b1(ak − ak−1) + b2(ak−1 − ak−2)
+ · · ·+ bp(ak−p+1 − ak−p)

(33)
Let xk =

ak

ak−1
. Obviously, xk > 1, and by (33),

we have

xk+1 ≤ b1 − (b1 − b2)
1
xk

− (b2 − b3)
1

xkxk−1

− · · · − (bp−1 − bp)
1

p−2∏
s=0

xk−s

− bp
1

p−1∏
s=0

xk−s

(34)
Therefore, it follows that for k ≥ p + 1, xk ≤ b1.

Hence, x := lim
k→∞

xk ∈ [1, b1]. By (34) we have

lim
k→∞

xk+1

≤ lim
k→∞

(
b1 − (b1 − b2)

1
xk

− (b2 − b3)
1

xkxk−1

− · · · − (bp−1 − bp)
1

p−2∏
s=0

xk−s

− bp
1

p−1∏
s=0

xk−s




≤ b1 − (b1 − b2)
1

lim
k→∞

xk

− (b2 − b3)
1

lim
k→∞

xkxk−1

− · · · − (bp−1 − bp)
1

lim
k→∞

p−2∏
s=0

xk−s

− bp
1

lim
k→∞

p−1∏
s=0

xk−s

That is

x ≤ b1 − (b1 − b2)
1
x
− (b2 − b3)

1
x2

− · · · − (bp−1 − bp)
1

xp−1 − bp
1
xp

So P (x) ≤ 0, which contradicts to (14). Hence the
sufficiency is proved.

The necessity part follows in a similar style as that
of the one parameter case (Li and Xie, 2004) and
is omitted here. 2
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