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Abstract: In the paper the problem of estimating the octane number of 
powerformed gasoline produced in a refinery is addressed. The model is 
designed in order to replace the existing measurement device during 
maintenance operation guaranteeing the continuity of product quality 
monitoring and control. Linear and nonlinear Moving Average models based 
on MLP neural networks have been designed to take into account the two 
different working points of the process and different strategies are compared. 
The models obtained are presently implemented on line in the refinery to be 
tested over a long period. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

In the last few decades ever-growing interest has 
been shown in production quality standards and 
pollution phenomena in industrial environments. 
Government laws enforce hard limits on pollutant 
and product specifications. Increasingly efficient 
monitoring and control policies are therefore 
required. The refinery community has recognised 
the importance of the optimisation of production 
process because of the benefits in terms of both 
profitability and tight control on product quality. 
To this aim a huge number of variables might be 
monitored by using adequate measuring devices. A 
possible alternative, which allows a remarkable 
reduction of monitoring and control costs, is to use 
‘soft sensor’, i.e. mathematical  models designed to 

estimate the desired variable on the basis of 
available measured variables.  
Soft sensors for industrial plants are usually 
designed by using the ability of neural networks to 
extract a nonlinear model exploiting the 
information contained in the plant data base 
(Arena, et al., 1995; Bozzanca et al., 1999; 
Matsumura, et al., 1998; Park and Han, 2000; 
Tham, et al., 1991; Willings, et al., 1992; Assis 
and Filho, 2000; James, et al., 2002; Park and Han, 
2000; Su, et al., 1998). They allow also to easily 
implement fault detection strategies (Rizzo and 
Xibilia, 2002), (Buceti 2002) and to obtain real 
time estimation in those cases when the measuring 
devices, e.g. gas-chromatographs, introduce large-
delay (Bozzanca et al., 1999; Tham, et al., 1989). 
In this paper the possibility to monitor product 
quality in refinery by using soft sensor is 



 

investigated, in particular the estimation of the 
research octane number (RON) in gasoline 
produced by a powerformer unit is considered.  
The estimation is required from the plant 
technologists in order to replace on line measuring 
devices during planned maintenance actions. 
The performance of different methodologies that 
represent the state of the art for soft sensing 
applications in industrial plants, i.e linear Moving 
Average Models,  derived with a LMS approach, 
and nonlinear neural networks based models are 
compared with a novel hierarchical nonlinear 
structure.  
In more details the hierarchical structure has been 
introduced in order to take into account two 
different working conditions of the powerformer 
plant. Both a neural network trained on the whole 
set of data and two different neural networks 
coupled with switching algorithms have been 
developed. 
Data used to derive the models were collected by 
measuring devices installed in a large refinery 
settled in Priolo Gargallo, Syracuse, Italy, during a 
period lasting about 45 days with a sampling 
period of 3 min.  
In Section two a brief description of the plant is 
reported.  The performance of the different models 
are in deep described in Sections 3 and 4, by using 
the Experimental Data Analysis 
(NIST/SEMATHEC, 2002) approach. Also 
Subsection 4.3 is dedicated to the analytical 
comparison of the different models obtained. 
 
 

2. THE POWERFORMER UNIT 
 

The Powerformer Unit, represented in Fig. 1, 
receives as input the Heavy Virgin Naphtha (HVN) 
flow coming from the Naphtha Splitter bottom. Its 
output flow, that feeds the Deetanizer and 
Debutanizer distillation columns, is a liquid high in 
octane number (RON) which contains aromatic 
composites, hydrogen, oil gas, and liquefied 
petroleum gas (LPG).  
The RON value of the powerformed gasoline is 
used to monitor the product quality and to control 
the powerforming process. 
Based on process experts’ knowledge the following 
variables that  influence the RON value were 
selected:  
• reactors temperature (u1=t001, u2=t002, 

u3=t003, u4=t004) 
• input flow (u5=f002) 
• pressure value at the top of the Debutanizer 

(u6=p023) 
The powerformer output flow is required to satisfy 
two different targets for the RON value of the 
produced gasoline, depending on two different 

working conditions, given by the input flow (u5) 
values. When the RON value is lower than the 
desired level adequate control actions on process 
temperature profile are taken.  
In the next sections, linear and non linear strategy 
to predict the RON value of powerformed gasoline 
on the basis of the selected input variables are 
described and their performance are compared.  
 
 

 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1 The Powerformer Unit 

 
 

3. THE   LINEAR   MODEL   FOR RON 
ESTIMATION 

 
As a first attempt, two separate linear models have 
been considered, each of them corresponding to a 
working condition. Taking into account the 
necessity to estimate the model output in 
(temporary) absence of any measuring device for 
the RON, MA models will be considered in the 
following. The structure of the models was chosen 
on the basis of both expert knowledge and input-
output correlation analysis. Also, a trial and error 
approach was used to select the best model among 
possible candidates.  
The following linear model gave the best results 
for both working conditions:  

 
RON(k)  = a1 u1(k)+a2 u1(k-3)+a3 u1(k-5)+ b1 

u2(k)+ 
+b2 u2(k-5)+ c1 u3(k)+c2 u3(k-4)+c3 u3(k-5) 
+d1u4(k)+d2u4(k-5)+ e1u5(k)+e2u5(k-1)+    

+f1u6(k)+f2u6(k-1)+K                             (1) 
 

the coefficients were obtained by using the LMS 
approach. 
In Figs. 2 and 3 the performance of the linear 
model in processing data corresponding to one of 
the two working conditions is shown. Simulations 
are run on a data set different from that used to 
determine the model coefficients. 
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In particular in Fig. 2 the acquired RON values are 
compared with the linear model estimations. In 
Fig.3 the 4-plot analysis of the model residuals is 
reported (NIST/SEMATHEC, 2002).  
Though the linear model follows the trend of 
measured data, the model accuracy was considered 
not satisfactory from the plant technologists. 

 

 
Fig. 2:Acquired RON values (dotted line ) and 

their linear estimation (solid line) – scaled 
units 

 

 
Fig. 3: 4- plot of the residual of the linear model 
(residual trend, histogram,  normal probability 

plot and its dispersion). 
 
Comparing performance were obtained in the 
processing of data referring to the second working 
point.  In next sections nonlinear models developed 
to improve prediction capabilities are described. 
 
 

4. NON LINEAR MODELS 
 
In this section two different nonlinear modelling 
strategies are considered. They are designed in 
order to improve prediction accuracy and to cope 
with the two different working points with a single 
model. Both approaches are based on Nonlinear 
Moving Average structures, implemented by 
Multi-Layer Perceptron Neural Networks (MLPs).  
The first approach, based on traditional solutions 
suggested in literature, consists in training a single 
MLP with data covering both working points.  

In the second approach two different MLPs are 
trained to cope with each working point, they are 
then coupled with a fuzzy selection algorithm 
which allows a smooth transition between the 
different working conditions. 
Nonlinear MA models considered in this section 
are based one hidden layer MLPs (Chen and 
Billings, 1989; Cybenko, 1989; Fortuna, et al., 
2001) trained by using the Levenberg-Marquardt 
algorithm with early stopping strategy to avoid 
overlearning. The lagged input structure reported in 
(1) was adopted also in this case, while the number 
of units in the hidden layer was determined by 
using a growing strategy.  
 
 
4.1 The single nonlinear model 
 
In the first case one MLP was trained merging data 
corresponding to the two working points. 
Performance obtained is reported in Figs. 4 and 5.  
The results reported have been obtained with a 
network with 12 hidden neurons. As it can be 
observed, model performance is improved with 
respect to linear models, moreover a single model 
cover both working points overcoming the possible 
difficulty to select a crisp threshold to assign data 
to each working point.  

 
Fig. 4: Acquired RON values (dotted line) and their 

nonlinear estimation (solid line) – scaled 
units, two working points. 

 

 
 
Fig.5: 4 - plot of the residual of the nonlinear 

model, two working points 
 



 

4.2 The fuzzy switched nonlinear model 
 
A different strategy was also used to obtain a 
model that can face separately the two different 
working conditions, taking into account that 
transitions between the working points occur 
frequently. A typical trend of the input flow rate 
values, ruling the transition between one working 
point and the other one, is reported in Fig. 6  
The approach proposed requires as a first step to 
train two separate neural models to cope with the 
different working points. To this aim the same 
pattern used to obtain the linear models were 
considered. 
 

 
 
Fig. 6 Input flow rate, scaled units. 
 
In Fig. 7 and 8 the performance of the obtained 14-
11-1 MLP in processing a set of checking data of 
the first working point is shown.  
In particular in Fig. 7 the acquired RON values are 
compared with the nonlinear model estimations. In 
Fig. 8 the 4-plot analysis of the model residuals is 
reported. It is possible to observe that this 
nonlinear model behaves much better than the 
linear one both as regards residual range and 
distribution. 
Similar results were obtained for the second 
working point. 
The two different neural models were then coupled 
by using a fuzzy algorithm composed of the 
following fuzzy rules: 
 
• if input_flow is input_flow_low then 

RON=y(model_1); 
• if input_flow is input_flow_ high then 

RON=y(model_2); 
 
where the fuzzy set membership functions for the 
scaled input flow are reported in Fig. 9. 
The defuzzyfied output is computed as: 
 

21
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+
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*)_model(y*)_model(yRON       (2) 

 
where  µ 1 and µ 2 are the activation levels of the 
two fuzzy sets. 

 
Fig. 7: Acquired RON values (dotted line) and their 

nonlinear estimation (solid line) – scaled 
units, one working point. 

 

 
 
Fig. 8: 4 - plot of the residual of the nonlinear 

model, one working point. 
 
Performance obtained in this case is reported in 
Fig. 10 and 11. 
 

 
Fig. 9: membership functions for the variable 

input_flow  - scaled values 

 
Fig. 10: Acquired RON values (dotted line ) and 

their nonlinear estimation (solid line) – 
scaled units, two working points. 

 



 

 

Fig. 11: 4 - plot of the residual of the nonlinear 
model, two working points. 

 
The performance of all considered models will be 
reported in next sub-section. 
Performance obtained with the non linear neural 
models seems comparable, these models have been 
therefore implemented in the refinery hardware for 
their on-line validation. 
 
 
4.3 Analytical comparison of RON estimation 

models 
 
In this sub-section the behaviour of the various 
models are evaluated by using some performance 
parameters. 
In particular the following models have been 
considered: 
 
a) one linear model working on the whole data set; 
b) two linear models activated by using a fuzzy 

selection algorithm; 
c) one neural model working on the whole data set; 
d) two neural models activated by using a fuzzy 

selection algorithm; 
 

In particular both experimental mean value and 
variance of model errors on the set of testing data 
are reported along with the correlation coefficient 
between actual data and their estimations. 
 
Tab I: Analytical comparison of  different models 

for the estimation of RON  
 

           Index 
Model 

Residual 
mean value 

Residual 
variance 

Correlation 
coefficient 

a) 3.38 10-4 0,2234 0,7742 
b) -216 10-4 0,2041 0,7977 
c) -8,87 10-4 0,1518 0,8541 
d) 6,2  10-4 0,1294 0,8772 

 
The analysis of results reported in Tab. I confirms 
the superiority of nonlinear models with respect to 
linear LMS model. Also, among non linear models, 
the switched models behave better than the single 
NN based model. 

Further comparison of nonlinear models has been 
based on their line performance. Taking into 
account a long period of on-line monitoring, it has 
been decided by plant technologist that the fuzzy 
approach gives better results.  
As an example, in Fig. 12 a comparison between 
actual data, the prediction obtained with the single 
neural model and the prediction obtained with the 
fuzzy switched model on data collected 3 months 
after on-line implementation is reported (only a 
subset of data is shown in the figure to emphasize 
the different model behaviour). The corresponding 
residual trends and histograms are reported in 
Fig. 13. 

 

 
 

Fig. 12: On-line behaviour of the single neural 
model and the fuzzy switched model (on a 
subset of data). 

 

 
Fig. 13: On-line behaviour of the single neural 

model and the fuzzy switched model: 
residual trends and histograms.  

 
 

5. CONCLUSION 
 
In the paper the problem of designing a soft sensor 
to predict the RON of powerformed gasoline in a 
refinery is addressed. It is designed in order to 
guarantee the continuity of process monitoring and 
control during the periodical maintenance of the 
measuring devices. Data used to model the system 
were collected in a refinery located in Italy, where 
the designed soft sensor is currently implemented 
on line. In the paper different modelling strategies 
are compared, in particular linear and nonlinear 



 

Moving Average models implemented by using 
Multi- Layer Perceptrons are considered.  
In order to take into account that the process shows 
two different working conditions, depending on the 
level of one of the input variables, two linear 
models were designed. Their performance are 
however not satisfactory. 
Two different non linear modelling strategies have 
been also implemented.  The first approach simply 
consists in training a single MLP with data 
belonging to all the possible system working 
conditions. The second approach is based on a 
fuzzy switching algorithm  that activates two 
different MLP-based models, each designed on a 
single working point. Form a first comparison 
made on a large set of checking data, both 
approaches give comparable results, they have 
been therefore both implemented on-line in the 
refinery. The comparison of on-line performance in 
a long period has shown that the fuzzy switched 
nonlinear model guarantees best performance. 
Though the results are obtained by a structure that 
requires more computing resources than traditional 
algorithms, it should be taken into account that the 
proposed application is used for the monitoring of 
a large industrial plant. As a matter of fact 
computation resources in such a plant is largely 
available and the increase in the computation 
requirements is not to be considered a problem.  
Also, the proposed hierarchical solution needs 
more computation time to estimate the system 
outputs. Anyway the system dynamic is slow 
enough with respect to the algorithm computation 
time that the time constraints are largely respected.   
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