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Abstract: A bicriterial dual controller for nonlinear stochastic systems is suggested.
Two separate criterions are designed and used to introduce one of opposing
aspects between estimation and control; caution and probing. A system is modelled
using a multilayer perceptron network. Parameters of the network are estimated
by the Gaussian sum method which allows to determine conditional probability
density functions of the network weights. The proposed approach is compared
with inovation dual control and the quality of the estimator and the regulator is
analyzed by simulation and Monte Carlo analysis. Copyright c© 2005 IFAC
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1. INTRODUCTION

Most of the existing approaches of control of
nonlinear stochastic systems by neural networks
use certainty equivalence principle (Nørgaard et
al., 2000). These techniques can generate too large
and not feasible control action due to a prior
uncertainty of parameters. Hence, an intensive
off-line training of the neural network is usually
required. Other possible concept is to take advan-
tage of properties of the dual adaptive control.

Fel’dbaum (1965) first referred to the dual chara-
cter of the stochastic control. The dual control
takes into consideration an interaction between
estimation and control of a system. Optimal con-
trol solution can be obtained using the dynamic
programming. However, an analytic or a realizable
numeric solution can be reached only for a narrow
class of stochastic systems. Hence, a great atten-
tion was given to develop a mount of suboptimal
dual control for linear systems in past years, e.g.
Tse et al. (1973), Milito et al. (1982), Maitelli and

Yoneyama (1994). Bicriterial dual control (BDC)
firstly developed by Filatov et al. (1997) and en-
hanced by Šimandl and Fĺıdr (2001) for systems in
state space representation with unknown random
parameters is a further alternative approach.

An innovation dual control (IDC) (Milito et al.,
1982) was extended for nonlinear systems by Fabri
and Kadirkamanathan (2001). They used both
standard types of the neural networks, Gaussian
radial basis function (GaRBF) and multilayer per-
ceptron (MLP), for modelling nonlinear unknown
functions of the system. The drawback of IDC
controller lies in the fact that a magnitude of ex-
citations cannot be controlled by any parameters
of the regulator. Control signal takes values in an
interval between caution and certainly equivalence
control.

In this paper, controller design will be based on
bicriterial dual control approach and attention
will be focused on MLP networks, because they
can approximate nonlinear function at same accu-



racy as GaRBF networks with significantly less
number of neurons for real time applications. One
issue of identification by MLP networks is esti-
mation of network parameters. Parameter estima-
tion represents nonlinear optimization problem.
Parameter estimation methods are based either
on minimization of prediction error (Nørgaard
et al., 2000) or on nonlinear filtering methods
(Fabri and Kadirkamanathan, 2001; de Freitas et
al., 2000; Šimandl et al., 2004). The proper choice
of estimation method affects accuracy of obtained
model.

Hence, goal of the paper is to apply a bicriterial
dual control (Filatov et al., 1997) for non-linear
discrete stochastic systems, when the nonlinear
functions are unknown and to combine it with
usage of neural networks training algorithm for
MLP based on mixture of Gaussian distributions
(Šimandl et al., 2004).

The paper is organized as follows: In Section 2
the problem of dual stochastic adaptive control
for non-linear systems is formulated. Section 3
concentrates on a theoretical description of Gaus-
sian sum (GS) estimator for training a neural
network. The derivation of the bicriterial dual
controller is shown in Section 4. In Section 5
the proposed approach is demonstrated in two
illustrative examples.

2. PROBLEM STATEMENT

The dynamical system to be controlled is single
input and single output nonlinear stochastic dis-
crete time-variant system given by

yk = fk(xk−1) + gk(xk−1)uk−1 + ek, (1)

where fk(·), gk(·) are unknown nonlinear func-
tions at time k, uk is the control input, xk−1 ,
[yk−n, . . . , yk−1, uk−1−p, . . . , uk−2]T is the state of
the system, where n, p are known parameters,
yk is the output of the system, {ek} is a zero-
mean white Gaussian sequence with known vari-
ance σ2. The system is minimum-phase and func-
tion gk(·) is bounded away from zero (Chen and
Khalil, 1995).

The unknown nonlinear functions fk(·), gk(·) are
approximated by a couple of two-layer perceptron
networks. Each of them has nf , ng neurons in a
single hidden layer and a single output.

A description of the neural networks is given by
the following relations
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where xa
k−1 = [xT

k−1 , 1]T is the state augmented
by constant bias input, cf

k , cg
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output layer with lengths nf, ng resp. and wf
k ,

wg
k are weights of the hidden layer relevant neural

network with lengths (n+p+1)nf , (n+p+1)ng resp.
φf (·), φg(·) are activation functions of the neurons
in the hidden layer. The ith element is given by
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activation function in the hidden layer, wf
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Unfortunately, dependence of ŷk on the parame-
ters of the neural network is nonlinear in (2)–
(4). Therefore it is necessary to exploit nonlinear
estimation methods.

For determination of the control action a subop-
timal dual cost function based on the bicriterial
approach developed by Filatov et al. (1997) will be
consider. The cost function exploits two separate
criterions. Each of this criterions so introduce
one of opposing aspects between estimation and
control; caution and probing.

The first criterion is suggested in the following
form

Jc
k = E{(yk+1 − yr

k+1)
2 + qu2

k|Ik}, (7)

where yr
k+1 is a known reference signal, q > 0

is a weighting design parameter and Ik is the
information state containing all measurable inputs
and outputs available up to the time instant k.
The criterion (7) evaluates quality of the control
and involves minimization of the expected value
of the tracking error. The resulting control

uc
k = argmin

uk

Jc
k (8)

respects uncertainties in knowledge of the un-
known functions and it is equal to caution control
in a fact.

The second criterion is chosen as

Ja
k = E{(yk+1 − ŷk+1)2|Ik}, (9)

where ŷk+1 is one step ahead prediction of the
output of the controlled system. This criterion
should evaluate the quality of the estimation and
then determines magnitude of intentional probing
signal generated by the controller.

Firstly, the criterion Jc
k minimization is executed.

Thereafter, the found solution uc
k specifies region

Ωk and then the second criterion Ja
k maximization

is performed. The region Ωk is symmetrically
distributed around the caution control as

Ωk = [uc
k − δk, uc

k + δk]. (10)

The choice of the parameter δk stems from rea-
soning that it is necessary to enrich the caution



control with probing in proportional to uncer-
tainty of the unknown functions fk(·), gk(·) in the
controlled system (1). A common choice for δk is

δk = η trPk+1|k, (11)

where η ≥ 0 provides the amplitude of the pro-
bing signal and the matrix Pk+1|k describes rate
of uncertainty of the parameters estimate condi-
tioned by Ik and can be obtained using a nonlinear
filtering method.

The bicriterial control uk is then searched as

uk = argmax
uk∈Ωk

Ja
k . (12)

This general bicriterial approach for controller
design will be used for the system (1) modelled
by neural network (2)–(6). However, previously
estimation of unknown parameters for calculating
of bicriterial dual controller (7)–(12) has to be
executed.

3. NONLINEAR PARAMETERS
ESTIMATION OF NEURAL NETWORK

This section concentrates on finding optimal va-
lues of the neural network weights representing
the parameters of the model (2).

There are many optimization methods developed
for training the MLP networks. Above all they
are based either on minimization of prediction
error or on nonlinear filtering methods (Fabri
and Kadirkamanathan, 2001; de Freitas et al.,
2000). Prediction error methods provide estimates
strongly affected by choice of initial values of
parameters because the criterion of prediction
error has in this case many local minima. The
nonlinear filtering methods bring a better solution
because they provide probability density function
(pdf) of parameters estimates and respect features
of disturbances. These methods solve Bayessian
relations by simulation, numerically or analyti-
cally. Since the simulation and the numerical
methods are slow and have high computational
demands, attention will be focused on an analytic
approach represented by the GS method (Alspach
and Sorenson, 1972; Šimandl and Královec, 2000)
which has been used for parameter estimation of
neural network by Šimandl et al. (2004).

Before application of the GS method for the pa-
rameters estimation a suitable estimation model
of the identified system must be defined. First, all
parameters of the model (2) will be included to
one parameter vector

Θk=
[
(cf

k)T, (wf1
k )T, . . . , (cg

k)T, (wg1
k )T, . . .

]T

(13)

The model (2) contains unknown parameters Θk

which should be estimated. Since, the system (1)

is considered as t-variant, changes its dynamics,
the features should be respected in estimation
model describing the parameters development:

Θk+1 = Θk + vk, (14)

where vk is non-Gaussian white noise defined as
a mixture of Gaussian distributions

p(vk) =
qk∑

n=1

β
(n)
k N

{
vk : v̂(n)

k ,Q(n)
k .

}
, (15)

Changes of dynamics such as changes of regimes
can be modelled by using non-Gaussian white
noise vk then β

(n)
k represents probability of

changes of these regimes (Šimandl, 1996).

Equation for measurements is given as:

yk = hk(Θk,xk−1, uk−1) + ek, (16)

where hk(·) = f̂k(·) + ĝk(·)uk−1. The equality in
the equation (16) is under consideration that the
network can approximate the system with negli-
gible small error. The parameter Θk is considered
as a random variable with an initial condition in
GS form:

p(Θ0|I−1)=
N0|−1∑

i=1

α
(i)
0|−1N

{
Θ0 :Θ̂(i)

0|−1,P
(i)
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where
∑N0|−1

i=1 α
(i)
0|−1 = 1, α

(i)
0|−1 >0. Points Θ̂(i)

0|−1

are chosen in order to cover space in which the
true parameters are expected. Noises vk, ek and
initial condition Θ0 are mutually independent.

Now, the estimation model (14), (16) of the sys-
tem (1) is defined and the GS method can be
applied. Analytic solution of Bayessian relations
will be obtained by linearization of the function
hk(·) using the Taylor expansion at the points
Θ̂(i)

k|k−1 representing predictive point estimates
of the parameters Θk from the time k − 1 for
i = 1, . . . , Nk|k−1. For notational convenience the
arguments xk−1 and uk−1 of the function hk(·) are
omitted below. So

hk(Θk) ≈ hk(Θ̂(i)
k|k−1) +∇(i)

k [Θk − Θ̂(i)
k|k−1],

where

∇(i)
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(i)
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[
∇f

k ,∇g
kuk−1

]
. (18)

∇f
k and ∇g

k represent the first derivative of the
function hk(·) with respect to parameters of the
network modelling function fk(·) and gk(·), resp.

Then, the filtering pdf p(Θk|Ik) is given as follows
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for i = 1, 2, . . . , Nk|k−1 and Nk|k = Nk|k−1.

The conditional predictive pdf is given as a mix-
ture of normal distributions:
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for j = 1, 2, . . . , Nk|k, n = 1, 2, . . . , qk,
i = qk(j − 1) + n and Nk+1|k = Nk|kqk .

Since the number of terms increase at each esti-
mation step, it is necessary to apply some pruning
methods to remove models with small probability
α

(i)
k+1|k and so to keep number of models reasona-

ble.

The GS estimator provides the filtering and the
predictive pdf of parameters, however the control
system designed from (9) and (11) requires a
point estimate of the parameters and a matrix
describing uncertainty of the parameters estimate.
One possibility is to choose predictive mean Θ̂k+1

and covariance matrix Pk+1:

Θ̂k+1 , E[Θk+1|Ik] =
Nl|k∑
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(i)
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Sometimes it can be useful to use maximum a pos-
teriori estimate or point estimate corresponding to
mean of the term of the filtering or predictive pdf
(19), (26) with the highest probability α

(i)
k+1|k.

Note that the matrix Pk+1 has block structure

Pk+1 =

[
Pff

k+1 Pgf
k+1

Pgf
k+1 Pgg

k+1

]
, (32)

where Pff
k+1, Pgg

k+1 are square covariance sub-
matrices of parameters estimates of the networks
f̂(·) and ĝ(·) respectively with appropriate dimen-
sions.

4. BICRITERIAL DUAL CONTROL DESIGN

In this section, the bicriterial dual controller will
be derived outgoing from the relationships (7)-
(12) and using estimation of the unknown param-
eters (30)–(32) from previous section.

Firstly, the caution controller can be obtained by
minimization of the criterion (7).

The optimal prediction of the output ŷk+1 =
hk+1(Θ̂k+1, xk, uk) is given by the predictive pdf
p(Θk+1|Ik) which is given by (26) and by the
measurement equation (17). Using the standard
relation E{a2} = E{a}2 + var{a}, the criterion
(7) can be rearranged as follows

Jc
k = [hk+1(Θ̂k+1,xk, uk)− yr
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The caution control can be found minimizing (33)
with respect to uk as
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Now, the second criterion (9) could be rewritten
as

Ja
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where c = ∇f
k+1P

ff
k+1(∇f

k+1)
T +σ2 is independent

on the variable uk and need not be considered.

The criterion Ja
k (uk) is a convex function of vari-

able uk. Hence, the extreme is inevitable to find
within boundary of the domain Ωk. Substituting
of variable uk with boundary points into criterion
Ja

k and subsequently comparison of the according
values it can be detected which of two suspect
points from extreme cost function represents ma-
ximum. Then, the largest value is equal to the
action control at time k. Therefore, it is possible
to state the following relation

uk = uc
k +η sign[Ja

k (uc
k + δk)−Ja

k (uc
k− δk)]. (36)

Substituting uc
k ± δk to uk in (35) and using (36)

it is possible to obtain

Ja
k (uc

k+δk)−Ja(uc
k−δk)=4δk(ν

gf
k+1+νgg

k+1u
c
k).
(37)



Control law is given using equations (37), (34) and
(36) as

uk = uc
k + η sign(νgf

k+1 + νgg
k+1u

c
k). (38)

The relation (38) presents final control law and
it is clear that the computational demands of the
bicriterial controller are comparable with caution
controller but it has dual control ability.

5. NUMERICAL EXAMPLES

Example 5.1. The discrete-time nonlinear system
(Fabri and Kadirkamanathan, 2001) described by
following equation is considered:

y(k) =
1.5yk−1yk−2

1 + y2
k−1 + y2

k−2

+

+ 0.35 sin(yk−1 + yk−2) + 1.2uk−1 + ek,

where the system has structure defined in the
Section 2. The functions fk, gk are t-invariant so
that vk = 0 ∀ k in (14) can be considered. Further,
ek is white noise with zero mean and variance
σ2 = 0.005. Reference signal yr

k is obtained by
sampling a unit amplitude, 0.1Hz square wave
filtered by a network of transfer function 1/(s+1).
The sampling frequency is 10Hz.

Parameters of the estimation algorithm were cho-
sen for all experiments as follows: quantity of
neurons of the individual neural networks are
nf = 10, ng = 5, Θ0 are generated from uniform
distribution on the interval 〈−0.5, 0.5〉. The initial
covariance matrix P0 is diagonal with Pff

0 = 10I
and Pgg

0 = I, where I is a unit matrix. Used
point estimate is chosen as Θ̂(i)

k+1|k with the high-

est probability α
(i)
k+1|k and estimate credibility is

computed from Pk+1|k =
∑Nk+1|k

j=1 α
(j)
k+1|k[P(j)

k+1|k+

(Θ̂(j)
k+1|k−Θ̂

(i)
k+1|k)(Θ̂

(j)
k+1|k−Θ̂

(i)
k+1|k)

T]. Note that ini-
tial weights are always same for all four regulators
in each trial.

Bicriterial dual controller (BDC) is compared
with cautious (CA), certainly equivalent (CE) and
inovation dual controller (IDC) for two estima-
tors: extended Kalman filter (EKF) 1 - the upper
part of the Table 1 and Gaussian sum (GS) - the
lower part of the Table 1. Number of terms in the
GS is set to 5. Firstly, optimal values of the re-
gulators IDC (λ = −0.90) and BDC (η = 0.0005)
were found in order to compare them. Value of
the parameter q = 0.0001 that appears in the
control laws is the same for both of them. Cri-
terion for solution of this task is chosen as mean
of sums of square errors between reference value
yr

ki and system output yki over 100 trials: V̂1 =
1

100

∑100
i=1

∑200
k=1(yki − yr

ki)
2.

1 The EKF can be obtained as a special case of the GS
estimator with vk = 0, Nk|k = 1, qk = 1.

Table 1. Influence of choice of regulator and
estimation method for quality of control system

CEEKF CAEKF IDCEKF BDCEKF

V̂1 454.1 15.8 10.2 8.7

cov(V̂1) 2.2·106 341.1 204.3 45.4

CEGS CAGS IDCGS BDCGS

V̂1 440.6 12.8 8.0 7.9

cov(V̂1) 1.2·106 135.6 65.1 25.3

It is clear that the best performance was obtained
for the bicriterial dual controller. Attained mean
and variance of the criterion have lower values.
Utilization of the GS estimator has positive in-
fluence for control quality as it is evident from
the lower part of the Table 1. The values of the
criterion are improved for all four cases. That is
confirmed for the IDC and the BDC control in the
Figure 1 as well.

0 20 40 60 80 100
0

50

0 20 40 60 80 100
0

50

0 20 40 60 80 100
0

50

0 20 40 60 80 100
0

50

V̂1

Trial number

V̂1

V̂1

V̂1

(d)

(a)

(b)

(c)

Fig 1. Obtained values of V̂1 for Monte Carlo
simulation for chosen regulators and estimators:
(a)IDCEKF , (b)BDCEKF , (c)IDCGS , (d)BDCGS .

It is suitable to note that even different values
of the parameters nf , ng, reference signal and
magnitude of noise variance ek were tried without
any change of obtained results, i.e. the BCD
controller always had the best performance.

Example 5.2. The system with three regimes
(Fabri and Kadirkamanathan, 2001) is assumed:

f1 =
−1.5yk−1yk−2

1+y2
k−1+y2

k−2

+ 0.35 sin(yk−1+yk−2); g1 = 5,

f2 =
2.5yk−1yk−2

1 + y2
k−1 + y2

k−2

; g2 = 1,

f3 =
1.5yk−1yk−2

1+y2
k−1+y2

k−2

+0.35 cos(yk−1+yk−2); g3 = 3.

The regimes are activated during the time inter-
vals shown in the Table 2.

The parameters of model nf , ng are chosen the
same as in the first example. Initial values of



Table 2. The mode activity

Mode Intervals of activity [k]

1 〈0, 400), (860, 1140), (1700, 2000〉
2 〈400, 580), (1420, 1700〉
3 〈580, 860〉, 〈1140, 1420〉

the parameters Θ0 are generated from uniform
distribution within the interval 〈−1, 1〉. Number
of terms in the GS is set to N0|−1 = 3. Addi-
tive noise vk is chosen as sum of two Gaussian
distributions, which should model possible high
changes of the parameters values during changing
of regimes: p(vk) = 0.997N {vk : 0, 0.0001I} +
0.003N {vk : 0, 0.01I}. Reference signal is set the
same as in the first example and the sampling
period is set to T = 0.05 sec. Criterion is set as
mean of sums of square errors of reference and
system output yr

ki, yki, respectively over 100 trials:
V̂2= 1

100

∑100
i=1

∑2000
k=1 (yki−yr

ki)
2.

Table 3. Influence of choice of regulator and
estimation method for quality of control system

CEEKF CAEKF IDCEKF BDCEKF

V̂2 2.3 · 104 7.5 · 104 1.7 · 104 1.4 · 104

cov(V̂2) 2.1 · 109 1.2 · 1011 1.3 · 109 4.3 · 108

CEGS CAGS IDCGS BDCGS

V̂2 1.4 · 103 544.4 89.3 70.5

cov(V̂2) 4·107 2.3·107 4.8·104 7.9·103

Influence of choice of control system and esti-
mator on control performance for a more com-
plex system with abruptly changing dynamics is
shown in the Table 3. The more sophisticated GS
estimator brings significantly better results than
the commonly used EKF which can not realize
changes of the system dynamics. The bicriterial
dual controller brings the best results compared
to the others controllers.

6. CONCLUSION

The bicriterial dual controller for t-variant non-
linear stochastic systems was presented. The sys-
tem is given by the multilayer perceptron network.
The estimation model is designed and parameters
are estimated by the nonlinear filtering Gaussian
sum method. The proposed adaptive controller
has computational demands comparable with cau-
tion control but with dual control ability. The
designed approach is useful for abruptly changing
systems as well.
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Šimandl, M. and M. Fĺıdr (2001). Bicriterial
dual control for stochastic systems with un-
known variable parameters. Preprints of the
5th IFAC Symposium on Nonlinear Control
Systems. NOLCOS’01, St. Petersburg, Rus-
sia.
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