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Abstract: This article describes the application of quasi-LPV modeling techniques
to an industrial military turbofan engine simulator developed by Snecma Moteurs,
the French aerospace propulsion company. Two approaches are used, classical
Jacobian linearization and velocity based linearization. First, we present briefly
the theoretical aspects of both linearizations. Second, we describe practical
implications and limitations. Finally, we present the application of those techniques
to the Snecma Moteurs Matlab Simulink turbofan engine simulator. Copyright
c©2005 IFAC.
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1. INTRODUCTION

Improving control policies for turbofan engines
still represents a challenge nowadays. Major ob-
jectives are reduced development costs and im-
proved in-flight engine performance (Skogestad
and al, 1996), (Wolodkin and al, 1999), (Grimble,
2001). One of the first difficulties faced by con-
trol engineers is the lack of satisfactory analytic
models for turbofan engines. Currently, the most-
promising control technique may be gain schedul-
ing achieved by interpolating controllers syn-
thesized at different linearized operating points
throughout the flight enveloppe, see (Wolodkin
and al, 1999), (Skogestad and al, 1996), (Nobakhti
and Munro, 2002). Sometimes, the controller is
not scheduled at all, and just designed at one
operating point. It is then verified afterwards if
the controlled system is robust enough to param-
eters variations (Wang and al, 1999). If not, a

precompensating gain is scheduled to adapt the
controller to parameters variations.

The key ingredient for these elaborated control
strategies is the choice of the synthesis model.
During the last ten years, a new modeling frame-
work has been developed for gain scheduling, re-
sulting in the so called LPV (Linear Parameter
Varying) models, (Packard, 1994), (Apkarian and
Gahinet, 1995). This method offers a theoretical
framework to ensure stability, performance and/or
robustness of the controlled system via convex op-
timisation over LMI (Linear Matrix Inequalities),
(Boyd and al, 1994).

When LPV design is chosen for control synthesis,
an LPV description of the plant is needed. Since
no satisfying analytical model of turbofan engine
is available, the synthesis model must be found nu-
merically. In (Henrion and al, 2004), we described
some techniques to obtain local linearised models



around operating points. This paper is aimed at
showing how to obtain an LPV model based on lo-
cal linearized models. This paper reports research
carried out during the second phase of a three-year
contract between the French aerospace propulsion
company Snecma Moteurs and LAAS-CNRS. The
outcome of the first phase, the derivation of lin-
earized models, was published in (Henrion and
al, 2004). The third and last phase, the design
of control laws based on this LPV model, is the
subject of current research and will be published
elsewhere.

The outline of this paper is as follows. In section
2, we present two ways to obtain a global model
based on local models. In section 3, we show
how the general principles developed in section
2 can be applied. This method is then applied in
section 4 on a military turbofan engine simulator
developed by Snecma Moteurs.

2. DERIVATION OF LPV MODEL

The goal of linearisation is to produce linear
models of the local behaviour of a nonlinear plant
formally described by:

ẋ = f(x, u, θ)
y = g(x, u, θ) (1)

with x the state of the system, u the control
input, θ the exogenous input. Functions f and
g are assumed differentiable along any possible
trajectory of the nonlinear system.

We can distinguish between two major cases:

• analytical expressions of f and g in (1) are
available;
• System (1) is available only through a simu-

lator or data from a test bench.

Two approaches can be used to build the local
linear models:

• Linearization by state and input perturba-
tions, if the state is accessible (Leith and
Leithead, 2000)
• Identification from input-output data (Henrion

and al, 2004).

Both techniques lead to a familly of linear models:

ẋ = Aloc (x− x0) +Bloc (u− u0)
+Ploc(θ − θ0)

y − y0 = Cloc (x− x0) +Dloc (u− u0)
+Qloc(θ − θ0)

(2)

with Aloc, Bloc, Cloc, Dloc, Ploc and Qloc constant
matrices of appropriate sizes approximating the
behaviour of system (1) around the linearization
point (x0, u0, y0). When not stated otherwise,
chosen linearization points are equilibrium points.

Assumption 1. θ varies slowly so that both θ− θ0

and θ̇ can be neglected.

Assumption 2. θ is measurable.

Thanks to assumption 1, Ploc and Qloc can be
neglected. Assumption 2 ensures we can schedule
the controller with respect to θ.

The next step is to create a global linear param-
eter varying (LPV) model of system (1) based on
a family of local models (2). We see two ways to
tackle the problem:

• A classical one based on Taylor series expan-
sion, also called Jacobian linearization;
• A second method proposed by (Leith and

Leithead, 1998), perhaps less known, called
“velocity based linearization”, based on time
derivatives of system (1).

The final aim is to get a model of the LPV form:{
ẋ = A(θ) x+B(θ) u
y = C(θ) x+D(θ) u (3)

where parameter θ belongs to some compact,
bounded set Θ such that all trajectories of system
(1) are covered by possible trajectories of LPV
system (3).If θ contains elements of x, the system
is called quasi-LPV.

Such models are conservative because many of
the possible trajectories of the LPV model cannot
be trajectories of the nonlinear model. But they
provide a constructive framework for nonlinear
system controller synthesis.

2.1 Jacobian Linearization

When applied to the system (1) around a point
(u0, x0) and under assumption 1, the Taylor series
expansion theory yields the model:

ẋ = ẋ0 + ∆̇x = f(x0, u0, θ0) +
∂f

∂x
∆x+

∂f

∂u
∆u

∆x = x− x0

∆u = u− u0

(4)

This is the classical way to linearize a nonlinear
system, also called Jacobian linearization. Note
that in general model (4) is affine due to the term
f(x0, u0, θ0) in the expression of ẋ. For practical
purpose, (u0, x0) is chosen as an equilibrium point
(f(x0, u0, θ0) = 0) so that an LTI (Linear Time
Invariant) model of the plant is obtained in the
neighborhood of the equilibrium point.

2.2 Velocity-based Linearization

The idea here is to differentiate equation (1) to
get:




ẍ =

∂f(x, u, θ)
∂x

ẋ+
∂f(x, u, θ)

∂x
u̇

ẏ =
∂g(x, u, θ)

∂x
ẋ+

∂g(x, u, θ)
∂x

u̇
(5)

which is equivalent to

ż = A(x, u, θ)z +B(x, u, θ)u̇
y = [0 1]z

z =
[
ẋ
y

]

A(x, u, θ) =

 ∂f(x, u, θ)
∂x

0
∂g(x, u, θ)

∂x
0


B(x, u, θ) =

 ∂f(x, u, θ)
∂u

∂g(x, u, θ)
∂u


(6)

Hence, we get systematically a quasi-LPV system
whereas the technique of section 2.1 yields an
affine system. The price to pay is an extension
of the state, which now incorporates both ẋ and
y. Hence, the order of the model is the order of
the nonlinear system plus its number of outputs.

3. IMPLEMENTATION

The linearization techniques of section 2 suggest
different implementations depending on the cho-
sen interpolation technique. Let us enumerate the
advantages and the drawbacks of each method.

3.1 Jacobian Implementation

As seen on figure 1, u0 and y0 are inputs to the
system and a strategy must be adopted to set
them. A basic way is to switch from one equilib-
rium point (u0, y0) to another depending on the
output y of the model. That implies interpolation
between equilibrium points, e.g. by a piecewise
constant function. A limitation of this technique
is that it results in an algebraic loop y0 = g(y) in
simulation for most of the interpolation choices.

Of course, another important choice is the way
to interpolate the local models. It is our experi-
ence that the piecewise linear interpolation imple-
mented in the look-up table block of Simulink
(The MathWorks Simulink, 2002) gives excellent
results in simulation but is not convenient for
synthesis. In practice, the synthesis model uses
polytopic representation or rational interpolation
within the framework of Linear Fractional Trans-
forms (LFT) (Packard, 1994). Since interpolation
means loss of knowledge about the system anyway,
it is difficult to know a priori which interpolation
policy is more appropriate. Indeed, the set of tra-
jectories of nonlinear system (1) can be included

in the set of trajectories of a quasi-LPV model ob-
tained by mathematical manipulations. But when
the LPV model is obtained by interpolation over
local models, nothing ensures that this inclusion
is preserved.

3.2 Velocity based linearization Implementation

One of the advantages of velocity based linearisa-
tion is the use of off-equilibrium points. If we were
able to linearise around these points, we could
include them in the modeling process to enhance
the model quality, without changing its properties
(its linearity).However without the knowledge of
an analytical model, we have no way to derive
off-equilibrium models to improve the quality of
the model. It means that the quasi-LPV model
we obtain is only valid around equilibrium points
as in the Jacobian approach.

The velocity based linearization leads to an LPV
model: ẋ = x2

ẋ2 = Aloc(x, u, θ)x2 +Bloc(x, u, θ)u̇
ẏ = Cloc(x, u, θ)x2 +Dloc(x, u, θ)u̇

(7)

with x is the former state, x2 and y the new model
state, θ the exogenous input and Aloc, Bloc, Cloc,
Dloc are as in equation (2).

Here, the problem due to interpolation of equi-
librium linearization points disappears avoiding
algebraic loops. The same remark as in section
3.1 can be made about interpolation of the local
models and the lack of representativity of the
quasi-LPV model (no link between the two sets
of state trajectories).

Equations (2) imply that the output of the con-
troller is u̇ so this signal must be integrated to re-
trieve the input u sent to the real plant. Equations
(2) mean also that the global behaviour of the
system is the integral of the local one. Hence mod-
eling errors are integrated too, generating a static
error in contrast with the Jacobian linearization.

4. APPLICATION

4.1 Description of the plant

Our system is a numerical simulator of a mili-
tary turboreactor designed by Snecma Moteurs.
To be more precise, this turbofan engine is a
twin spool turbofan with separate jets and a low
bypass ratio.The two main inputs are WF32 (fuel
flow) and A8 (nozzle area). The five main outputs
are XN25 (compressor speed), XN2 (fan speed),
PS32 (pressure in combustion chamber), DPQ23
(pressure ratio between high pressure (HP) spool
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Fig. 1. Classical linearization scheme

and low pressure (LP) spool) and TM49 (metal
temperature of HP turbine). The exogenous signal
(eventually to be scheduled) are the Mach num-
ber, the altitude and the PLA (Pilot Lever Angle).
As we have no analytic models of the system,
we identified a family of linearised models along
the working line as described in (Henrion and
al, 2004). The point is now to get a global model
of the plant. We formulate two key assumptions:
first, the plant nonlinearity can be modeled by an
LPV system; second, the model is linear in the
input signal.

4.2 Implementation and comparison

We choose to present our results on the transfers
from A8 and WF32 to PS32. The reason of this
choice is that PS32 is the best known scheduling
parameter and it is the only state-dependent pa-
rameter we use. It would be useless to test the
models on a more complicated system. Hence,
we have identified a two-input-one-output transfer
of order 2 for 18 differents PLA from idle to
maxthrust (without afterburning) on the ground
(altitude 0) and for a Mach number of 0.3. Recall
the two assumptions 1 and 2 to be made about
this system to allow LPV modeling:

• PS32 shall change slowly.
• Since θ = y, θ is measurable.

Both Jacobian linearization and velocity based
linearization require interpolated local models to
provide an LPV system. Since θ is the output, the
system is quasi-LPV. We tested several methods
to interpolate the matrix coefficients. We obtained
the best results with a polynomial interpolation
of degree 3 and a 3-segment piecewise linear
interpolation. Each of these approaches leads to
a different controller synthesis:

• polynomial interpolation requires the LFT
framework;

• piecewise linear interpolation yields poly-
topic models.

We can indifferently use these two interpolation
methods with our two linearization methods.

4.2.1. Jacobian Linearization We choose the
simplest way to interpolate our equilibrium points:
a piecewise constant interpolation, which corre-

sponds to switching between operating points de-
pending on the scheduling variable (here, PS32).
Three variables are scheduled that way: u0, x0

and y0. The values for each operating points are
obtained by identification but the values of x0

yield impulsive modes during transitions between
two operating points. So we had to schedule x0 to
ensure the continuity of y which increased greatly
the quality of the response. We chose to schedule
u0, x0 and y0 that way for the simple reason that
it avoids algebraic loops.

First, we tested small step responses to compare
the numerical simulator and the Jacobian lin-
earised model. We got very good results because
assumption 1 was respected. Then, we simulated
an acceleration from idle to maxthrust followed
by a deceleration from maxthrust to idle. This
test is one of the most demanding the model must
perform, because of the speed of variation. In par-
ticular, assumption 1 does not hold anymore. This
causes problems on simulations for acceleration
and even more serious problems for deceleration
because of faster dynamics.

With Jacobian linearisation, the first problem en-
countered in simulation was the existence of alge-
braic loops that Simulink could not handle. This
is particularly true when using local models with
a non-zero feed through D matrix. As a remedy,
it is possible to enforce a transfer function with
large bandwidth between θ and PS32. The larger
the bandwidth, the more accurate but also the
more demanding is the simulation. Another way
to cope with those simulation limitations is to
soften the way the matrices are interpolated. The
first interpolation we tried was a piecewise linear
interpolation (joining all the linearizing points).
As one can see on figure 2, such an interpolation
is very irregular. To soften it, we used the two in-
terpolations defined in section 4.2 and represented
on figure 2, our operating points interpolated in
the least squares sense. This has two advantages:
first, it eases the calculation of algebraic loops for
Simulink, second, it gives simpler expressions of
the model, leading to simpler controllers.

Remark 1. It is important to take care about
what happens when θ goes outside the range
of known values. The easiest way to solve the
problem is to put a saturation on θ. In other
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words, under and over the known range, the
scheduling function is constant.

Figure 3 shows the result of Jacobian lineariza-
tion. It shows in particular that both interpolating
functions give quite the same result. Also the
behaviour of the plant is correct but not perfectly
reproduced, probably because of the poor qual-
ity of some identifications and the necessary non
respect of assumption 1. These results show that
the controller must be robust to modeling errors.
It is interesting to note that the static error only
depends on the quality of the identification of the
plant since at steady state, the model behaves just
like the local model around the equilibrium point.
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Fig. 4. Comparison between piecewise and poly-
nomial interpolation for velocity based lin-
earization

4.2.2. Velocity Based Linearization The same
simulations are performed as for the Jacobian
linearization, using the same interpolation points.

We see on figure 4 that both interpolations give
the same result: on the one hand, the static error
is important (as expected, see section 3.2), and on
the other hand, the model seems representative of
the dynamics. As for the Jacobian implementa-
tion, these results show that we will have to syn-
thesize a very robust controller. But for velocity
based linearization, there is already an integrator
in the loop (as explained in section 3.2) ensuring
good tracking properties.

Remark 2. For simulation needs, it is possible to
change the poles of the integrator into Hurwitz-
stable poles thanks to another loop described
on figure 5 so that the static error vanishes.
The price is to interpolate y0 as a function of
the input u. The chosen poles must be slower
than the system dynamics. Otherwise the system
will follow equilibria curve irrespective of local
dynamics.

4.3 Conclusion

We have seen that the quasi-LPV models ob-
tained with our approach are quite representa-
tive of the plant even if the static gain is not
always well reproduced. It does not seem to be a
major problem because our controller will ensure
appropriate tracking. The results presented here
also show that both linearization methods yield
plant models of comparable quality. This allows
us to choose any of those two models to the next
step, the synthesis, and the good properties of
velocity-based models lead us to choose them for
the controller design step.
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5. CONCLUSION

We have compared two different approaches for
quasi-LPV systems modeling. We have empha-
sized the advantages and shortcomings of each
technique, discussing their potential applications
to controller design. Indeed, we hope that the
better the model fits the system response (es-
pecially the transients), the more efficient the
controller design will be. Nevertheless, the choice
of the modeling technique depends on the most
important closed-loop specifications. Indeed, some
modeling errors will not impact on the quality
of the control of the plant. As an example, the
integrator in the open loop due to velocity based
linearisation will remove steady state errors, so
modeling errors on the static gain of the global
system do not seem to be critical. Since both
modeling techniques offer us the same modeling
qualities, we have chosen the velocity-based model
to apply our synthesis procedures. These works
are the focus of the next part of the contract
between Snecma Moteurs and LAAS-CNRS and
will be the subject of further publications.
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