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Abstract: An iterative method is proposed to optimize the Volterra kernels expansions
on Generalized Orthonormal Bases (GOB). Each kernel is expanded on an independent
GOB. The expansion coefficients, also called Fourier coefficients, are estimated in using
an orthogonal formulation of the Least Squares (LS) algorithm. The proposed method
allows optimization of both the Fourier coefficients and theGOBs poles. It can be seen
as a good compromise between the exhaustive method for GOB poles optimization,
costly by nature, and the analytical solution to Laguerre poles optimization that generally
furnishes worse performances for system approximation than expansions on GOBs.
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1. INTRODUCTION

Truncated Volterra filters constitute a class of nonre-
cursive polynomial models, i.e. models without out-
put feedback which guarantees their stability. Unfor-
tunately, they are characterized by a huge number
of parameters. During the last decade, the issue of
Volterra model complexity reduction has been ad-
dressed following different approaches (Korenberg,
1991; Panicker and Mathews, 1998; Hacioglu and
Williamson, 2001; Kibangouet al., 2003; Campelloet
al., 2004; Khouajaet al., 2004). Among them, expan-
sions of Volterra kernels on discrete orthonormal bases
of functions (OBF) are of great interest. The class of
OBFs generally used for modelling purposes is that
of rational orthonormal bases such as Laguerre basis
(Wahlberg, 1991) and Generalized orthonormal basis
(GOB)(Ninness and Gustafsson, 1997). These bases
are characterized by a set of poles whose the choice
strongly influences the parsimony of the expansion.

Although expansion of Volterra kernels on OBFs was
firstly suggested by Wiener in the 60’s (Schetzen,
1980), in the best of our knowledge (Campelloet
al., 2004) were the first to derive an analytical solution
to the basis selection problem in the special case
of Laguerre basis that is characterized by a single
pole. Recently the authors have derived an analytical
solution with more relaxed conditions by using the
estimated Laguerre spectra (Kibangouet al., 2004).

Optimization of GOBs for Volterra kernels expansion
is more complex. Two main solutions have been pro-
posed. Firstly, (Hacioglu and Williamson, 2001) have
proposed the use of the gradient descent technique
to minimize the mean square error (MSE) criterion.
However, since the cost function is strongly nonlinear
with respect to the GOBs poles, the convergence can
only be guaranteed towards local minima. Secondly,
the authors (Kibangouet al., 2003) have proposed an
exhaustive search method on a set ofa priori fixed
candidate poles obtained by using the knowledge on



the system’s dynamics or by discretizing the segment
]−1;1[. The poles are chosen such as a LS criterion be
minimized. At each iteration the cost function is eval-
uated for each candidate pole. Thus, the local minima
issue does not arise. However the complexity of this
approach grows with the dimension of the candidate
poles set.

In order to circumvent this drawback, an alternative
method is suggested in this paper. It is iterative as
in the exhaustive method (Kibangouet al., 2003) but
does not require a set of candidate poles. At each
iteration the poles are chosen in using the analytical
solution for Laguerre poles given in (Kibangouet
al., 2004). Consequently the local minima issue does
not arise and the computation complexity is reduced.
Note that the parallel-cascade structure of the resulting
method allows to iteratively estimate both the Fourier
coefficients and the poles.

The organization of the paper is as follows. In the next
section, the principle of Volterra kernels expansion on
OBFs is recalled and the orthogonal formulation of
the least-squares method for estimating the Fourier
coefficients is described. This formulation allows to
get a multichannel structure which will be exploited
for the derivation of the proposed iterative method.
In section 3, the analytical solution to the Laguerre-
Volterra optimization is recalled. Then the overall
procedure is described in section 4 before illustrating
it by means of simulation results in section 5 and
concluding the paper in section 6.

2. BACKGROUND

A discrete-timeP-th order Volterra filter is described
by the following input-output relation:

y(n) =
P

∑
p=1

∞

∑
n1=0

· · ·
∞

∑
np=0

hp(n1, · · · ,np)
p

∏
j=1

u(n−n j)

(1)
whereu, y andhp are respectively the input, the output
and thep-th order Volterra kernel. (Boyd and Chua,
1985) showed that any time invariant, causal, non-
linear system with fading memory can be represented
by a finite expansion in Volterra series.

Expanding the kernelhp on a setBp =
{

bk,p
}∞

k=0
of OBFs, wherebk,p is the (k + 1)-th basis function
associated with thep-th order kernel, yields:

hp(n1, · · · ,np) =
∞

∑
k1=0

· · ·
∞

∑
kp=0

gk1,··· ,kp

p

∏
j=1

bk j ,p(n j)

where the coefficients

gk1,··· ,kp =
∞

∑
n1=0

· · ·
∞

∑
np=0

hp(n1, · · · ,np)
p

∏
j=1

bk j ,p(n j)

are called the Fourier coefficients relative to thep-
th order kernel. When the used OBFs are Laguerre
functions, the set of the Fourier coefficients

{

gk1,··· ,kp

}

constitutes the Laguerre spectrum of thep-th order
kernel.

Note that the Fourier coefficients can always be ranged
in such a way that a triangular representation be ob-
tained. The input-output relation (1) can be rewritten
as:

y(n) =
P

∑
p=1

∞

∑
k1=0

· · ·
∞

∑
kp=kp−1

gk1,··· ,kp

p

∏
j=1

sk j ,p(n)

=
P

∑
p=1

∞

∑
k1=0

· · ·
∞

∑
kp=kp−1

gk1,··· ,kpsk1,··· ,kp(n) (2)

where

sk j ,p(n) =
∞

∑
i=0

bk j ,p(i)u(n− i) (3)

If the desired representation is stable, then the kernels
expansions can be truncated to an arbitrary orderK
and the input-output relation becomes:

y(n) =
P

∑
p=1

K−1

∑
k1=0

· · ·
K−1

∑
kp=kp−1

gk1,...,kpsk1,··· ,kp(n) (4)

The resultingpth-order kernel has(K+p−1)!
(K−1)!p! param-

eters while, by considering the triangular form, the
original pth-order kernel with memoryM has(M+p−1)!

(M−1)!p!
parameters. WhenK << M, the parametric complex-
ity is significantly reduced. The choice of the trunca-
tion orderK depends on the basis selection. When the
poles characterizing the bases are well chosen,K can
take a small value.

In this paper two kinds of OBFs are used: the discrete-
time Laguerre functions and the GOB functions re-
spectively defined by their z-transforms as follows:

Lk,p(z) = Z
{

lk,p(i)
}

=
√

1−ξ 2
p

z
z−ξp

(

1−ξpz

z−ξp

)k

(5)

Bk,p(z)=Z
{

bk,p(i)
}

=
√

1− τ2
k,p

z
z− τk,p

k−1

∏
i=0

1− τi,pz

z− τi,p

(6)
One can note that only the Laguerre poleξp charac-
terizes the set of Laguerre functions

{

lk,p(i)
}

while
the GOB functions are characterized by a set of poles.
Note again that the Laguerre basis is a particular case
of GOB obtained by setting in (6) all theτi,p poles
equal to a same value, i.e.τi,p = ξp, ∀i. The Volterra
model whose kernels are expanded on OBFs has the
filter bank structure depicted on figure 1.

In the sequel, we first present a LS estimation of the
Fourier coefficients when the OBFs are assumed to be
a priori fixed. This estimation method will constitute
the basis of the proposed iterative procedure of GOBs
poles estimation.

Let us assume that a record of N couples of input-
desired output signals is available. We define

• ϕk1,··· ,kp , p = 1, · · · ,P, the vectors ofp-th order
products of the filtered inputs:
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Fig. 1. Filter bank structure of a Volterra model ex-
panded on OBFs

ϕk1,··· ,kp =
(

sk1,··· ,kp(0), · · · ,sk1,··· ,kp(N −1)
)T

• ΦΦΦ(p)
k the matrix constituted by the columns vec-

torsϕ j1,··· , jp−1,k, for 0≤ j1 ≤ ·· · ≤ jp−1 ≤ k and
2≤ p ≤ P.

• ΦΦΦk =
(

ϕk ΦΦΦ(2)
k · · ·ΦΦΦ(P)

k

)

• Gk, the Fourier coefficients vectors whose entries
are the Fourier coefficients associated with the
filtered inputs contained inΦΦΦk.

One can note that the data contained inΦΦΦk depend
only on the inputu and on the basis functionsbi,p,
0 ≤ i ≤ k, 1≤ p ≤ P. The matrix formulation of the
input-output relation can then be written as:

Y = (y(0) y(1) · · ·y(N −1))T = ΦΦΦG

where

ΦΦΦ = (ΦΦΦ0 · · ·ΦΦΦK−1) , G =
(

GT
0 · · ·G

T
K−1

)T

The optimal Fourier coefficients vectorG is obtained
by solving the following optimization problem:

Ĝ = argmin
G

‖d −ΦΦΦG‖2

whered = (d(0) d(1) · · ·d(N −1))T is the vector of
desired outputs. Then the LS estimator of the Fourier
coefficients is:

Ĝ =
(

ΦΦΦTΦΦΦ
)−1ΦΦΦT d

The QR factorization ofΦΦΦ yieldsΦΦΦ = Φ̄ΦΦU, whereΦ̄ΦΦ
is a column orthonormal matrix andU an upper trian-
gular matrix. Then the optimal Fourier coefficients are
given by:

Ĝ = U−1Φ̄ΦΦT
d (7)

Note that theΦ̄ΦΦ matrix has also a block structure:

Φ̄ΦΦ =
(

Φ̄ΦΦ0 · · ·Φ̄ΦΦK−1
)

(8)

where theΦ̄ΦΦk matrices have the same structure thanΦΦΦk

and satisfy the following orthogonality property:

Φ̄ΦΦT
l Φ̄ΦΦk = δl,kI

δ being the Kronecker symbol andI the identity
matrix.

Let us definēYk = Φ̄ΦΦkḠk andḠ = UG =
(

ḠT
0 · · · Ḡ

T
K−1

)T
.

The outputs vector is then given by:

Y = Φ̄ΦΦḠ =
K−1

∑
k=0

Ȳk =
K−1

∑
k=0

Φ̄ΦΦkḠk

and:

y(n) =
K−1

∑
k=0

ȳk(n), ȳk(n) = S̄k(n)Ḡk (9)

whereS̄k(n) is the(n +1)-th row of theΦ̄ΦΦk matrix. It
yields the multichannel structure depicted by figure 2.

GOB filtering and Nonlinear

operation on filtered inputs

GOB filtering and Nonlinear

operation on filtered inputs

GOB filtering and Nonlinear

operation on filtered inputs

0G

1G

1 KG

0S

1S

1 KS

)(nu

)(0 ny

)(1 ny

)(1 nyK 

)(ny
+

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 2. Equivalent multichannel representation of
GOB-Volterra model

The (k + 1)-th subchannel, associated with̄Gk and
Φ̄ΦΦk, depends on the basis functionsbi,p, i = 0, · · · ,k,
p = 1, · · · ,P. Suppose that the basis functionsbi,p have
been already optimized up to thek-th function, i.e. the
poles τi,p, i = 0, · · · ,k − 1, p = 1, · · · ,P, have been
determined and fixed. Then each GOB functionbk,p

is characterized by a single parameter: the poleτk,p

whose optimization can be done by using the input-
output data corresponding to the(k + 1)-th subchan-
nel. To achieve this purpose, since analytical solution
exists for Laguerre poles optimization, the(k + 1)-th
subchannel can be modelled using Laguerre functions.
The determined optimal Laguerre poles, associated
with this subchannel, are used as the polesτk,p of the
GOB functionsbk,p. Then the corresponding Fourier
coefficients are optimized in the LS sense. In the fol-
lowing section the Laguerre poles optimization proce-
dure proposed by the authors (Kibangouet al., 2004)
is briefly recalled.

3. OPTIMIZATION OF LAGUERRE POLES

The nonlinear behavior of the (k + 1)-th subchannel
can be described by a Volterra model expanded on La-
guerre bases. An arbitrary truncation order is chosen
since the interesting issue, in this section, is the deter-
mination of optimal Laguerre poles. The authors have
shown that the analytical Laguerre poles obtained with
the method described below do not depend on thea



priori fixed truncation order. The larger the truncation
order is, the faster the convergence is.

Optimization of Laguerre poles is based on the respec-
tive minimization of the following cost functions:

Jp =
1

p
∥

∥h̄p
∥

∥

2

∞

∑
k1=0

· · ·
∞

∑
kp=0

(k1 + · · ·+ kp)γ2
k1,··· ,kp

(10)
where h̄p is the p-th order kernel of the considered
subchannel,γk1,··· ,kp are the Fourier coefficients asso-
ciated with theh̄p’s expansion on a Laguerre basis,
∥

∥h̄p
∥

∥

2
=

∞
∑

n1=0
· · ·

∞
∑

np=0
h̄2

p(n1, · · · ,np). It was shown in

(Campelloet al., 2004) that this cost function is an
upper bound of the modelling squared error due to the
truncation with a finite order of the Laguerre expan-
sion.

Let us define, forl = 1, · · · , p:

T1,l =
∞

∑
k1=0

· · ·
∞

∑
kp=0

(2kl +1)γ2
k1,··· ,kp

(11)

T2,l = 2
∞

∑
k1=0

· · ·
∞

∑
kl−1=0

∞

∑
kl=1

∞

∑
kl+1=0

· · ·

∞

∑
kp=0

klγk1,··· ,kpγk1,··· ,kl−1,kl−1,kl+1,··· ,kp (12)

R j,p =
p

∑
l=1

Tj,l , j = 1,2 (13)

The optimization method of Laguerre poles is based
on the following lemmas and theorem proved in
(Kibangouet al., 2004):

Lemma 1. R1,p andR2,p are linked by means of their
derivatives with respect toξp as follows:

∂R1,p

∂ξp
=

−2
1−ξ 2

p
R2,p (14)

∂R2,p

∂ξp
=

−2
1−ξ 2

p
R1,p (15)

Knowing that
∥

∥h̄p
∥

∥

2
=

∞
∑

k1=0
· · ·

∞
∑

kp=0
γ2

k1,··· ,kp
, from the

definitions ofR1,p andJp, a simple calculation yields

R1,p = p
∥

∥h̄p
∥

∥

2
(1+2Jp)

Thus
∂R1,p

∂ξp
= 2p

∥

∥h̄p
∥

∥

2 ∂Jp

∂ξp
(16)

Theorem 1. Given the Laguerre spectrum associated
with the expansion of the Volterra kernelh̄p on any
Laguerre basis characterized byξp, the optimal La-
guerre poleξp,opt is such as:

ξp,opt =







ρo,p −
√

ρ2
o,p −1, i f ρo,p > 1

ρo,p +
√

ρ2
o,p −1, i f ρo,p < −1

(17)

where:

ρo,p =
(1+ξ 2

p )R1,p +2ξpR2,p

2ξpR1,p +(1+ξ 2
p )R2,p

(18)

When the expansion is infinite,ρo,p is a characteristic
of the Volterra kernel̄hp. The theorem stated above
is particularly meaningful. Indeed it allows to obtain
an optimal pole knowing the Laguerre spectrum as-
sociated with an arbitrary pole. In practical case the
expansion on a Laguerre basis is truncated to a finite
orderK. Consequently,ρo,p is only an approximation
of the actual characteristic of the system. An iterative
procedure allows to reach its optimal value.

Let us consider the Laguerre-Volterra filter described
as follows:

w(n) =
P

∑
p=1

K−1

∑
k1=0

· · ·
K−1

∑
kp=kp−1

γk1,··· ,kp

p

∏
j=1

sk j ,p(n)

Similarly to (2), with the appropriate matrices and vec-
tors, and by considering the outputv of the subchannel
to be modelled, the orthogonal LS estimator (7) can be
used to estimate the Laguerre spectra.
In order to derive an iterative procedure for Laguerre
pole estimation, note that the combination of (16) with
(14), yields:

2p
∥

∥h̄p
∥

∥

2 ∂Jp

∂ξp
=

−2
1−ξ 2

p
R2,p

Therefore whenJp is minimal, R2,p is equal to zero.
Reciprocally, asJp admits a single minimum for
∣

∣ξp
∣

∣ < 1, whenR2,p takes values close to zero, then
Jp is close to its minimal value. Consequently the pole
ξp is close to its optimal value. This property, due to
the pseudo-convex nature ofJp, allows to derive the
following batch estimation method :

(1) Select arbitrary poles in the segment]−1,1[ and
construct the corresponding Laguerre bases, i.e.
each kernel is expanded on an independent basis.

(2) Estimate the Laguerre spectrum associated with
each kernel;

(3) For each basis, i.e.p = 1, · · · ,P, evaluateTj,l ,
l = 1, · · · , p, andR j,p, j = 1,2, by using truncated
versions of (11)-(13).

(4) If R2,p is close to zero, stop; else
(a) Evaluateρo,p by using (18).
(b) Determine a new poleξp by using (17).
(c) Construct a Laguerre basis associated with

ξp and return to the step (2).

Note that this method does not require particular initial
conditions to provide the solution.

4. THE ITERATIVE METHOD FOR GOB
OPTIMIZATION

The multichannel structure of the GOB-Volterra model,
as described in section 1, allows the iterative construc-
tion of GOBs. As stated in section 2, the input-output



of the (k + 1)-th subchannel can be used to optimize
the poleτk,p associated with the GOB functionsbk,p.
Particularly, τk,p can be chosen as the optimal La-
guerre poleξp associated with the expansion of the
(k + 1)-th subchannel’s Volterra model on a Laguerre
basis. Let us define the following signals:

• ŷk(n), the cumulated outputs up to the (k +1)-th
subchannel:

ŷk(n) =
k

∑
i=0

ȳi(n)

• vk(n), the residual signal:

vk(n) = d(n)− ŷk−1(n)

wherev0(n) = d(n).

The residual signalsvk satisfy the following recursive
relation:

vk(n) = vk−1(n)− ȳk−1(n), k > 0 (19)

The principle of the proposed method is that of well-
known identification methods for parallel-cascade
models (Korenberg, 1991). It consists, at each step
k ≥ 0, on the identification of the subchannel driven
by the input signalu and the residual signalvk. In
our case, the input/output data(u,vk) will be used,
firstly for the estimation of Laguerre poles associated
with the corresponding subchannel and secondly for
the estimation of Fourier coefficients associated with
the expansion of the overall model on GOBs. The
proposed procedure is as follows:

• For k ≥ 0:
(1) Determine the optimal Laguerre polesξk,p,

p = 1, · · · ,P by using the input-output data
u andvk.

(2) Setτk,p = ξk,p and construct thebk,p func-
tions.

(3) Generate the filtered inputs contained in
S̄k(n) and construct thēΦk matrix.

(4) EstimateḠk as:

Ḡk = Φ̄T
k vk

where vk is the column vector of residual
signalsvk(n) n = 0, · · · ,N −1.

(5) Calculatevk+1(n), n = 0, · · · ,N − 1 using
(19) and return to the step 1 until a stop
criterion is reached.

The iterative procedure can be stopped in using a
model selection criterion as in (Kibangouet al., 2003)
or by evaluating the power of the residual signal. Note
that from a certain iteration, the residual signal will be
mainly constituted by the additive noise. If this noise
is supposed to be white, (Korenberg, 1991) suggests
to apply a whiteness test on the residual signal. In our
case the iterative procedure is stopped when the power
of the residual signal becomes relatively constant.

5. SIMULATION RESULTS

In this section the performances of the proposed iden-
tification method are illustrated by means of simula-
tions. The identification of the second order Volterra
system used in (Kibangouet al., 2004) and described
below is considered:

First order kernel

H1(z) =
z(z+0.5)

(z−0.3)(z−0.2)

Second order kernel

h2(i, j) = 0.25h(i)h( j)

where h(i) = Z
−1

{

z(z+1)

(z−0.8)(z+0.8)

}

This system was simulated as a quadratic Volterra
system with memoryM = 20. In using a triangular
representation of the quadratic kernel this filter has
230 parameters to estimate. The input signal is white,
Gaussian, centered and has an unit variance. A white
gaussian noise is added to the system output and the
signal to noise ratio is equal to 30 dB.N = 5000
input/output data are simulated. Laguerre poles are
initialized to 0.001. The Monte Carlo method is used
for simulations with 50 independent noise sequences.

Figure 3 shows the variation of the residual signal
power that is the output mean square error. One can
note that this power becomes nearly constant forK =
7. Then the iterative procedure for both GOBs con-
struction and Fourier coefficients estimation can be
stopped.
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Fig. 3. Power of the residual signal in function of the
basis size

Now let us compare the proposed procedure with
the methods called Laguerre-Volterra and Exhaus-
tive method respectively described in (Kibangouet
al., 2004) and (Kibangouet al., 2003). In the first
method, optimization of a Laguerre-Volterra filter is
considered. The optimal Laguerre poles obtained are
ξ1 = 0.518 for the linear kernel andξ2 = 0.820 for
the quadratic one. One can see that the Laguerre poles
converge towards their optimal values in relatively few
iterations (figure 4).
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Fig. 4. Laguerre poles estimation

In the second method the poles are chosen among a set
of candidate poles obtained in discretizing the]−1;1[
segment with a fixed step-size taken equal to 0.1. Note
that the complexity and the precision of the exhaustive
method is linked to the chosen step-size. The cost
function must be evaluated for each of the candidate
poles.
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Fig. 5. Comparison of three estimation methods

As shown by figure 5, the exhaustive search method
gives better results in the MSE sense. Note that in this
approach the poles are selected in order to explicitly
decrease the square error, that is not the case of the
proposed method. Therefore the proposed iterative
method requires less operations than the exhaustive
search scheme since the Laguerre poles selection is
done in few iterations. Then it can be seen as a good
alternative to the exhaustive search method.

6. CONCLUSION

In this paper, the optimization of Volterra kernels ex-
pansions on GOBs has been addressed. The proposed
method uses some features of the previous methods
developed by the authors. Growing method based on
an exhaustive search of GOB poles has been proposed
in (Kibangou et al., 2003). Unfortunately the com-
putational cost can be very important due to its ex-

haustive nature. In (Kibangouet al., 2004) the authors
have proposed an analytical solution to the Laguerre-
Volterra filters optimization problem. This solution is
based on the estimated Laguerre spectra and needs
only few iterations to converge. In this work the grow-
ing nature of the algorithm has been conserved but
the exhaustive search method replaced by the analyt-
ical determination of Laguerre poles. As shown by
means of simulations, the proposed procedure is a
good tradeoff between the two previous methods. Its
computational cost is less than that of the exhaustive
method. An open challenge is to derive a completely
analytical solution for GOBs as done for Laguerre
bases.
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