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Abstract: An iterative method is proposed to optimize thdtéfoa kernels expansions
on Generalized Orthonormal Bases (GOB). Each kernel isrelgghon an independent
GOB. The expansion coefficients, also called Fourier caefits, are estimated in using
an orthogonal formulation of the Least Squares (LS) algoritThe proposed method
allows optimization of both the Fourier coefficients and @@Bs poles. It can be seen
as a good compromise between the exhaustive method for GG pptimization,
costly by nature, and the analytical solution to Lagueridepoptimization that generally
furnishes worse performances for system approximation #igansions on GOBs.
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1. INTRODUCTION Although expansion of Volterra kernels on OBFs was
firstly suggested by Wiener in the 60's (Schetzen,
1980), in the best of our knowledge (Campedb
Truncated Volterra filters constitute a class of nonre- al., 2004) were the first to derive an analytical solution
cursive polynomial models, i.e. models without out- to the basis selection problem in the special case
put feedback which guarantees their stability. Unfor- of Laguerre basis that is characterized by a single
tunately, they are characterized by a huge numberpole. Recently the authors have derived an analytical
of parameters. During the last decade, the issue ofsolution with more relaxed conditions by using the
Volterra model complexity reduction has been ad- estimated Laguerre spectra (Kibangsal., 2004).
dressed following different approaches (Korenberg,
1991; Panicker and Mathews, 1998; Hacioglu and
Williamson, 2001; Kibangoet al., 2003; Campell@t
al., 2004; Khouajat al., 2004). Among them, expan-
sions of Volterra kernels on discrete orthonormal bases

of functions (OBF) are of great interest. The class of However, since the cost function is strongly nonlinear

OBFST generally used for modelling purposes is tha.t with respect to the GOBs poles, the convergence can
of rational orthonormal bases such as Laguerre basis

. >onl t t local minima. ly,
(Wahlberg, 1991) and Generalized orthonormal baS|sOn y be guaranteed towards local minima. Secondly

; the authors (Kibangost al., 2003) have proposed an
(GOB)(Ninness and Gustafsson, 1997). These base?exhaustive s(earchgmethod on a) setaqb?iorl? fixed

are chargctenzed by a set _Of poles whose the _Cho'cecandidate poles obtained by using the knowledge on
strongly influences the parsimony of the expansion.

Optimization of GOBs for Volterra kernels expansion
is more complex. Two main solutions have been pro-
posed. Firstly, (Hacioglu and Williamson, 2001) have
proposed the use of the gradient descent technique
to minimize the mean square error (MSE) criterion.



the system’s dynamics or by discretizing the segmentconstitutes the Laguerre spectrum of thd¢h order
]—1;1]. The poles are chosen such as a LS criterion bekernel.

minimized. At each iteration the cost function is eval- Note that the Fourier coefficients can always be ranged

uated for each candidate pole. Thus, the local minima.
in such a way that a triangular representation be ob-

issue does not arise. However the complexity of this
tained. The input-output relation (1) can be rewritten
approach grows with the dimension of the candidate as:

poles set.

In order to circumvent this drawback, an alternative P ®

method is suggested in this paper. It is iterative as y(n) = Z Z Ok, kp I_Lskjap(n)
in the exhaustive method (Kibangetial., 2003) but p=1ki=0 k" p-1 =

does not require a set of candidate poles. At each P 2
iteration the poles are chosen in using the analytical - leklZ
solution for Laguerre poles given in (Kibangat

al., 2004). Consequently the local minima issue does where °
not arise and the computation complexity is reduce_d. Sq.p(N) = %bkj,p(i)u(n— i) (3)
Note that the parallel-cascade structure of the resulting <

method allows to iteratively estimate both the Fourier If the desired representation is stable, then the kernels
coefficients and the poles. expansions can be truncated to an arbitrary oier
and the input-output relation becomes:

P K-1 K-1

gkl,...7kpS|<1‘... 7kp(n) (2)
0 kp=

The organization of the paper is as follows. In the next
section, the principle of Volterra kernels expansion on
OBFs is recglled F3';1nd the orthogonal forngulation of y(n) = Z Z gkl,...,kp&l,...,kp(n) (4)
the least-squares method for estimating the Fourier PELA=0 o=k

coefficients is described. This formulation allows to The resultingp-order kernel has(K*Llfl param-
get a mu|t|Channe| structure Wh|Ch will be eXp|0|ted eters Wh||e by Cons|der|ng the tnangu'ar form the
for the_denvatlon of th_e propos_ed iterative method. original ph-order kernel with memory! has l\'<l/|+pl> 1)‘

In section 3, the analytical solution to the Laguerre- parameters. WheK << M, the parametric compplex-
\olterra optimization is recalled. Then the overall

d is d ibed i tion 4 before illustrati ity is significantly reduced. The choice of the trunca-
procedure is described In Section = betore WUSrating ;. o qerk depends on the basis selection. When the
it by means of simulation results in section 5 and

) . . poles characterizing the bases are well choBecan
concluding the paper in section 6. take a small value.

In this paper two kinds of OBFs are used: the discrete-

2. BACKGROUND time Laguerre functions and the GOB functions re-
spectively defined by their z-transforms as follows:
A discrete-timeP-th order Volterra filter is described 1- &,z
by the following input-output relation: Lip(2) = Z {lkp(i)} = y/1- 552 Z, ( o ;; )
M- 3 - S by Tutn—ny) .
n) = (ng,---,n u(n—n; k1112
P=1ni=0  np=0 JI:l ) Bip(2) = 2 {bip(i) } = \/17 kPz— Tkp||_L Z—Tip

(6)
One can note that only the Laguerre pélgcharac-
terizes the set of Laguerre functiof$ (i)} while
the GOB functions are characterized by a set of poles.
Note again that the Laguerre basis is a particular case
of GOB obtained by setting in (6) all thg  poles
Expanding the kernehy on a setBp = {bp},_, equal to a same value, i.8,p = &p, Vi. The Volterra
of OBFs, whereby , is the (k+ 1)-th basis function  model whose kernels are expanded on OBFs has the

whereu, y andh, are respectively the input, the output
and thep-th order \Volterra kernel. (Boyd and Chua,
1985) showed that any time invariant, causal, non-
linear system with fading memory can be represented
by a finite expansion in Volterra series.

associated with the-th order kernel, yields: filter bank structure depicted on figure 1.
- _ In the sequel, we first present a LS estimation of the
hp(ny, -+ .np) = kZ Y Gk I]bkivp(n‘ Fourier coefficients when the OBFs are assumed to be
1=0  kp=0 I= L . . - - .
o apriori fixed. This estimation method will constitute
where the coefficients the basis of the proposed iterative procedure of GOBs

poles estimation.

Let us assume that a record of N couples of input-
desired output signals is available. We define

oY oY ]
= h ng,---,N b n:
nlz=o an=0 p(M p)Jll k,,p( i)

are called the Fourier coefficients relative to the
th order kernel. When the used OBFs are Laguerre e @, ..k, p=1,---,P, the vectors ofp-th order
functions, the set of the Fourier coefficieqgk, ... k, | products of the filtered inputs:
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Fig. 1. Filter bank structure of a Volterra model ex-
panded on OBFs

T
73(1;--,kp(N - 1))

. <D|((p) the matrix constituted by the columns vec-
torsd)jl,...yjpfl‘,k, for0<j; <~ <jp1<kand
2<p<P.

e O = ((Pk ¢|(<2)--~¢|((P))

o Gy, the Fourier coefficients vectors whose entries

are the Fourier coefficients associated with the
filtered inputs contained iPy.

¢k1,-~~,kp = (Sr(17~~-,kp (0)7 e

One can note that the data containeddip depend
only on the inputu and on the basis functiors ,
0<i<k 1< p<P. The matrix formulation of the
input-output relation can then be written as:
Y = (y(0) y(1)---y(N-1)) =G
where
T
®= (- D_1), G=(Gj--Gg 1)

The optimal Fourier coefficients vect@ris obtained
by solving the following optimization problem:

G=arg minj|d »G|?

whered = (d(0) d(1)---d(N—1))" is the vector of
desired outputs. Then the LS estimator of the Fourier
coefficients is:

G=(0'd) "@'d
The QR factorization ofp yields® = ®U, where®
is a column orthonormal matrix andl an upper trian-
gular matrix. Then the optimal Fourier coefficients are
given by:

G=Ulo'd @)
Note that thaP matrix has also a block structure:
®=(Pg---Dy_) (8)

where th@k matrices have the same structure tian
and satisfy the following orthogonality property:

q_)qu—)k = d,kl

O being the Kronecker symbol and the identity
matrix.

Let us definé = @Gy andG=UG = (G] - - G|
The outputs vector is then given by:

__ K-1_ K-1_ _
Y=0G=) k=) &G

and:

K-1 _

yn) =Y %), WMm=8mMmG (9
K=o

whereS(n) is the (n+ 1)-th row of the®y matrix. It

yields the multichannel structure depicted by figure 2.
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Fig. 2. Equivalent multichannel representation of
GOB-Volterra model

The (k+ 1)-th subchannel, associated wi@x and

@, depends on the basis functions,, i =0, - Kk,
p=1,---,P. Suppose that the basis functidig have
been already optimized up to tkeh function, i.e. the
polestip, i =0,--- ,k—1, p=1,---,P, have been
determined and fixed. Then each GOB functig

is characterized by a single parameter: the mRlg
whose optimization can be done by using the input-
output data corresponding to tlile+ 1)-th subchan-
nel. To achieve this purpose, since analytical solution
exists for Laguerre poles optimization, thle+ 1)-th
subchannel can be modelled using Laguerre functions.
The determined optimal Laguerre poles, associated
with this subchannel, are used as the palgsof the
GOB functionsby ,. Then the corresponding Fourier
coefficients are optimized in the LS sense. In the fol-
lowing section the Laguerre poles optimization proce-
dure proposed by the authors (Kibangaal., 2004)

is briefly recalled.

3. OPTIMIZATION OF LAGUERRE POLES

The nonlinear behavior of thé& ¢ 1)-th subchannel
can be described by a Volterra model expanded on La-
guerre bases. An arbitrary truncation order is chosen
since the interesting issue, in this section, is the deter-
mination of optimal Laguerre poles. The authors have
shown that the analytical Laguerre poles obtained with
the method described below do not depend onathe



priori fixed truncation order. The larger the truncation where:

order is, the faster the convergence is. Do (14 ES)Rl o+ 28pR2p a8)
Optimization of Laguerre poles is based on the respec- P 28 Rip+ (1+ &3Rap
tive minimization of the following cost functions:
1 2 ad When the expansion is infinit@, , is a characteristic
Jy=—— Ki+---+k 15 o,p
P = kpz:0< 1) W of the Volterra kerneh,. The theorem stated above
(10) is particularly meaningful. Indeed it allows to obtain

wherehy, is the p-th order kernel of the considered an optimal pole knowing the Laguerre spectrum as-
Subchanne|w(l kp are the Fourier coefficients asso- sociated with an al’bltral’y pOle. In pl’actlcal case the

ciated W|th theh,’s expansion on a Laguerre basis, expansion on a Laguerre basis is truncated to a finite
" orderK. Consequentlyp, , is only an approximation

S 2 i 0P S
||th 0 -nzohp(nlw- ;Np). Itwas shown in - f the actual characteristic of the system. An iterative
n= p=

(Campelloet al., 2004) that this cost function is an Procedure allows to reach its optimal value.

upper bound of the modelling squared error due to the et us consider the Laguerre-Volterra filter described
truncation with a finite order of the Laguerre expan- gas follows:

sion. P K-1 K-1
Let us define, fot =1,---, p: w(n) = Z Z v Yy ko I_LSKJ p
™~ oo p=1k1=0 kp p-1

Ty = Z z (2k +1) Vlgl.,---,kp (11) Similarly to (2), with the appropriate matrices and vec-
ki=0  kp=0 tors, and by considering the outputf the subchannel
to be modelled, the orthogonal LS estimator (7) can be
used to estimate the Laguerre spectra.

T =2 z z Z z In order to derive an iterative procedure for Laguerre
ki=0  k_1=0k=1k11=0 pole estimation, note that the combination of (16) with
(14), yields:

Z Ki Vi oo Vi ki 1k — Lk 1,0k (12)

kp=0 2 de -2

i 2p|[hy |5 Rop

11— 52
Rjp= |Z|Tj"’ j=12 (13) Therefore wherl, is mlnlmal, R p is equal to zero.

Reciprocally, asJy admits a single minimum for
|&p| < 1, whenRy,, takes values close to zero, then
Jp is close to its minimal value. Consequently the pole
ép is close to its optimal value. This property, due to
the pseudo-convex nature &, allows to derive the
following batch estimation method :

The optimization method of Laguerre poles is based
on the following lemmas and theorem proved in
(Kibangouet al., 2004):

Lemma 1. Ry, andRy, are linked by means of their
derivatives with respect t, as follows:

ORp -2 (1) Select arbitrary poles in the segméntl, 1] and
98,  1— 52R2 p (14) construct the corresponding Laguerre bases, i.e.
P each kernel is expanded on an independent basis.
IRy, ORep 2 (2) Estimate the Laguerre spectrum associated with
——Rip (15)
0&p T 1-— &8 each kernel;

(3) For each basis, i.gp = 1,---,P, evaluateT,
|=1,---,p,andR; p, j = 1,2, by using truncated
Knowing thatthH 2 VZ ~Kp’ from the versions of (11)-(13).

ky= 0 ; .
definitions ofR; , andJp, a S|mple calculation yields (4) If Ry p is close to zero, stop; else
’ (a) Evaluatep, p by using (18).

Rip=p H|’_lp||2 (1423p) (b) Determine a new pol&, by using (17).
Thus (c) Construct a Laguerre basis associated with
ORy. — 20J &, and return to the step (2).
s =20l 522 (16) i P2
p p Note that this method does not require particular initial

Theorem 1. Given the Laguerre spectrum associated conditions to provide the solution.

with the expansion of the Volterra kernle} on any
Laguerre basis characterized By, the optimal La-

. 4. THE ITERATIVE METHOD FOR GOB
guerre polep opt is such as:

OPTIMIZATION
—\/Pep—1, if >1
Epopt = Pop W _ Pop The multichannel structure of the GOB-Volterra model,
Po,p + \/@7 if pop<-—1 as described in section 1, allows the iterative construc-

a7 tion of GOBs. As stated in section 2, the input-output



of the K+ 1)-th subchannel can be used to optimize
the polerty , associated with the GOB functiotg p,.
Particularly, 7y , can be chosen as the optimal La-
guerre pole¢, associated with the expansion of the
(k+ 1)-th subchannel’s Volterra model on a Laguerre
basis. Let us define the following signals:

e Yi(n), the cumulated outputs up to the 1)-th
subchannel:

k
Je(n) = 3 5(n)

e Vi (n), the residual signal:

d(n) —Yk-1(n)

Vi(n)

wherevp(n) =d(n).

The residual signalg satisfy the following recursive
relation:

Wk(N) = Vic1(n) = Yk-1(n), k>0 (19)
The principle of the proposed method is that of well-
known identification methods for parallel-cascade
models (Korenberg, 1991). It consists, at each step
k > 0, on the identification of the subchannel driven
by the input signalu and the residual signak. In
our case, the input/output data,vy) will be used,
firstly for the estimation of Laguerre poles associated
with the corresponding subchannel and secondly for
the estimation of Fourier coefficients associated with
the expansion of the overall model on GOBs. The
proposed procedure is as follows:

e Fork>0:

(1) Determine the opymal nguerre pol&sp,
p=1---,P by using the input-output data
u andvy.

(2) Setryp = & p and construct théy , func-
tions.

(3) Generate the filtered inputs contained in
S(n) and construct they matrix.

(4) EstimateG as:

6;( = CI_JI Vk

where vy is the column vector of residual
signalsv(n) n=0,--- ,N—1.

(5) Calculatevyi1(n), n=0,---,N—1 using
(19) and return to the step 1 until a stop
criterion is reached.

The iterative procedure can be stopped in using a
model selection criterion as in (Kibangetial., 2003)

or by evaluating the power of the residual signal. Note
that from a certain iteration, the residual signal will be
mainly constituted by the additive noise. If this noise

5. SIMULATION RESULTS

In this section the performances of the proposed iden-
tification method are illustrated by means of simula-
tions. The identification of the second order Volterra
system used in (Kibangoet al., 2004) and described
below is considered:

First order kernel
Hi(2)

Second order kernel
ha(i, j) = 0.25h(i)h(j)
where h(i) = ffl{

2(z+0.5)
(z—0.3)(z—0.2)

Z(z+1)
(z—0.8)(z+0.8) }

This system was simulated as a quadratic Volterra
system with memoryM = 20. In using a triangular
representation of the quadratic kernel this filter has
230 parameters to estimate. The input signal is white,
Gaussian, centered and has an unit variance. A white
gaussian noise is added to the system output and the
signal to noise ratio is equal to 30 dBl = 5000
input/output data are simulated. Laguerre poles are

initialized to Q001. The Monte Carlo method is used
for simulations with 50 independent noise sequences.

Figure 3 shows the variation of the residual signal

power that is the output mean square error. One can
note that this power becomes nearly constanifes

7. Then the iterative procedure for both GOBs con-

struction and Fourier coefficients estimation can be
stopped.

0.35

0.3r
0.25r
0.2r

w
0
=
0.151

0.1

0.05

0

n n T T
8 10 12 14
Basis' size k

6

Fig. 3. Power of the residual signal in function of the
basis size

Now let us compare the proposed procedure with
the methods called Laguerre-Volterra and Exhaus-
tive method respectively described in (Kibangetu

al.,, 2004) and (Kibangouwet al., 2003). In the first
method, optimization of a Laguerre-\Volterra filter is
considered. The optimal Laguerre poles obtained are

is supposed to be white, (Korenberg, 1991) suggestsé; = 0.518 for the linear kernel and, = 0.820 for

to apply a whiteness test on the residual signal. In our

the quadratic one. One can see that the Laguerre poles

case the iterative procedure is stopped when the powerconverge towards their optimal values in relatively few

of the residual signal becomes relatively constant.

iterations (figure 4).



09 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ haustive nature. In (Kibangaat al., 2004) the authors
have proposed an analytical solution to the Laguerre-
Volterra filters optimization problem. This solution is

o7p 1 based on the estimated Laguerre spectra and needs
| only few iterations to converge. In this work the grow-

4 . 4 . ing nature of the algorithm has been conserved but
oer ] the exhaustive search method replaced by the analyt-
0af 1 ical determination of Laguerre poles. As shown by
means of simulations, the proposed procedure is a
good tradeoff between the two previous methods. Its

0.8

0.6

Laguerre pole

0.3

o2r ] computational cost is less than that of the exhaustive
ol - Pole assoviated wih the Istorder kemel || method. An open challenge is to derive a completely
: —©- Pole associated with the 2nd order kernel . .
analytical solution for GOBs as done for Laguerre
T 2 s 4 5 s 7 & & 1 bases.

iterations

Fig. 4. Laguerre poles estimation
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