
MODULAR ANTIPERMISSIVE CONTROL OF
DISCRETE-EVENT SYSTEMS

Jan Komenda ∗,1 Jan H. van Schuppen ∗∗

∗ Math. Inst. of Czech Academy of Sciences, Brno Branch,
Zizkova 22, 616 62 Brno, Czech Republic

∗∗ CWI, P.O. Box 94079, 1090 GB Amsterdam, The
Netherlands

Abstract: The paper concerns modular supervisory control of discrete-event sys-
tems (DES), where the overall system is composed of subsystems that are combined
in a synchronous (parallel) product. Recently it has been shown that under very
general conditions closed-loop languages under permissive control policy (intro-
duced by coinduction as a new operation called supervised product) distribute
with the synchronous (parallel) product. This paper is focused on the study of
distributivity between synchronous product and closed-loop languages with respect
to antipermissive control policy. It is guaranteed that under the conditions derived
in the paper antipermissive control synthesis can be done locally and the local
antipermissive control synthesis yields the same solution as the global control
synthesis. An example illustrates that antipermissive control synthesis yields in
general larger observable sublanguages than the supremal normal sublanguages
are and that the mutual observability as a structural condition is not necessary
for distributivity of closed-loop languages under antipermissive control policy with
the synchronous product. Copyright c©2005 IFAC

Keywords: Discrete-event systems, Modular supervisory control, Observability,
Coalgebra, Antipermissive control policy

1. INTRODUCTION

The modular approach to supervisory control of
DES modeled by finite automata has been in-
troduced in (Ramadge and Wonham, 1989) and
further developped in e.g. (Willner and Heymann,
1991), and (Wong and Lee, 2002). The system
is composed of local components (subsystems)
that run concurrently (in parallel), i.e. the global
system is a synchronous product of local compo-
nents. Very little attention has been paid so far to

1 The research was supported by the EU Esprit LTR
Project Control and Computation, ISO-2001-33520 and
the Academy of Sciences of the Czech Republic, Institu-
tional Research Plan No. AV0Z10190503.

the modular control with partial observations. It
has been recently studied in (Komenda and Van
Schuppen, 04), where computation of supremal
normal sublanguages for modular DES has been
considered. The main result of this paper is the
formulation of sufficient conditions that guarantee
that closed-loop languages under antipermissive
control policy distribute with the synchronous
product. This question is of a major interest, be-
cause we ensure that antipermissive control syn-
thesis can be done locally.

In the next section basic facts about coalgebra and
coinduction are recalled. Section 3 is devoted to
basic concepts needed in this paper. Closed-loop
languages under antipermissive control policies



are computed according to the algorithm devel-
oped specially for this purpose in Section 4. The
main result of this paper, i.e. structural conditions
under which closed-loop languages generated by
antipermissive control policy distribute with the
synchronous product, is presented in Section 5.

2. COALGEBRA AND COINDUCTION

It has been discovered recently that state tran-
sition systems, i.e. in particular various type of
automata are coalgebras. Coalgebras are categor-
ical duals of algebras (the corresponding func-
tor operates from a given set rather than to a
given set). The basic introduction to the theory of
universal coalgebra is developed in analogy with
the corresponding theory of universal algebra in
(Rutten 2000). The concept of final coalgebras
enables definitions and proofs by coinduction.

2.1 Partial automata

In this section partial automata as generators of
DES are formulated coalgebraically as in (Rutten
1999). Final coalgebra of partial automata, i.e.
a partial automaton of partial languages is then
recalled. Let A be the set of events. The empty
string will be denoted by ε. Denote by 1 = {∅}
the one element set and by 2 = {0, 1} the set
of Booleans. A partial automaton is a pair S =
(S, 〈o, t〉), where S is a set of states, and a pair of
functions 〈o, t〉 : S → 2 × (1 + S)A, consists of
an output function o : S → 2 and a transition
function t : S → (1 + S)A. The output function
o indicates whether a state s ∈ S is accepting
(or terminating) : o(s) = 1, denoted also by s ↓,
or not: o(s) = 0, denoted by s ↑. The transition
function t associates to each state s in S a function
t(s) : A → (1 + S). The set 1 + S is the
disjoint union of S and 1. The meaning of the
state transition function is that t(s)(a) = ∅ iff
t(s)(a) is undefined, which means that there is no
a−transition from the state s ∈ S. t(s)(a) ∈ S
means that the a−transition from s is possible
and we define in this case t(s)(a) = sa, which is
denoted mostly by s

a→ sa.

A bisimulation between two partial automata S =
(S, 〈o, t〉) and S′ = (S′, 〈o′, t′〉) is a relation R ⊆
S × S′ such that: if 〈s, s′〉 ∈ R then

(i) o(s) = o(s′), i.e. s ↓ iff s′ ↓
(ii) ∀a ∈ A : s

a→ ⇒ (s′ a→ and 〈sa, s′a〉 ∈ R),
(iii) ∀a ∈ A : s′ a→ ⇒ (s a→ and 〈sa, s′a〉 ∈ R).

We write s ∼ s′ whenever there exists a bisimula-
tion R with 〈s, s′〉 ∈ R. This relation is the union
of all bisimulations, i.e. the greatest bisimulation
also called bisimilarity.

2.2 Final automaton of partial languages

Below we define the partial automaton of partial
languages over an alphabet (input set) A, denoted
by L = (L, 〈oL, tL〉). More formally,

L = {(V, W ) | V ⊆ W ⊆ A∗, W 
= ∅,
and W is prefix-closed}.

The transition function tL : L → (1 + L)A is
defined using input derivatives. Recall that for any
partial language L = (L1, L2) ∈ L, La = (L1

a, L2
a),

where Li
a = {w ∈ A∗ | aw ∈ Li}, i = 1, 2.

If a 
∈ L2 then La is undefined. Given any L =
(L1, L2) ∈ L, the partial automaton structure of
L is given by:

oL(L) =
{

1 if ε ∈ L1

0 if ε 
∈ L1

tL(L)(a) =
{

La if La is defined
∅ otherwise

Notice that if La is defined, then L1
a ⊆ L2

a, L2
a 
=

∅, and L2
a is prefix-closed. The following nota-

tional conventions will be used: L ↓ iff ε ∈ L1,
and L

w→ Lw iff Lw is defined iff w ∈ L2.

Recall from (Rutten 1999) that L = (L, 〈oL, tL〉)
is final among all partial automata: for any partial
automaton S = (S, 〈o, t〉) there exists a unique ho-
momorphism l : S → L. Another characterization
of finality of L is that it satisfies the principle of
coinduction: for all K and L in L, if K ∼ L then
K = L. Recall that the unique homomorphism l
given by finality of L maps a state s ∈ S to the
partial language l(s) = (L1

s, L
2
s) = ({w ∈ A∗ | s

w→
and sw ↓}, {w ∈ A∗ | s

w→}).

2.3 Coinductive definitions

Recall from (Rutten 1999) the following coinduc-
tive definition of the synchronous product. For the
synchronous product we assume that K is defined
over the alphabet A1 and L over A2. Then the
synchronous product K ‖ L is a language over
A1 ∪A2 with the following coinductive definition:

Definition 2.1.

(K ‖ L)a =

⎧⎨
⎩

Ka ‖ La if a ∈ A1 ∩ A2

Ka ‖ L if a ∈ A1 \ A2

K ‖ La if a ∈ A2 \ A1

and (K ‖ L) ↓ iff K ↓ and L ↓.

Many other binary operations on partial lan-
guages have been defined by coinduction in
(Komenda and Van Schuppen, 2003). We recall
the concept of weak transition from (Komenda
and Van Schuppen, 2003). Assume that A = Ao ∪
Auo is a partition of A into observable events (Ao)



and unobservable events (Auo) with the natural
projection P : A∗ → A∗

o which erases unobserv-
able events.

Definition 2.2. (Nondeterministic weak transition)

For a ∈ A define L
P (a)⇒ if ∃s ∈ A∗ : P (s) =

P (a) and L
s→ Ls. Denote in this case L

P (a)⇒ Ls.

3. MODULAR CONTROL WITH PARTIAL
OBSERVATIONS

Let us consider the concurrent behavior of lo-
cal subplants (partial automata) S1, . . . , Sn. As-
sume that local alphabets of these subplants,
Ai, i ∈ Zn = {1, . . . , n} composed of uncontrol-
lable events (Aiu) and controllable events (Aic)
are such that Ai = Aiu ∪ Aic, i ∈ Zn. First
we assume that ∀j 
= i ∈ Zn : Aiu ∩ Aj =
Ai ∩ Aju. This assumption originally introduced
in (Wong and Lee, 2002) means that the events
shared by two local subsystems must have the
same control status for both controllers associated
to these subsystems. Denote Ac = ∪n

i=1Aic and
Au = ∪n

i=1Aiu. We then still have the disjoint
union A = Ac ∪ Au due to the assumption that
Aiu ∩ Aj = Ai ∩ Aju. Denote A = ∪n

i=1Ai the
global alphabet and Pi : A∗ → A∗

i the projections
to the local alphabets. The concept of inverse
projection: P−1

i : Pwr(A∗
i ) → Pwr(A∗) is also

used.

Moreover we assume that each module Si has
only partial observation of its events, i.e. Ai =
Ao,i ∪ Auo,i is the decomposition of local events
into locally observable and locally unobservable.
The global system has observation set Ao =
∪n

i=1Ao,i ⊆ A = ∪n
i=1Ai. Some additional nota-

tion is needed to set up our framework. Globally
unobservable events are denoted by Auo = A \
Ao. Partial observations in individual modules are
expressed via local projections P loc

i : A∗
i → A∗

o,i,
while global projection is denoted by P : A∗ →
A∗

o. Local plant languages will be denoted by Li,
i ∈ Zn and local specification languages by Ki,
i ∈ Zn. We assume from now on that n = 2
and that the global plant L and specification K
languages are decomposable into local plant and
local specification languages: L = L1 ‖ L2 and
K = K1 ‖ K2. Recall that the parallel product of
(ordinary) languages Li ⊆ A∗

i , i = 1, 2 is defined
by L1 ‖ L2 = P−1

1 (L1) ∩ P−1
2 (L2).

An auxiliary concept that reflects the fact that
due to partial observations it is not possible to
distinguish between states is needed. The follow-
ing relation captures partial observability in a way
that is suitable for our coalgebraic treatment.

Definition 3.1. (Observational indistinguishabil-
ity relation on S.) A binary relation Aux(S) on

S, called the observational indistinguishability re-
lation is the smallest relation satisfying:

(i) 〈s0, s0〉 ∈ Aux(S)

(ii) If 〈s, t〉 ∈ Aux(S) then ∀a ∈ A : (s
P (a)⇒

s′ for some s′ and t
P (a)⇒ t′ for some t′ ) ⇒

〈s′, t′〉 ∈ Aux(S)

For 〈s, s′〉 ∈ Aux(S) the notation s′ ≈Aux(S)

s is used. Aux(S) can be characterized by the
following lemma (Komenda and Van Schuppen,
2003).

Lemma 1. For any s, s′ ∈ S: 〈s, s′〉 ∈ Aux(S)
iff there exist two strings w, w′ ∈ A∗ such that
P (w) = P (w′), s = (s0)w and s′ = (s0)w′ .

The concept of an observer automaton has been
formulated in (Cassandras and Lafortune, 1999).
A partial automaton is said to be a state-partition
automaton if different states of the associated
observer automaton (as subsets of the state set)
do not overlap.

4. ANTIPERMISSIVE CONTROL POLICY

In this section we formulate an algorithm for
computation of closed-loop languages under an-
tipermissive control policy. This algorithm will
then be used for deriving conditions under which
these languages are preserved by modular (local)
control synthesis. First we recall from (Komenda
and Van Schuppen, 2003) the definition of the
antipermissive control policy. It is defined with
respect to the partial automata S = (S, 〈o, t〉)
representing the plant and S1 = (S1, 〈o1, t1〉) rep-
resenting the specification that we want to impose
by a supervisory controller. As usual, we assume
that S1 is a subautomaton of S. The (common)
initial state of S and S1 is denoted by s0. The
transition function t1 of S1 is denoted by →1 and
the transition function t of S is denoted by →.

Denote by V the supervisor associated with a par-
tial automaton S, and the corresponding antiper-
missive control policy by γA(V, :) : P (l(s0)2) → Γ,
where Γ is the class of enabled events, also called
control patterns (i.e. supersets of the event subset
Au that are always enabled). Algebraically, the
antipermissive control policy is defined as follows:

γA(V, s) = Auc ∪ {a ∈ Ac : ∀s′ ∈ K2 ∩ P−1P (s)

we have (s′a ∈ L2 ⇒ s′a ∈ K2)}. (1)

Similarly as for the permissive control policy the
supervisor marks all states that have been marked
in the plant and survive under supervision. Using
the concept of observational indistinguishability



relation we can formulate the following auxiliary
algorithm for the closed-loop languages under
antipermissive control policy.

Algorithm 1. Let automata S1 and S represent-
ing K and L, respectively be such that S1 is a
subautomaton of S and S1 is a state-partition
automaton. Let us construct partial automaton
S̃ = (S̃, 〈õ, t̃〉) with t̃ denoted by →′ .
Define the auxiliary condition (*) as follows:
a ∈ Au or a ∈ Ac and ∀s′ ≈Aux(S1) s : s′ a→ ⇒
s′ a→1

Below are the steps of the algorithm.
1. Put S̃ := {s0}.
2. For any s ∈ S̃ and a ∈ A we put s

a→′ sa if
condition (*) is satisfied and we put in the case
s

a→′ also S̃ := S̃ ∪ {sa}.
3. For any s ∈ S̃ we put õ(s) = o(s).

We denote by l̃ : S̃ → L the unique (behav-
ior) homomorphism given by finality of L. Let
us introduce the notation AP (K, L, P ) for the
pair of closed-loop languages (marked and prefix-
closed) under antipermissive control policy. Then
we have:

Theorem 4.1. l̃(s0) is the tuple of closed-loop
languages under the antipermissive control pol-
icy defined by equation (1) above, i.e. l̃(s0) =
AP (K, L, P ).

Proof. It is sufficient to notice from the defi-
nition of the antipermissive control policy that
for v ∈ l̃(s0)2: l̃(s0)v

a→ iff (s0)v
a→′ , iff

a ∈ γA(V, P (v)), which is equivalent to va ∈
AP (K, L, P ), i.e. AP (K, L, P )v

a→, i.e. l̃(s0) and
AP (K, L, P ) are bisimilar, thus equal by the coin-
duction proof principle. Indeed, according to Al-
gorithm 1 (s0)v

a→′ iff the condition (*) is fulfilled,
which case happens iff a ∈ ΓA(V, P (v)) from the
definition of ΓA(V, .) due to Lemma 1: P (v) =
P (v′) iff 〈(s0)v, (s0)v′〉 ∈ Aux(S1), because S1 is
a state-partition automaton.

Remark 4.2. Algorithm 1 looks almost like a coin-
ductive definition of the closed-loop languages
under antipermissive control policy, which is not
possible to do directly in L. Thus Algorithm 1 is
suitable for investigating our main problem:

Problem 4.3. When do the closed-loop languages
under antipermissive control policy distribute
with the synchronous product of partial lan-
guages?

The problem 4.3 is solved in Theorem 5.1.

5. DISTRIBUTIVITY

The main result of this paper is the formulation of
conditions under which closed-loop languages un-
der antipermissive control policy distribute with
the synchronous product of partial languages.
These conditions also indicate when it is possi-
ble to make antipermissive control synthesis with
partial observations locally. Some auxiliary defini-
tions and results are needed to formulate our main
theorem. Closed-loop languages under global and
local antipermissive control policies are computed
according to Algorithm 1, specially designed for
this purpose in Section 4. In our main theorem a
condition similar to mutual controllability (Wong
and Lee, 2002) is used. We call it by analogy
mutual observability.

Definition 5.1. Given partial languages Li =
(L1

i , L
2
i ) and Lj = (L1

j , L
2
j), Li and Lj are said

to be mutually observable if
1) ∀s, s′ ∈ L2

i and a ∈ Ac,i: (sa ∈ Pi(Pj)−1(L2
j)

and P loc
i (s) = P loc

i (s′) and s′a ∈ L2
i ) ⇒ sa ∈ L2

i .
2) ∀s, s′ ∈ L2

j and a ∈ Ac,j: (sa ∈ Pj(Pi)−1(L2
i )

and P loc
j (s) = P loc

j (s′) and s′a ∈ L2
j) ⇒ sa ∈ L2

j .

The following lemmas concerning the relation
between global and local observations are needed.

Lemma 2. If Ao,2 ∩ A1 = A2 ∩ Ao,1 then for any
s, s′ ∈ A∗ we have:
if P (s) = P (s′) then for i = 1, 2: P loc

i Pi(s) =
P loc

i Pi(s′).

Lemma 3. Assume that Ao,2∩A1 = A2∩Ao,1. Let
v ∈ A∗ with P1(v) = v1 ∈ A∗

1 and P2(v) = v2 ∈
A∗

2. Let v′1 ∈ A∗
1 be such that P loc

1 (v1) = P loc
1 (v′1).

Then there exists v′ ∈ A∗ such that P1(v′) = v′1,
P loc

2 P2(v′) = P loc
2 (v2), and P (v) = P (v′).

Our main theorem follows.

Theorem 5.1. If Ao,2∩A1 = A2∩Ao,1 and L1 and
L2 are mutually observable, then

AP (K1, L1, P
loc
1 ) ‖ AP (K2, L2, P

loc
2 ) = (2)

AP (K1 ‖ K2, L1 ‖ L2, P ).

Proof. The coinductive proof principle will be
used. Closed-loop languages under local and
global antipermissive control policies are com-
puted according to Algorithm 1. The notation is
as follows: let S representing K and T represent-
ing L be such that S is a subautomaton of T and S
is a state-partition automaton. Algorithm 1 yields
partial automaton S̃ = 〈õ, t̃〉 with t̃ denoted by →′

and its behavior by l̃ : S̃ → L.



Similarly, for i ∈ {1, 2}, Si and Ti representing
Ki and Li, respectively, are such that Si is a
subautomaton of Ti and Si is a state-partition
automaton. Construction of Algorithm 1 applied
to local modules yields partial automaton S̃i =
(S̃i, 〈õi, t̃i〉) with t̃i denoted by →′ and its behav-
ior by l̃i : S̃ → L.

The (common) initial state of S and T is denoted
by s0 and for i = 1, 2 the (common) initial states
of Si and Ti are denoted by si

0. The transition
function of Si and S is denoted by →1 and the
transition function of Ti and T is denoted by
→. Therefore, according to Theorem 4.1 l̃(s0) =
AP (K, L, P ) and l̃i(si

0) = AP (Ki, Li, P
loc
i ) for

i = 1, 2, where K = K1 ‖ K2 and L = L1 ‖ L2.

We show that

R = {〈[l̃(s0)]v, [l̃1(s1
0) ‖ l̃2(s2

0)]v〉 | v ∈ (l̃(s0))2}
is a bisimulation relation, from where the claim
of the theorem follows by coinduction. Take a
v ∈ (l̃(s0))2 arbitrary, but fixed.
(i) is obvious, Algorithm 1 does not affect the
marking components.
(ii) Let [l̃(s0)]v

a→, i.e. condition (*) of Algorithm
1 is satisfied for s = [(s0)]v. It must be shown that
[l̃1(s1

0) ‖ l̃2(s2
0)]v

a→.
First we assume that a ∈ A1 ∩ A2. Then [l̃1(s1

0) ‖
l̃2(s2

0)]v = [l̃1(s1
0)]v1 ‖ [̃l2(s2

0)]v2 with P1(v) = v1

and P2(v) = v2. We show that [l̃1(s1
0)]v1

a→, i.e.
(s1

0)v1

a→′ . According to Algorithm 1 applied to
S1 and T1 we must show that condition (*) holds.
First of all note that (s1

0)v1

a→1. Indeed, [l̃(s0)]v
a→

implies that (s0)v
a→1, i.e. va ∈ K2 = (K1 ‖

K2)2. Therefore v1a = P1(va) ∈ K2
1 ⊆ L2

1, i.e.
(s1

0)v1

a→1. Similarly v2a = P2(va) ∈ K2
2 ⊆ L2

2.

Let a ∈ Ac,1 ⊆ Ac then we know that ∀s′ ≈Aux(S)

(s0)v : s′ a→ ⇒ s′ a→1. It must be shown
that (s1

0)v1

a→′ , i.e. ∀q1 ≈Aux(S1) (s1
0)v1 : q1 a→

⇒ q1 a→1. Let q1 ≈Aux(S1) (s1
0)v : q1 a→.

Since S1 is a state-partition automaton, there
exists v′1 ∈ A∗

1 such that P loc
1 (v′1) = P loc

1 (v1)
and q1 = (s1

0)v′
1
. For this v′1 ∈ A∗

1 and v ∈ A∗

above there exists according to Lemma 3 v′ ∈
A∗ such that P1(v′) = v′1 satisfying moreover
P loc

2 P2(v′) = P loc
2 (v2) and P (v) = P (v′). Since

q1 a→1 we have v′1a ∈ K2
1 ⊆ L2

1. Then v′a ∈
P−1

1 (v′1a). Therefore v′a ∈ P−1
1 (L2

1). We show
that v′a ∈ P−1

2 (L2
2) using mutual observability.

Notice that P2(v′) = v′2 satisfies P loc
2 (v′2) =

P loc
2 (v2) and v2a ∈ K2

2 ⊆ L2
2. Also v′2a ∈

P2(P1)−1(L2
1), because v′1a ∈ L2

1. Therefore v′2a ∈
L2

2 by applying mutual observability. Thus, v′a ∈
P−1

1 (L2
1) ∩ P−1

2 (L2
2) = L2. Since P (v′) = P (v),

we have (s0)v′ ≈Aux(S) (s0)v. From (s0)v
a→′

and condition (*) of Algorithm 1, it follows that
(s0)v′

a→ ⇒ (s0)v′
a→1. But this implies that

(s1
0)v′

1
= q1 a→1, because v′a ∈ K2 = (K1 ‖ K2)2

implies that v′1a = P1(v′a) ∈ K2
1 .

In a symmetric way [l̃2(s2
0)]v2

a→, i.e. [l̃1(s1
0) ‖

l̃2(s2
0)]v

a→.
The cases a ∈ A1 \ A2 and a ∈ A2 \ A1 are
simpler. We need to show that [l̃1(s1

0)]v1

a→. The
proof is very similar as above, but it is much
simpler due to P2(a) = ε, i.e. in order to show
e.g. va ∈ P−1

2 (L2
2) for a ∈ A1 \ A2 it is sufficient

to show P2(va) = v2 ∈ L2
2, which is trivially true.

(iii) Let [l̃1(s1
0) ‖ l̃2(s2

0)]v
a→. It must be shown

that [l̃(s0)]v
a→, i.e. condition (*) of Algorithm 1 is

satisfied. According to the coinductive definition
of synchronized product inductively applied we
have: [l̃1(s1

0) ‖ l̃2(s2
0)]v = l̃1(s1

0)v1 ‖ l̃2(s2
0)v2 with

P1(v) = v1 and P2(v) = v2. It follows that
l̃1(s1

0)v1

a→ and l2(s2
0)v2

a→, i.e. (s1
0)v1

a→′ and
(s2

0)v2

a→′ . It must be shown that [l̃(s0)]v
a→ ,

which is equivalent to (s0)v
a→′ , i.e. condition (*)

of Algorithm 1 applied to (global) automata S and
T is satisfied.

We know that if a ∈ Ac,1 then ∀s′ ≈Aux(S1)

(s1
0)v1 : s′ a→ ⇒ s′ a→1.

We know also that if a ∈ Ac,2 then ∀s′ ≈Aux(S2)

(s2
0)v2 : s′ a→ ⇒ s′ a→1.

We need to show that if a ∈ Ac then ∀s′ ≈Aux(S)

(s0)v : s′ a→ ⇒ s′ a→1.

First we assume that a ∈ A1 ∩ A2. Let a ∈ Ac

and s′ ≈Aux(S) (s0)v : s′ a→. Since S is a
state-partition automaton, there exists v′ ∈ K2 ⊆
L2 : P (v′) = P (v) and s′ = (s0)v′ . Thus s′ a→
is equivalent to v′a ∈ L2. Therefore Pi(v′a) :=
v′ia ∈ L2

i . Using Lemma 2 we have P loc
i (v′i) =

P loc
i (vi), i = 1, 2, i.e. s′i := (si

0)v′
i
≈Aux(Si) (si

0)vi ,
where s′i

a→, i = 1, 2. Hence according to our
assumption s′i

a→ i = 1, 2 implies that s′i
a→1 i =

1, 2. This means that Pi(v′a) = v′ia ∈ K2
i , i =

1, 2, hence v′a ∈ P−1
1 (K2

1 ) ∩ P−1
2 (K2

2 ) = K2,
which is equivalent to s′ a→1. This proves that
[l̃(s0)]v

a→ for a ∈ A1 ∩ A2.

If a ∈ A1 \ A2, then we only have l̃1(s1
0)v1

a→, i.e.
condition (*) is satisfied for S1 subautomaton T1:
if a ∈ Ac,1 then ∀s′ ≈Aux(S1) (s1

0)v1 : s′ a→
⇒ s′ a→1. Nevertheless, this is still sufficient
to prove that the condition (*) is satisfied for S
subautomaton T , because a 
∈ A2, which means
that v′a ∈ P−1

2 (K2
2 ) iff v′ ∈ P−1

2 (K2
2 ).

Remark 5.2. The interest of this theorem should
be clear: under the conditions that are stated it
is possible to perform the antipermissive control
synthesis with partial observations locally, which
represents an exponential save on the computa-
tional complexity and makes in fact the antiper-
missive control synthesis of some large distributed
plants feasible. Note that an extension of all the



results in this paper from 2 to n ∈ N local
modules is easy. Condition of mutual observability
between any pair of local plants is then required.

Notice also that for (iii) in the above proof no
assumption is used (except Ao,2 ∩A1 = A2 ∩Ao,1

that is needed for Lemma 2). This means that
under very general conditions we have one inclu-
sion meaning that global antipermissive control
synthesis yields in general a larger language that
the local antipermissive control synthesis.

Corollary 1. If Ao,2 ∩ A1 = A2 ∩ Ao,1, then

AP (K1, L1, P
loc
1 ) ‖ AP (K2, L2, P

loc
2 ) ⊆ (3)

AP (K1 ‖ K2, L1 ‖ L2, P )2, P ).

Next an example is given, where the distribu-
tivity between the closed-loop languages under
antipermissive control policy and the synchronous
product holds without the mutual observability
condition. Therefore mutual observability is not
a necessary condition for the distributivity. It is
related to the fact that mutual observability as
a structural condition concerns only open-loop
languages and not specification languages.

Example 1. Let A = Ac = {a, a1, a2, τ, τ1, τ2},
A1 = Ac,1 = {a1, τ1, a, τ}, A2 = Ac,2 =
{a2, τ2, a, τ}, Ao = {a1, a2, a}, Ao,1 = {a1, a}, and
Ao,2 = {a2, a}. Consider the following local spec-
ification and plant languages, where only second
(prefix-closed) components are considered:

K1 L1

��
�
�a �

�
�
a1

� ��
�
�a �

�
�
a1

�
(K1)a (K1)a1 (L1)a (L1)a1

(L1)aτ

τ
�

(L1)a1τ1

τ1
�

and
K2 L2

��
�
�a �

�
�
a2

� ��
�
�a �

�
�
a2

�
(K2)a (K2)a2 (L2)a (L2)a2

(K2)aτ

τ
�

(L2)aτ

τ
�

(L2)a2τ2

τ2
�

According to the local and global antipermissive
control policies we obtain AP (K1, L1, P

loc
1 ) =

K1 and similarly AP (K2, L2, P
loc
2 ) = K2. After

computing parallel products K = K1 ‖ K2

and L = L1 ‖ L2, it is easy to check that
AP (K, L, P ) = K. Thus, we have

K = AP (K, L, P ) =

AP (K1, L1, P
loc
1 ) ‖ AP (K2, L2, P

loc
2 ),

i.e. the distributivity holds true. On the other
hand, mutual observability does not hold: for s =
a1τ1 and s′ = a1 we have s, s′ ∈ L2

1, s′τ1 ∈ L2
1,

P loc
1 (s′) = P loc

1 (s), τ1 ∈ Ac,1 and sτ1 = a1τ1τ1 ∈
P1(P2)−1(ε) ⊆ P1(P2)−1(L2

2), but sτ1 
∈ L2
1.

We conclude that mutual observability is not
necessary in Theorem 5.1. Verification of mutual
observability can be reduced to the verification of
observability with respect to new modified plants
P1(P2)−1(L2

2) and P2(P1)−1(L2
1). This is easier

than checking observability of large plants.

6. CONCLUSION

We have studied modular supervisory control
with partially observed modules in the coalgebraic
framework. Our result is important for feasibility
of the antipermissive supervisory control of large
distributed plants (when antipermissive control
synthesis can be executed locally).

There are open problems for a future investiga-
tion: our conditions are only sufficient conditions
that might be weakened in special cases.

REFERENCES

Cassandras, S.G. and Lafortune, S. (1999). In-
troduction to Discrete Event Systems, Kluwer
Academic Publishers, Dordrecht 1999.

Komenda, J. and Van Schuppen, J.H. (2003).
Coalgebra and coinduction in discrete-event
control, submitted. Also available as CWI
report.

Komenda, J. and Van Schuppen, J.H. (2004).
Supremal Normal Sublanguages of Large Dis-
tributed Discrete-Event Systems. Proceedings
Workshop on Discrete-Event Systems, 73-78.

Rutten, J.J.M.M. (1999). Coalgebra, Concur-
rency, and Control. Research Report CWI,
SEN-R9921 (http://www.cwi.nl/~janr).

Rutten, J.J.M.M. (2000). Universal Coalgebra:
A Theory of Systems. Theoretical Computer
Science 249(1), 3-80.

Ramadge, P.J. and Wonham, W.M. (1989).
The Control of Discrete-Event Systems. Proc.
IEEE, 77 :81-98.

Willner, Y. and Heymann, M. (1991). Super-
visory control of concurrent discrete-event
systems. International Journal of Control,
54(5), 1143-1166.

Wong, K. and Lee, S. (2002). Structural Decen-
tralized Control of Concurrent Discrete-Event
Systems. European J. of Control, 0, 1-15.

Wonham, W.M. and Ramadge, P.J. (1988)
Modular supervisory control of discrete-event
processes, Mathematics of Control, Signal
and Systems, 1, 13-30.


