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Abstract: In this paper we present the application of the adaptive neural-network-
technique in (Calise, Hovakimyan and Idam, 2001) to the control of the 3DoF model
helicopter in (Avila, Brogliato, Dzul and Lozano, 2003). The technique uses feedback
linearization, linear (coarse) compensation and adaptive-neural-network (fine) compensa-
tion. The description of the technique is presented in a way as self-contained as possible.
The helicopter model also includes a one-sided constraint to address take-off and landing,
as well as hover. Our study shows that a very simple and poor plant model is adequate, and
that the the neural network compensates this, completely on-line, without initial training.
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1. INTRODUCTION

The growing interest in adaptive techniques with out-
put feedback stems in the good response to control,
needed in modern applications involving complex sys-
tems. Complex modelling, appears when using actu-
ators and observers with strong nonlinear interaction
with the plant. In this situation the model lacks pre-
cision to attend implementation of high performance
controllers. Examples can be found in areas such as:
flexible structures, fluid mechanics, combustion pro-
cesses, aeronautics, etc.

Synthesis approaches to adaptive output feedback
control typically make use of state estimation (Seshagiri
and Khalil, 2000), (Ge, Hang and Zhang, 1999), and
therefore require plant dimensions knowledge. Some
approaches further restrict the output to have full rela-
tive degree.

1 This work was supported by CICYT, under project DPI 2002-
04401-C03-03.

The presented technique (Hovakimyan and Calise,
2002) removes all these restrictions by adopting a
direct output feedback approach that does not rely
on state estimation. The design employs plant relative
order knowledge, coupled with an on-line radial basis
neural network (NN) to compensate for modeling
errors.

A linear dynamic compensator is designed to stabilize
the linearized plant. A signal, comprised of a linear
combination of the measured tracking error and the
compensator states, is used to adapt the NN weights.
The input vector to the NN is composed by current and
past input/output data.

The control system is augmented by a low-pass filter
designed to satisfy a strictly positive real (SPR) con-
dition of a transfer function associated with the Lya-
punov stability analysis, which is used to construct the
NN adaptation law using only available measurement
as a training signal, and to prove boundedness of all
the error signals of the closed loop system.



The adaptive technique is applied in the present pa-
per to the design of a tracking controller for a scale
model benzin helicopter (VARIO) mounted in a 2DOF
platform as described in (Avila, Brogliato, Dzul and
Lozano, 2003).

The content of the paper is as follows. In section 2, we
present the generic plant, and in section 3, we describe
the design process. The details of the technique are
presented in a way as self contained as possible. In
section 4 the main theorem on tracking error bound-
edness is recalled, for completeness. Section 5 intro-
duces the helicopter model, the control solution that
we have developed and simulations. Advantages are
shown in section 6.

2. PROBLEM STATEMENT

Let the dynamics of anobservable and stabilizable
nonlinear multi-input multi-output (MIMO) system be
given by the following set of equations:

ẋ = f(x, u)
y = h(x)

(1)

whenx ∈ Ω ⊂ R
n is the system state (n unknown

but finite),u, y ∈ R
m are control and measurement

signals respectively,f(·, ·), h(·) ∈ C∞ are unknown
functions.

Assumption 1a Let the dynamics of (1) satisfy the
conditions for output feedback linearization with vec-
tor relative degreer = (r1, r2, · · · , rm) with r1 +
r2 + · · · + rm ≤ n. Then there exists a mapping
ξ = Φ(x), where

Φ(x) =
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φm











, φi =
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(ri−1)
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(2)

with L
(i)
f hk being the Lie derivatives,hk theh com-

ponents in (1), that transforms (1) into

η̇ = f0(ξ, η)

ξ̇1
i = ξ2

i
...

ξ̇ri

i = gi(ξ, η, u)
ξ1
i = yi, {i = 1, · · · ,m}

(3)

the so called normal form, wheregi = Lri

f hi, ξ =

(ξ⊤1 , · · · , ξ⊤m)⊤, ξi = (ξ1
i , · · · , ξri

i )⊤ and η are the
internal dynamic states.

Assumption 1b The system has asymptotic stable
internal dynamics, defined in (3) whenξ = 0.

3. CONTROLLER DESIGN

In this section, a summary of the technique (Calise,
Hovakimyan and Idam, 2001) is presented.

Feedback Linearization. Is performed by introduc-
ing the transformation

ν̂ = ĝ(y, u) (4)

where ĝ is invertible with respect tou. ĝ is any
available approximation ofg = (g1, · · · , gm)⊤ in (3).
Introducingν = (ν1, · · · , νm)⊤ as apseudo control,
results

u = ĝ−1(y, ν) (5)

Introducingy(r) = (y
(r1)
1 , · · · , y

(rm)
m )⊤ and consider-

ing

∆(x, ν) = ∆(ξ, η, ν)

= g(ξ, η, ĝ−1(y, ν)) − ĝ(y, ĝ−1(y, ν))
(6)

the system dynamics can be reduced to

y(r) = ν + ∆ (7)

where∆ is the difference betweeng(ξ, η, u) and its
approximation̂g(y, u). Defining the tracking error as

e = ỹ = yc − y (8)

whereyc = (yc1
, · · · , ycm

)⊤ are references to follow
by the outputs, the pseudo control can be chosen as

ν = y(r)
c + νdc − νad (9)

whereνdc is a dynamic linear compensator output and
νad is the adaptive control element output designed to
cancel∆. Then the dynamics in (7) reduce to

y(r) = y(r)
c + νdc − νad + ∆ (10)

As shown in (6),∆ depends onνad throughν while
νad has to be designed to cancel∆. In order to guar-
antee the existence and uniqueness of a solution toνad

is introduced the next assumption.

Assumption 2The mappingνad → ∆ is a contraction
over the entire input domain of interest.A contraction
is defined by the condition:

∥

∥

∥

∥

∂∆

∂νad

∥

∥

∥

∥

< 1 (11)

Applying this condition to (6)
∥

∥

∥

∥

∂∆

∂νad

∥

∥

∥

∥

=

∥

∥

∥

∥

∂(g − ĝ)

∂u

∂u

∂ĝ

∥

∥

∥

∥

< 1 (12)

which after simplification can be represented as
∥

∥

∥

∥

∥

∂g

∂u

(

∂ĝ

∂u

)−1

− I

∥

∥

∥

∥

∥

< 1 (13)

whereI is the identity matrix. Condition (13) imposes
certain restrictions on the choice of the approximate
model used in inversion and consequently in the de-
sign. In the particular case of a completely decoupled
MIMO system, the condition (13) is equivalent to:

sgn

(

∂gi

∂ui

)

= sgn

(

∂ĝi

∂ui

)

, i = 1, · · · ,m
∣

∣

∣

∣

∂ĝi

∂ui

∣

∣

∣

∣

>

∣

∣

∣

∣

∂gi

∂ui

∣

∣

∣

∣

/2 > 0, i = 1, · · · ,m

(14)

Control System Architecture.The main components
are the model inversion/linearization block identified



by ĝ−1(y, u) and the adaptive neural network based
element designed to cancel the effect of∆.

The input into the controlled system is the reference
tracking yc and itsr-th derivativey

(r)
c generated by

a reference model forced by an external input. The
linear compensator has two outputs(νdc, ỹad). νdc is
designed to stabilize the linearized system conceived
asy(r) = ν. The second output̃yad is a linear combi-
nation of the compensator states and its input(ỹ). This
signal will be constructed to ensure an implementable
error signal that is used to adapt the NN weights.

Tracking Error Analysis. Considering (8) and (10)
leads toỹr = −νdc + νad − ∆. For the case∆ = 0,
the adaptive termνad is not required and the error
dynamics reduce to

ỹr = −νdc (15)

Design of the Linear Compensator.Calling ei =

{ỹi, ˙̃
iy · · · , ỹ

(ri−1)
i }⊤ for i = 1, · · · ,m and denoting

e = {e⊤1 , e⊤2 , · · · , e⊤m, }⊤ the linear error dynamics
can be stated as (15) with̃y = Ce where

C =











c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

0 0 · · · cm











, ci =
[

1 0 · · · 0
]

(16)

C ism×(r1+· · ·+rm) andci is 1×ri. The linearized
plant is:

ẋ = Ax + Bu
y = Cx

(17)

whereA = diag(A1, A2, · · · , Am), B = [B⊤
1 B⊤

2 · · ·
B⊤

m]⊤ and

Ai =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. ..
...

0 0 0 · · · 1
0 0 0 · · · 0















, B1 =







0 · · · 0
...

. . .
...

1 · · · 0






(18)

Bi =







0 0 · · · 0 0
...

...
...

. . .
...

0 · · · 1 · · · 0






, Bm =







0 · · · 0
...

. ..
...

0 · · · 1







(19)
Ai is ri × ri, B is (r1 + · · ·+ rm)×m, Bi is ri ×m,
i = 1 · · ·m. The transfer function is:

Gp(s) = C(sI − A)−1B =
Np(s)

Dp(s)
(20)

Np(s) is the numerator matrix andDp(s) is the de-
nominator polinomial. Them-input, 2 × m-output
transfer matrix of the linear compensator is

{

νdc(s)
ỹad

(s)

}

=
1

Ddc(s)

{

Ndc(s)
Nad(s)

}

ỹ(s) (21)

where s represents the complex Laplace variable,
Ndc(s) andNad(s) arem × m transfer matrices and
Ddc(s) is the Hurwitz compensator characteristic poli-
nomial.

Assumption 3The linearized system (20) is stabilized
using a stable linear dynamic compensator. Since the
error dynamics consist ofr pure integrators the closed
loop transfer function of the system is given by

ỹad(s) =[srDdc(s) + Ndc(s)Np(s)]
−1

Nad(s)(νad − ∆)(s)
(22)

According to Routh-Hurwitz stability criterion, as a
necessary closed loop stability condition, the charac-
teristic polinomial of (22) should accomplish:

q ≡ deg(Ddc) ≥ deg(NdcNp(s)) ≥ r − 1 (23)

This dictates the design of the linear dynamic compen-
sator.

Neural Network Based Approximation. Linearly
parameterized neural networks

y = W⊤φ(x) (24)

are universal approximators, whereφ(·) can be se-
lected as a basis over the domain of approximation as
for example

φ(x) = {φi(x)} = {e(x−x0i)
⊤(x−x0i)/σ2

} (25)

in which x0i are the centers andσ is a suitable dis-
persion constant. Then a general functionf(x) ∈ Ck,
x ∈ D ⊂ R

n can be written as:

f(x) = W⊤φ(x) + ǫ(x) (26)

whereǫ(x) is the functional reconstruction error. In
general, given a constant real numberǫo > 0, f(x)
is within ǫo range of the NN, if there exist constant
weightsW , such that for allx ∈ R

n equation (26)
holds with‖ǫ‖ < ǫo.

Definition 1 The functional range of NN (24) is dense
over a compact domainx ∈ D, if for any f(·) ∈ Ck

andǫo there exists a finite set of bounded weightsW ,
such that (26) holds with‖ǫ‖ < ǫo.

Various publications prove this assertion (Sanner and
Slotine, 1992) The following theorem extends these
results to map the unknown dynamics of an observable
plant form available input/output history. A proof can
be found in (Calise, Hovakimyan and Idam, 2001).

Theorem 1Givenǫ > 0, there exists a set of bounded
ideal weightsW such that∆(x, y, ν), associated with
system (1), can be approximated over a compact do-
mainD ⊂ Ω × R by a linearly parameterized neural
network

∆ = W⊤φ(η) + ǫ(η), ‖ǫ‖ < ǫo (27)

using the input vector

η(t) =
[

1 ν̄⊤

d (t) ȳ⊤

d (t)
]⊤

(28)

where

ν̄⊤

d (t) =
[

ν(t) ν(t − d) · · · ν(t − (n1 − r − 1)d)
]⊤

ȳ⊤

d (t) =
[

y(t) y(t − d) · · · y(t − (n1 − 1)d)
]⊤

(29)
with n1 ≥ n andd > 0, if there exists a suitable basis
of functionsφ(·) on the compact domainD.



The output of the adaptive element is designed as

νad = Ŵ⊤φ(η) (30)

whereŴ are the estimates of the ideal weightsW .

Assumption 4There exists a fixed point solution to

νad = W⊤φ(· · · , νad) (31)

over the entire input domain of interest.

Construction of SPR Transfer Functions.Accord-
ing to (22),ỹad will be used to construct the rule for
adaptingŴ in (31). Using (27) and (31) in (22) gives,

ỹad(s) = G(s)
(

W̃⊤φ(η) − ǫ
)

(32)

whereW̃ = Ŵ − W . For the NN adaptation rule to
be realizable, i. e. dependent on available data only,
the transfer functionG(s) must be strictly positive real
(SPR). However, the relative degree ofG(s) is at last
r. If r > 1, G(s) cannot be SPR. Ifr = 1, G(s) can
be made SPR by a proper construction ofNad(s). To
achieveG(s) SPR in ther > 1 case, a stable low pass
filter T−1(s) is introduced (Kim and Lewis, 1998) in
(32) as

ỹad(s) = G(s)T (s)
(

W̃⊤φf (η) + δ − ǫf

)

(s) (33)

whereφf andǫf are the signalsφ andǫ after being fil-
tered throughT−1(s) andδ is the so called mismatch
term given by

δ(s) = T−1(s)
(

W⊤φ
)

− W̃⊤φf (34)

The numerator of the transfer functionG(s)T (s) in
(33) is T (s)Nad(s). The polynomialT (s) is Hur-
witz, but otherwise can be freely chosen, along with
the numerator polynomialNad(s). Hence the product
G(s)T (s) can be chosen to make it SPR.

Neural Network Adaptation Rule. As can be seen
in (33) the filter T−1(s) should operate on all the
components of the NN matrixφ. All these filters can
be cast in a state space realization

żf = Afzf + Bfφ
φf = Cfzf

(35)

Since the filter is stable,∃Pf ≻ 0, satisfying

A⊤

f Pf + PfAf = −Qf (36)

for any Qf ≻ 0. The signalsφf are used in the
following adaptation rule

˙̂
W = −ΓW

(

ỹadφf + λW Ŵ
)

(37)

whereΓW ≻ 0 andλW > 0 are the adaptation gains.

4. BOUNDEDNESS STATEMENT

The following theorem establishes sufficient condi-
tions for boundedness of the error signals and neural
network weights in the proposed closed-loop adaptive
output feedback architecture.

Theorem 1Subject to assumptions 1-3, the error sig-
nal of the system comprised of the dynamics in (1),
together with the dynamics associated with the real-
ization of the controller in (5) and the NN adaptation
rule in (37), are uniformly ultimately bounded, pro-
vided that the following conditions hold

Qm > ‖Ccl‖ , λW > c2/4 (38)

whereQm is the minimum eigenvalue ofQ.

If G(s)T (s) is SPR then (33) can be represented as

ż = Asz + Bs

(

W̃⊤φf + δ − ǫf

)

ỹad = Csz
(39)

and complies with the Lefschetz-Kalman-Yakubovitz
Lemma i. e. there existsQ ≻ 0 such that the solution
P of

A⊤

s P + PA⊤

s = Q (40)
is positive definite andPBs = C⊤

s . Consider now the
positive function

L =
1

2
z⊤Pz +

1

2
z⊤f Pfzf +

1

2

(

W̃⊤F−1W̃
)

(41)

whereF ≻ 0. P ≻ 0 and Pf ≻ 0 are solutions
of (40) and (36) for someQ ≻ 0 andQf ≻ 0. By
incorporating the adaptation rule (37), the derivative
of (41) gives:

L̇ = − z⊤Qz + ỹad(δ − ǫf ) − z⊤f Qfzf+

z⊤f PfBfφ − λW W̃⊤

(

W̃ + W
) (42)

From (34)

‖δ‖ ≤ c
∥

∥

∥
W̃

∥

∥

∥

F
, c > 0 (43)

where‖·‖F indicates norm in the sense of Frobenius.
Using (43) and (27),ǫf can be bounded as

|ǫf | ≤ |ǫ| ≤ |ǫo| (44)

Using this bound and (43), (42) can be bounded as:

L̇ ≤− Qm ‖z‖
2

+ c ‖ỹad‖
∥

∥

∥
W̃

∥

∥

∥

F
+ ǫo ‖ỹad‖

− Qf m ‖zf‖
2

+ ‖PfBf‖ ‖zf‖ ‖φ‖

− λW

∥

∥

∥
W̃

∥

∥

∥

F

(
∥

∥

∥
W̃

∥

∥

∥

F
− ‖W‖F

)

(45)

whereQm andQf m are the minimum eigenvalues of
Q andQf respectively. For (39)‖ỹad‖ ≤ ‖Cs‖F ‖z‖.
IntroducingWo is a bound for the ideal weights, ac-
cording with‖W‖F ≤ Wo, completion of squares in
(45) together with some standard algebraic manipula-
tions and grouping leads to

L̇ ≤−

(

‖ỹad‖

√

Qm

‖Cs‖F

− 1 −
1

2

ǫo
√

Qm/ ‖Cs‖F − 1

)2

+
1

4

ǫ2o
Qm/ ‖Cs‖F − 1

−

(

∥

∥zf

∥

∥

√

Qf m

−
1

2

∥

∥Pf Bf

∥

∥

F
‖φ‖

√

Qf m

)2 1

4

∥

∥Pf Bf

∥

∥

2

F
‖φ‖2

Qf m

−

(

∥

∥W̃
∥

∥

F

√

λW − c2/4 −
1

2

λW Wo
√

λW − c2/4

)2

+
1

4

(λW Wo)2

λW − c2/4
(46)



L̇ ≤ 0 holds outside an ellipsoid in the space of the
error variablesỹad, zf and W̃ , given by setting the
right hand side of (46) to zero. This ellipsoid touches
the origin of the error space and this demonstrates uni-
form ultimate boundedness of the signalsỹad, zf and
W̃ . Since the transfer function between the tracking
error ỹ and ỹad is stable, boundedness of the latter
guarantees that̃y is also bounded.

5. APPLICATION TO THE SCALE MODEL
HELICOPTER

Using Lagrangian formulation over a model helicopter
restricted to a 2DOF platform (Avila, Brogliato, Dzul
and Lozano, 2003) results in an under actuated 3DOF
plant

M(q)q̈ + C(q, q̇)q̇ + G(q) = Q(q, q̇, u)
y = h(q)

(47)

whereq = (z, φ, γ)⊤ represents height, yaw angle and
main rotor azimuth angle respectively. Alsoh(q) =
(z, φ)⊤. The angleγ will be considered as unmodelled
dynamics. Initially|γ̇(0)| ≥ g0 > 0 andz(0) ≤ L0,
thus comprehendingtake-off and landing (z(0) ≤
L0), andvertical flight (hover)(z(0) < L0)

M(q) =





c0 0 0
0 c1 + c2 cos2(c3γ) c4

0 c4 c5





C(q, q̇) =





0 0 0

0 c6 sin(2c3γ)γ̇ c6 sin(2c3γ)φ̇

0 −c6 sin(2c3γ)φ̇ 0





G(q) =





c7

0
0





Q(u) =





c8γ̇
2u1 + c9γ̇ + c10

c11γ̇
2u2

(c12γ̇ + c13)u1 + c14γ̇
2 + c15





(48)
Theci’s, i = 1, · · · , 15 are given in (Avila, Brogliato,
Dzul and Lozano, 2003) . The actuationu = (u1, u2)

⊤

is saturated sou−

0 ≤ u ≤ u+
0 with u−

0 =
(−0.002,−0.002)⊤ andu+

0 = (0, 0.002)⊤. M(q) is
invertible so including the one sided smooth constraint
(Avila, Brogliato, Dzul and Lozano, 2003)

q̈ = M−1(q) (−C(q, q̇)q̇ − G(q) + Q(q, q̇, u) − ∆gλ)
y = h(q)

z ≤ L0, λ ≥ 0, λ(z − L0) = 0

∆g =
∂z

∂q
= [1, 0, 0]⊤

(49)

The plant (49) whenz − L0 < 0 has vector relative
degreer = (2, 2). The adopted plant model for
control purposes is:

ẋ =

(

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)

x +

(

0 0
0 0
b0 0
0 −b0

)

u, y =
(

1 0 0 0
0 1 0 0

)

x

(50)

which gives

Gp(s) =
b0

s2

(

1 0
0 −1

)

(51)

Drift values for the linear controller are:u10 =
−0.46 × 10−4, u20 = 0, g0 = −124.6[rad/s]. Feed-
back linearization in (4) has been performed with the
transformation̂g = u. A first order lead compensator
structure was selected to stabilize the associated error
dynamics and also the SPR condition

νdc(s) = kc
(s/α + 1)

(s/β + 1)

(

1 0
0 −1

)

ỹad(s) = ko
(s/αo + 1)

(s/β + 1)

(

1 0
0 −1

)

T−1(s) =
1

s + 1

(52)

with α ≈ 0.1, β ≫ α, b0 = 104, kc ≈ 1.25/b0

A second order command filter was implemented for
each of the output channels so that

yc(s) =
ω2

n

s2 + 2ζωns + ω2
n

yref (s) (53)

with ωn = 3, ζ = 2. The network has8 × 2 neu-
rons having (25) as activating function. The weights
where randomly generated and the adaptation gains
are:ΓW = 50, λW = 1. The pure lag considered in
(29) isd = 0.5 s .

zref

z

φ

φref

Fig. 1. Tracking without adaptation

zref

z

φ
φref

Fig. 2. Tracking with adaptation



u1

u2

×10−4

Fig. 3. Control with adaptation
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Fig. 4. Neural Network weights evolution

0 5 10 15 20 25 30 35 40 45 50
−126.5

−126

−125.5

−125

−124.5

−124

−123.5

Fig. 5. Main rotor rotation

In Fig. 1 appears the linear dynamic compensation
performance, without adaptation. References are dot-
ted and outputs are continuous lines. Adaptation can
be seen in Fig. 2 where tracking errors are main-
tained bounded all over the maneuvers:take off (z ≤
L0) 0 < t ≤ 15, hovering(z < L0) 15 < t ≤ 35
and landing (z ≤ L0) 35 < t ≤ 50. Control history
is shown in Fig. 3. The radial basis neural network
adapt quite well to cancel the inversion residuals even
when the constraint is active. At the beginning the
adaptation effort is stronger (Fig. 4), producing unde-
sirable transients. This could be mitigated preadapting
the initial weights. Finally in Fig. 5 appears the main

rotor rotation that can be considered as unmodelled
dynamics.

6. CONCLUSIONS

The presented technique can be used successfully in
MIMO plants with poor modelling. Under the assump-
tion that the plant has well defined vector relative
degree, a radial basis neural network is introduced
to cancel the inversion error. The network learns on
line and no off line training is required. No state
estimation is needed and the full dimension of the
plant and its internal dynamics may be unknown or
poorly modelled. The method is applicable to systems
of unknown but bounded dimension, being adaptive to
both parametric uncertainty and unmodelled dynam-
ics. We are currently developing the application of this
technique to the MARVIN (C. Deg, M. Musial and G.
Hommel, 2004) helicopter.
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