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1. INTRODUCTION

In this paper we consider time-varying linear
systems of the form

ẋ = A(t)x , (1)

where A : R → M is a measurable map and M is
a compact subset of real or complex matrices of
a given dimension. We are interested not in one
individual system but in the exponential growth
rate of a set of systems that is described by a
subset A ⊂ L∞(R,M). The stability and spectral
properties of such kinds of systems have been
actively investigated over the past two decades,
in particular for linear parameter varying and
linear switching systems. The setup described in
Section 2 encompasses a large subset of both these
system classes. The case that A = L∞(R,M),
which is equivalent to the linear inclusion

ẋ ∈ {Ax | A ∈ M} , (2)

1 This work was partially supported by Science Founda-

tion Ireland under grant 00/PI.1/C067.

is also treated in the literature under the name
of families of linear time-varying systems, linear
parameter-varying systems, and linear switching
systems (Colonius and Kliemann, 2000) and a
complete Lyapunov function theory has been de-
veloped (Barabanov, 1988; Molchanov and Pyat-
nitskij, 1989; Wirth, 2002). One of the interesting
results for the inclusion (2) is that the uniform
exponential growth rate can be approximated ar-
bitrarily well by growth rates associated to peri-
odic systems. This result is sometimes called the
Gelfand formula in reminiscence of the character-
ization of the spectral radius of a bounded linear
operator as the infimum of norms of its powers.
It has been obtained for (2) using different ap-
proaches, see e.g. (Berger and Wang, 1992; Colo-
nius and Kliemann, 1993; Elsner, 1995). This re-
sult is of interest as it lays the foundation for
various methods for the calculation of the growth
rate. Also it provides insight into the complexity
of the system class under consideration.
Here we generalize this result to a large class
of systems, which includes in particular linear



parameter-varying systems with bounds on the
derivative of the parameter variation and linear
switching systems with bounds on the length
of intervals between switchings. The method of
proof relies on a general construction of Lyapunov
functions for this system class. These Lyapunov
functions characterize the exponential growth rate
in the irreducible case. This result complements
constructions of Lyapunov functions for linear
inclusions in (Barabanov, 1988; Molchanov and
Pyatnitskij, 1989; Wirth, 2002), sometimes also
called extremal norms in this area.
We proceed as follows. In the ensuing Section 2 we
introduce the class of systems under consideration
and define the corresponding uniform exponential
growth rate. This is the quantity of interest in this
paper. In Section 3 we describe the concatenation
structure within the set of admissible parameter
variations. These considerations yield the right
notion of “parameter” for the parameterized Lya-
punov functions. Finally, in Section 4 the Gelfand
formula is proved. The paper concludes with some
final comments in Section 5.

2. FAMILIES OF LINEAR TIME-VARYING
SYSTEMS

Let K = R, C denote the real or the complex field.
We consider families of time-varying systems of
the form

.
x(t) = A(θ(t))x(t) , t ∈ R , (3)

where θ(·) ∈ L∞(R,Θ) is an admissible parameter
variation, ∅ 6= Θ ⊂ K

m and A : Θ → K
n×n is

continuous. For fixed θ(·) the evolution operator
generated by (3) is denoted by Φθ (t, s) , t, s ∈ R.

In all that follows the set of admissible param-
eter variations is described by a quadruple Σ =
(h,Θ,Θ1, A) denoting a bound on the dwell time,
the parameter set, a set of restrictions for the
derivative, and a map A. Our assumptions are:

(A1) h ∈ (0,∞],
(A2) Θ ⊂ K

m is a finite disjoint union of compact,
convex sets Ωj , j ∈ {1, . . . , k}, if h = ∞ then
k = 1, i.e. Θ is compact and convex,

(A3) Θ1 is compact and convex,
(A4) 0 ∈ Θ1,
(A5) A : Θ → K

n×n is a continuous map from the
parameter space to the space of matrices.

Sometimes it will be necessary to assume the
following sharpened version of (A4). 2

(A6) 0 ∈ ri Θ1 and spanΘ1 ⊃ span (Ωj − ηj),
j = 1, . . . , k where ηj ∈ Ωj is arbitrary.

2 Recall that the relative interior of a convex set M,

denoted by riM, is the interior of M in the relative
topology of the affine space space generated by M, which

is the smallest affine space containing M.

With these assumptions we are able to define
admissible parameter variations.

Definition 1. Let Σ = (h,Θ,Θ1, A) satisfy (A1)–
(A5). If h ∈ (0,∞) a parameter variation θ : R →
Θ is called admissible (with respect to Σ), if there
is an index set Iθ ⊂ Z and times tk, k ∈ Iθ such
that

(i) h ≤ tk+1 − tk, for k ∈ Iθ, k < sup Iθ,
(ii) for k ∈ Iθ, k < sup Iθ the function θ is ab-

solutely continuous on the interval [tk, tk+1),
and satisfies

θ̇(t) ∈ Θ1 , a.e. (4)

(This condition also applies to (−∞,min Iθ),
(max Iθ,∞) if min Iθ, resp. max Iθ, is finite.)

The set of admissible parameter variations is de-
noted by U or U(h,Θ,Θ1, A), if dependence on
the data needs to be emphasized.
If h = ∞ the set of admissible parameter varia-
tions is the set of absolutely continuous functions
θ : R → Θ satisfying (4) almost everywhere on R.

Thus in brief, the constant h denotes the minimal
distance between the discontinuities tk, k ∈ Iθ of
θ, and in between discontinuities the variations of
θ are bounded by Θ1. In particular, the case h =
∞ corresponds to the absence of discontinuities.
This is reflected in (A2): If there are no discontinu-
ities, the parameter variations have no chance to
move from one component Ωj to another Ωj′ . It is
therefore no restriction to consider each individual
component separately. Our system class encom-
passes linear switching systems with dwell time
(see e.g. (Liberzon, 2003)) by letting Ωj := {Aj}
be singleton sets, and parameter-varying systems
(see e.g. (Shamma and Athans, 1991)) by choosing
h = ∞.

We now define the object of interest in this paper:
the (uniform) exponential growth rate associated
to system (3). Given the system Σ, define for t ≥ 0
the sets of finite time evolution operators

St(Σ) := {Φu(t, 0) |u ∈ U} , S(Σ) :=
⋃

t≥0

St(Σ).

We now introduce for t > 0 finite time growth
constants given by

ρ̂t(Σ) := sup

{
1

t
log ‖S‖ |S ∈ St(Σ)

}
.

It is easy to see that (restricted to positive t) the
function t 7−→ tρ̂t(Σ) is subadditive, so that the
following limit exists

ρ̂(Σ) := lim
t→∞

ρ̂t(Σ) = inf
t≥0

ρ̂t(Σ). (5)

It is furthermore well known that an alternative
way to describe ρ̂ is given by



ρ̂(Σ) = inf{β ∈ R | ∃M ≥ 1 : ‖Φu(t, 0)‖ ≤ Meβt

for all u ∈ U , t ≥ 0} .

For this reason the quantity ρ̂(Σ) is called uniform

exponential growth rate of the family of linear
time-varying systems of the form (3) given by Σ.
An alternative way to define exponential growth is
to employ a trajectory-wise definition. In this case
we define the Lyapunov exponent corresponding
to an initial condition x0 ∈ K

n \ {0} and u ∈ U
by

λ(x0, u) := lim sup
t→∞

1

t
log ‖Φu(t, 0)x0‖ , (6)

and define as exponential growth rate κ(Σ) :=
sup{λ(x, u) | 0 6= x ∈ K

n , u ∈ U}. Using
(Colonius and Kliemann, 2000, Prop. 5.4.15) it
can be shown that κ(Σ) = ρ̂(Σ), see (Wirth,
2004).

Similar statements hold for the linear inclusion
(2). As the uniform exponential growth rate can
be defined trajectory wise, it is interesting to look
for easier subclasses of trajectories which allow
for its approximation. One such class is the set
of solutions of periodic systems and it is our main
result in Section 4 that this set is indeed sufficient.

3. CONCATENATION, IRREDUCIBILITY
AND LYAPUNOV NORMS

In this section we briefly describe the main results
from (Wirth, 2004) which are essential in order to
obtain the desired result. We assume the system
Σ = (h,Θ,Θ1, A) to be given. For ease of notation
we will therefore suppress the dependence on these
data of ρ̂(Σ), St(Σ), etc.

Our problem in studying the family of linear time-
varying systems if compared to the case of lin-
ear inclusions may be viewed as follows: Simple
concatenation of admissible parameter variations
does in general not result in an admissible pa-
rameter variation. In contrast for every admissible
parameter variation u1 ∈ U and t ≥ 0 there is a
certain subset of u2 ∈ U for which the following
concatenation is also admissible

(u1 �t u2)(s) :=

{
u1(s) , s < t
u2(s − t) , t ≤ s

. (7)

It is easy to see, that this subset depends on the
continuous extension of u1 at t from the left and,
in the case h ∈ (0,∞), on the difference between
the time instance t and the largest discontinuity
of u1 smaller than t. To denote these quantities
we define for u ∈ U

u(t−) := lim
s↗t

u (s) (8)

and

τ− (u, t) := min{h, t − max{tk | tk < t where tk

is a discontinuity of u}} .

We first treat the case h ∈ (0,∞). Let t0(u)
denotes the smallest positive discontinuity of a
parameter variation u. We want to define the
set of admissible parameter variations that are
concatenable to u1 at t. To this end we define for
(θ, τ) =: ω ∈ Θ × [0, h) the set of concatenable
parameter variations by

U (ω) := U (θ, τ) :=

{u ∈ U |u (0) = θ and h ≤ t0 (u) + τ} ,

here τ represents the time elapsed since the last
discontinuity. For τ = h and ω = (θ, h) let

U (ω) := {u ∈ U |u (0) = θ or h ≤ t0 (u)} .

Note that with this definition we clearly have U =
∪ω∈Θ×[0,h] U (ω) as every admissible parameter
variation is continuous on some interval [0, τ ].

The interpretation of the set U (θ, τ) is the fol-
lowing. Consider a parameter variation u1 defined
on the interval (−∞, t) and the concatenation
(7). If a discontinuity of u1 occurs in the inter-
val (t − h, t), then admissible concatenations in
t have to result in a continuous function in t.
This requires u1(t) = u2(0). Additionally, u2 has
to wait for a time span of length at least h −
τ−(u1, t) until it is allowed to have a discontinuity,
so t0(u2) ≥ h−τ−(u1, t) is also necessary. If there
is no discontinuity of u1 in (t − h, t), equivalently
if τ−(u1, t) = h, then we can either introduce
a discontinuity at t, which requires t0(u2) ≥ h,
or if continuity is preserved by u1(t) = u2(0),
there is no restriction on t0(u2). In all for u2 ∈ U
the concatenation u1 �t u2 defines an admissible
parameter variation if and only if

u2 ∈ U(u1(t
−), τ− (u1, t)) .

Note that for 0 ≤ τ1 < τ2 ≤ h we have

U (θ, τ1) ⊂ U (θ, τ2) .

Furthermore, it should be noted that the sets
U (θ, 0) are not really needed for concatenation
purposes but are included for continuity reasons.

In the case h = ∞ there is no need to account for
discontinuities. We thus define for θ ∈ Θ the set

U(θ) := {u ∈ U | u(0) = θ} .

For the sake of a unified notation, we define

Π(Θ, h) :=

{
Θ × [0, h] , if h ∈ (0,∞) ,

Θ , if h = ∞ .

In all we have introduced notation just to be able
to make the following statement, which is now
obvious.

Lemma 2. Consider a system Σ = (h,Θ,Θ1, A)
satisfying (A1) − (A5) and let u1, u2 ∈ U . The
concatenation (7) yields an admissible parameter



variation u1 �t u2, if and only if there exists ω ∈
Π(Θ, h), such that

(u1(t
−), τ−(u1, t)) = ω and u2 ∈ U (ω) .

For each ω ∈ Π(Θ, h) and t ≥ 0 we define the set
of evolution operators ”starting in ω” by

St(ω) := {Φu(t, 0) | u ∈ U (ω)}. (9)

Similarly, we define for ω, ζ ∈ Π(Θ, h) and for
t ≥ 0 the sets of evolution operators ”starting in
ω and ending at ζ” by

Rt(ω, ζ) := {Φu(t, 0) |u ∈ U (ω) , and ∀u2 ∈ U(ζ)

u �t u2 ∈ U(ω) } .

Thus by definition if R ∈ Rs(ω, ζ) and S ∈ St(ζ),
then SR ∈ St+s (ω). We now define

S(ω) :=
⋃

t≥0

St(ω) , respectively

R(ω, ζ) :=
⋃

t≥0

Rt(ω, ζ) .

Note that the definition entails that for every
ω ∈ Π(Θ, h) the set R(ω, ω) is a semigroup.

Remark 3. It is useful to keep in mind the fol-
lowing remark on parameter variations connecting
two points ω, ζ ∈ Θ× [0, h]. If h ∈ (0,∞), then for
all ω, ζ ∈ Π(Θ, h) the set R2h(ω, ζ) is not empty.
For if ω = (θ, τ), ζ = (η, σ), then it suffices to de-
fine u(s) = θ, 0 ≤ s < h and u(s) = η, h ≤ s ≤ 2h,
which defines an admissible parameter variation
in U(ω). Similarly, if h = ∞ and (A6) holds then
for a suitable constant c̄ we have that Rc̄(ω, ζ) 6= ∅
for all ω, ζ ∈ Π(Θ, h).

In the following the most important assumption is
that of irreducibility of A(Θ). Recall that a set of
matrices M ⊂ K

n×n is called irreducible, if only
the trivial subspaces 0 and K

n are invariant under
all A ∈ M and reducible otherwise.

Remark 4. (i) Note that the set of systems Σ for
which A(Θ) is irreducible is open and dense in the
set of all systems in the appropriate topology, see
(Wirth, 2004).
(ii) If A(Θ) is reducible we can find a similarity
transformation T such that for all θ ∈ Θ the
tranformed matrix TA (θ)T−1 is of the form




A11 (θ) A12 (θ) . . . A1d (θ)
0 A22 (θ) . . . A2d (θ)

. . .
. . .

...
0 0 Add (θ)


 , (10)

where the sets Aii(Θ) are irreducible or {0}. It
is an easy exercise to show that in this case
ρ̂ (A,U) = maxi=1,...,d ρ̂ (Ai,U), where Ai : Θ →

K
ni×ni is the map θ 7→ Aii (θ). Having said this,

it is clear, that for the analysis of ρ̂ with respect to
one system we can assume irreducibility without
loss of generality.

It can now be shown that if A(Θ) is irreducible
and our standing assumptions hold there exists
a family of norms parameterized by ω ∈ Π(Θ, h).
This family of norms characterizes the exponential
growth rate of the system Σ. Also the following re-
sult shows that for irreducible systems the growth
rate may be realized instantaneously from any
initial condition, if the growth is measured with
respect to the family of norms.

Theorem 5. (Wirth, 2004) Consider system (3)
with (A1)-(A5). Assume that A(Θ) is irreducible.
Then there exists an equicontinuous family of
norms vω, ω ∈ Π(Θ, h), such that for any ω ∈
Π(Θ, h) it holds that

(i) For all u ∈ U(ω), t ≥ 0 and all x ∈ K
n it holds

that

vζ(Φu(t, 0)x) ≤ eρ̂t vω(x) , (11)

whenever Φu(t, 0) ∈ Rt(ω, ζ) for ζ ∈ Π(Θ, h). In
particular, for all t ≥ s ≥ 0 it holds that

vu(t−),τ−(u,t)(Φu(t, 0)x)

≤ eρ̂(t−s) vu(s−),τ−(u,s)(Φ(s, 0)x) .

(ii) For every x ∈ K
n, ω ∈ Π(Θ, h), and every t ≥

0, there exist u ∈ U(ω) and a piecewise continuous
map ζ : [0, t] → Π(Θ, h), with ζ(0) = ω, and such
that for all s ∈ [0, t] we have

vζ(s)(Φu(s, 0)x) = eρ̂s vω(x) .

If h = ∞, then ζ may be chosen to be continuous.
If h < ∞ and ω = (θ, τ) ∈ Θ× [0, h), the function
ζ may be chosen, so that its discontinuities on
[0, t) coincide with those of u. Otherwise, ζ may
have one further discontinuity at 0.

4. THE GELFAND FORMULA

In this section we give an application of the ex-
istence of the parameterized Lyapunov functions
we have described so far. One of the classical
results in the analysis of families of linear time-
varying systems is that under certain conditions
the exponential growth rate can be approximated
by just considering the subset of periodic systems
within the family.

In the case of linear inclusions one way to de-
fine the exponential growth rate is via the long
term behavior of the maximal spectral radius of
evolution operators. In our case periodicity of
the underlying parameter variation is the natural
assumption, which is analyzed in the sequel.



For t ∈ R+ we define the set of evolution operators
corresponding to periodic u ∈ U by

Pt :=
⋃

ω∈Π(Θ,h)

Rt (ω, ω) .

Then we may define the normalized supremum
over the spectral radii by

ρ̄t := sup

{
1

t
log r (S) |S ∈ Pt

}

and the supremum of the exponential growth rates
obtainable by periodic parameter variations is
defined by

ρ̄ := lim sup
t→∞

ρ̄t .

As it is clear that ρ̄t ≤ ρ̂t for all t ≥ 0 , we obtain
immediately that ρ̄ ≤ ρ̂. We intend to show that
these quantities are equal. To this end we need the
following lemma.

Lemma 6. Consider system (3) with (A1)–(A5).
Assume that A(Θ) is irreducible and let one of
the following assumptions be satisfied

(a) h ∈ (0,∞),
(b) h = ∞ and (A6) is satisfied.

Then there exist ω ∈ Θ× [0, h], x ∈ K
n, vω(x) = 1

and a sequence Sk ∈ Rtk
(ω, ω), tk ≥ 1 with

e−ρ̂tkSkx → x .

PROOF. We may assume that ρ̂ = 0 by con-
sidering the shifted function A − ρ̂I, if necessary.
Pick an arbitrary ω0 ∈ Θ × [0, h] and z ∈ K

n

such that vω0
(z) = 1. By Proposition 5 (ii)

there exist a ω1 and S1 ∈ R1(ω0, ω1) such that
vω1

(S1z) = vω0
(z) = 1. Applying this argument

again there exist ω2 and S2 ∈ R1(ω1, ω2) such
that vω2

(S2S1z) = 1. Repeating this argument
inductively we obtain sequences ωk and {Sk}k∈N

with

vωk
(SkSk−1 · . . . · S1z) = 1 , k ∈ N .

As Θ× [0, h] is compact there exists a convergent
subsequence ωkl

→ ω for some ω ∈ Θ× [0, h]. Ap-
plying (Wirth, 2004, Corollary 6.7) we may with-
out loss of generality assume that zkl

:= Skl
Skl−1 ·

. . . · S1z → x 6= 0. We denote Tkl
:= Skl

Skl−1 ·
. . . · · ·Skl−1

∈ R(ωkl−1
, ωkl

). After relabeling we
return to the index k.
Now by (Wirth, 2004, Lemma 4.6 (vi)) and using
the assumptions (a) and (b) the map (ω, ζ) →
Rt(ω, ζ) is upper semicontinuous uniformly in t
(which is crucial, as we have no control over the
length of the intervals needed to define the se-
quence {Tk}). Thus by convergence of ωk → ω
and for every ε > 0 there exists a k0 such that for
every k ≥ k0 there exists an Rk ∈ R(ω, ω) with
vω(Tk −Rk) < ε and so that vω(zk −x) ≤ ε. Then
we obtain that

vω(Rkx − x) ≤ vω(Rk − Tk)vω(x)+

vω(Tkx − Tkzk) + vω(zk+1 − x)

≤ ε (vω(x) + vω(Tk) + 1) .

This implies that there exists a sequence {Rk} ⊂
R(ω, ω) with Rkx − x → 0, as desired. 2

We also need the following semi-continuity prop-
erty of ρ̂, for which we omit the proof. We denote
the space of systems

L := {Σ := (h,Θ,Θ1, A) | Σ satisfies (A1) – (A5)}

and endow it with the product topology inherited
from (0,∞], the space of compact (resp. convex,
compact) sets endowed with the Hausdorff topol-
ogy, and the topology on C(Rm, Rn×n), which we
take to be the topology of locally uniform conver-
gence.

Proposition 7. (Wirth, 2004) The map ρ̂ : L → R,

(h,Θ,Θ1, A) 7→ ρ̂(h,Θ,Θ1, A)

is upper semicontinuous.

Before we can state the main result of this section
we need a further observation for the case h = ∞.

Proposition 8. Consider Σ = (h,Θ,Θ1, A) sat-
isfying (A1)-(A5) and assume furthermore that
h = ∞. Let Θ2 be the largest convex set contained
in Θ1 such that 0 ∈ ri Θ2. Then

ρ̂(∞,Θ,Θ1, A) = ρ̂(∞,Θ,Θ2, A) .

PROOF. Clearly, ρ̂(∞,Θ,Θ1, A) is greater or
equal to ρ̂(∞,Θ,Θ2, A), we show the opposite.
If 0 ∈ riΘ1, there is nothing to show. Otherwise
denote by X2 the linear subspace generated by
Θ2 and denote by X⊥

2 its orthogonal complement.
Choose θ(·) ∈ U such that for some x0 6= 0 we have

ρ̂(∞,Θ,Θ1, A) = λ(x0, θ(·)) .

This choice is possible using Fenichel’s uniformity
lemma, see (Colonius and Kliemann, 2000, Prop.
5.4.15) and (Wirth, 2004).
Now θ may be decomposed as θ = θ1+θ2 such that
θ̇1 : R+ → X⊥

2 and θ̇2 : R+ → Θ2. Furthermore,
as 0 is contained in the boundary of Θ1, there
exists a supporting hyperplane X in 0, which has
to contain X2. Hence there is a vector d 6= 0 such

that
〈
d, θ̇1 (t)

〉
≥ 0 and

〈
d, θ̇2 (t)

〉
≡ 0 for all

t ≥ 0. Now Θ is compact and so 〈d, θ〉 is bounded
over θ ∈ Θ. This implies that the expression

c := 〈d, θ(0)〉 +

∫ ∞

0

〈d, θ̇1 (t)〉dt = lim
t→∞

〈d, θ(t)〉

is well defined. If we introduce the set Θc := {η ∈
Θ | 〈d, η〉 = c} we see that

dist (θ(t),Θc) → 0 , for t → ∞ .



Thus for the set Θc,ε := {η ∈ Θ | dist (η,Θc) ≤ ε}
we obtain θ(t) ∈ Θε for all t large enough. This
implies that for all ε > 0 we have for t large enough
that

ρ̂(∞,Θ,Θ1, A) ≥ ρ̂(∞,Θc,ε,Θ1, A) ≥

λ(Φθ(t, 0)x0, θ(t + ·)) = λ(x0, θ(·))

so that equality holds throughout. By Lemma 7 it
follows that

ρ̂(∞,Θc,Θ1, A) ≥ lim
ε→0

ρ̂(∞,Θc,ε,Θ1, A) =

ρ̂(∞,Θ,Θ1, A) .

The converse equality holds because Θc ⊂ Θ.
Furthermore, we have

ρ̂(∞,Θc,Θ1, A) = ρ̂(∞,Θc,Θ2, A) ,

as admissible parameter variation with derivative
in Θ1 that remains in Θc has to satisfy 〈d, θ(t)〉 ≡
0, so that 〈d, θ̇(t)〉 = 0 almost everywhere, whence
θ̇(t) ∈ Θ2, a.e. This completes the proof. 2

Theorem 9. Consider a system Σ of the form (3)
satisfying (A1)–(A5). Then

ρ̄(Σ) = ρ̂(Σ) . (12)

PROOF. Again we may assume that ρ̂ = 0.
If h = ∞ and (A6) does not hold, then we may
first assume that 0 ∈ ri Θ1 using Proposition 8.
Let X = spanΘ1. Then with the notation Θz :=
Θ ∩ (z + X) we may write

Θ =
⋃

z∈X⊥

Θz ,

and because each (nonempty) Θz is invariant
under parameter variations with derivative in Θ1

we see that

ρ̂(∞,Θ,Θ1, A) = sup
z,Θz 6=∅

ρ̂(∞,Θz,Θ1, A) .

Thus if we can show the assertion for each
of the terms on the right, it follows also for
(∞,Θ,Θ1, A). Note that (A6) is satisfied for
(∞,Θz,Θ1, A), so that we may from now on as-
sume that h ∈ (0,∞) or (A6) is satisfied.
Furthermore, if A(Θ) is not irreducible, then there
exists a regular T ∈ K

n×n such that all matrices
A0 ∈ A(Θ) can be transformed to upper block
triangular form as in (10). Then is is easy to see
that

ρ̂(Σ) = max
i=1,...,d

ρ̂(∞,Θ,Θ1, Ai) and

ρ̄(Σ) = max
i=1,...,d

ρ̄(∞,Θ,Θ1, Ai) .
(13)

Hence, we only need to show (12) for each of the
blocks.
So assume now that A(Θ) is irreducible and that
h ∈ (0,∞) or (A6) holds. By Lemma 6 there exist
ω ∈ Θ, x ∈ K

n, vω(x) = 1 and a sequence Sk ∈
R(ω, ω) such that Skx− x → 0. Then we have by

(Elsner, 1995, Lemma 2) for the eigenvalues λi(k)
of Sk that

0 ≤ min
1≤i≤n

1 − |λi (k)| ≤ min
1≤i≤n

|1 − λi (k)|

≤ C‖Skx − x‖1/n ,

where C is a constant only depending on the upper
bound of ‖Sk‖. Denoting by λ̃k an eigenvalue of Sk

for which the minimum on the left is attained we
see that |λ̃k| → 1 as k → ∞. As we have |λ̃k| ≤ 1
and tk ≥ 1 we obtain ρ̄ ≥ 1/tk log |λ̃k| ≥ log |λ̃k|,
and it follows that ρ̄ ≥ 0. 2

5. CONCLUSIONS

In this paper we have studied certain classes
of families of linear parameter varying systems
that are basically described by constraints on
the distance between discontinuities and on the
derivative in the time between discontinuities. For
these classes it has been shown that periodic
systems exhibit the same growth behavior as the
overall system.
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