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Abstract: Due to the increasing complexity of industrial production systems, there exists a 
need for the development of efficient formal approaches for their analysis and control. 
Various methods have been proposed and examined from researchers, without being 
widely adopted for direct industrial use. In general, an industrial production line can be 
modelled as a Discrete Event System, but a more accurate representation would result, if 
we considered it as a real-time system. This paper presents a new mathematical 
abstraction for modelling real-time systems. In comparison with the conventional 
methods, the proposed method introduces new formulation parameters and handles 
variables in a different manner. It gives the opportunity to handle both discrete and real 
valued variables as inputs, outputs or both. A formal definition of the method is given and 
some examples of computations or runs of two typical examples are also presented. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
In general, an industrial production line consists of 
various types of devices (e.g. robots, NC machines, 
actuators, sensors, etc.) controlled by either 
centralized or decentralized controllers. From a 
planning and control perspective, an industrial 
production line can be seen as a dynamic system 
whose states evolve according to the occurrence of 
abrupt physical events, thus exhibiting the 
characteristics of a Discrete Event System (DES). In 
the past, automated manufacturing DESs have 
usually been sufficiently simple that intuitive or ad-
hoc control solutions have been adequate (Ramadge 
and Wonham, 1989). However, the increasing 
complexity of these systems and the requirement of 
fast system response have created a need of formal 
approaches for their analysis and control 
(Cassandras, 1993). Formal methods allow rigid 
proving of system properties in verification and 
validation.  

Many methods have been proposed and examined 
from researchers for modelling DESs. Such methods 
are Petri nets, GRAFCET, finite automata and their 
extensions, hybrid, timed and PLC automata. These 
methods did not meet wide acceptance for industrial 
use, primarily because they are application depended.  
 
• Petri nets were first introduced by C.A.Petri in the 

early 1960s and since then, they have become a 
powerful tool for modelling and analysis of 
dynamic DESs (Peterson, 1981). 

• GRAFCET language was developed in 1977 as a 
tool for sequential systems aiming to be a formal 
specification method for logical controllers. In 
industry, GRAFCET, with minor changes, is better 
known under the name Sequential Function Charts 
(David, 1995). 

• Finite state automata are probably the simplest 
mathematical abstractions of discrete event systems 
with a finite number of states and transitions 
between those states (Khoussainov, 2001).  



• Hybrid automata are commonly used mathematical 
models for the analysis and design of hybrid 
systems. The hybrid automaton extends the 
classical notion of automaton by modelling the 
coupled interaction of discrete events and 
continuous dynamical systems (Allur, et al., 1993; 
Antsaklis, 2000; Henzinger, 1996).  

• Timed automata were first introduced in (Allur and 
Drill, 1994) as a simple technique for modelling 
real-time systems. They are an extension of finite 
automata restricting transitions based on the values 
of multiple timers.  

• PLC automata were first introduced in (Dierks, 
1997) as a useful tool for the description of 
distributed real-time systems that are implemented 
on a PLC and are a subclass of timed automata. 
The main difference from them is that PLC 
automata are being restricted to only one clock and 
certain types of restraints on it. 

 
On the contrary, an industrial production system 
would be defined more accurately as a real-time 
system. This paper, based on this assumption, 
presents a new mathematical abstraction for 
modelling real-time systems. The proposed method 
introduces new modelling parameters in comparison 
with conventional methods. It borrows some 
characteristics from several types of automata such 
as the control graph with a finite set of states and 
transition between those states. It can handle both 
discrete and real valued variables as inputs, outputs 
or both, combining flow conditions, invariants and 
guard conditions from hybrid automata, with clock 
constraints and delayed inputs from timed and PLC 
automata. In addition new parameters as reset table 
at each transition and hierarchical classification of 
executable events at each state are introduced.  

     

}

 
The rest of the paper is organized as follows. Section 
2 gives a formal definition of the new proposed 
method. In section 3, a comparison between the new 
method and conventional modeling methods, is 
given. Section 4 discusses about two case studies 
using the new formulation method. Finally, last 
section ends this paper with concluding remarks and 
open research problems.  
 
 

2. A FORMAL APPROACH 
 
In order to be able to model various forms of 
industrial systems, as real-time systems, was 
necessary to define a new formal method offering 
this convenience. Some common features, with other 
similar methods, have been conserved or extended to 
cover their weakness.  
 
Definition 1. We define an automaton the structure of 
which is composed by the following sets: 
• The system’s variables: 
o Real-valued variables:  { mxxxxX ,...,,, 321=
o Discrete variables: { }kzzzzZ ,...,,, 321=  

• The set of states:  { }nqqqqQ ,...,,, 321=

• The alphabet or set of events: 
{ }λσσσσ ,...,,, 321=Σ , which can be: 

o Discrete variables. 
o Conditions over the real-valued variables. 
o Any combination of them. 

• Initial conditions: Init 
o 0XX =  
o 0ZZ =  
o  0q

• Flow conditions: 
o ( ) 0, =XXF &  
o ( )ii ZGZ =+1  

• Invariant conditions: { }nL llll ,...,,, 321=  
• Restrictions or safe values:  { }nssssS ,...,,, 321=

• The set of events to be ignored until the satisfaction 
of restrictions: { }nwwwwW ,...,,, 321=  with Σ⊆iw . 

• The set of transitions:   ZX RRQQE ××Σ××⊆
• Reset table for each transition:  
o XRX =  
o ZRZ =  

 
 
 
 
 
 
 
 
 
 
Fig. 1. A simple automaton model with two states.  
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Each set ( )ZX rrqq ,,,', σ  represents a transition from 
state  to state , which is caused by the event q 'q

Σ∈σ . The set  gives the real-valued 
variables to be resettled during this transition, while 
the set  gives the discrete variables.  

XX Rr ⊆

ZZ Rr ⊆
 
Each state  has a corresponding set of parameters, 
which are:  

iq

• Flow conditions: 
o ( ) 0, =XXFi

&  
o ( )jij ZGZ =+1  

• Active events at the present state: . Set Σ⊆Σ i iΣ  
has, by definition, ζ  elements, each one of which 
belongs to set Σ . { }ki

ji
,σ=Σ , where i  is the 

present state, ζ,...,2,1=k  and [ ]λ,1∈j . Index k 
also denotes transitions priority caused by different 
events. If two events occur simultaneously and 
cause two different transitions, transition with the 
lower index k will take place. 

• Invariant conditions:  il

• Restrictions or safe values:  is
• The set of events to be ignored until the satisfaction 

of restrictions: . iw
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3. VALIDATION BY COMPARISON WITH 
ALTERNATIVE METHODS 

 
When a new method for solving a problem is 
presented, it must be compared with previous 
methods to prove whether it is better or not. In this 
section the proposed method is being validated by 
comparison with existing methods such as timed and 
hybrid automata.  
 
 
3.1 Comparison with Timed Automata 
 
Timed automata were introduced by (Allur and Drill 
1994) and since then have become one of the most 
well studied and widely used models for real-time 
systems. They are an extension of finite automata. 
 
Definition 2. Timed Automata: Formally a timed 
automaton is defined as a 5-tuple ECiQA ,,,, Σ=  
where:  
• Q  is a finite nonempty set of states,  
• Σ  is a finite nonempty set of events, called 

alphabet,  
•  is the initial state,  AA Qi ∈
• C  is a finite set of clocks and 
•  gives the set of the 

transitions, where  is defined as a set of clock 
constraints. 

( )CQQE C Φ××Σ××⊆ 2
( )CΦ

An edge  (q, q’, a, λ, φ) represents a transition from 
state q to state q’ on input signal a. The set 

C⊆λ gives the clocks to be resettled with this 
transition and φ is a clock constraint over C.  
 
A comparison that one can make between timed 
automata and the proposed type, will lead them to the 
conclusion that a timed automaton can be translated 
to the new type without any problems. This primarily 
because most of the parameters are the same for both 
types and the rest of them can be replaced by other 
similar. Considering the definition of timed 
automata, as given above, one has to replace the 5-
tuple ECiQA ,,,, Σ=  with equivalent parameters. 
The first two, sets of states and events, are common 
and have the same concept for both types. The third 
one is the initial state. The new type’s Init, except the 
initial state, has also initial conditions for all system 
variables. The last but one parameter is the set of 
clocks, which, in the new type, can be reproduced as 
real-valued variables governed by flow conditions of 
type 1=X& . Finally, the set of transitions, with the 
clock constraints and the resettled clocks, can be 
replaced with a suitable combination of new type’s 
transitions set, reset table and ignored events at each 
transition.  

     

 
A complete comparison between the two types must 
also show which are the benefits of using the new 
modelling method. The new type can handle, in 
addition, discrete variables with different flow 
conditions in each state. Besides, as already 
mentioned above, initial conditions regard all the 
automaton’s variables and not only the initial state. 

Moreover, new type has restrictions for every 
variable and not only for clock variables. This, in 
combination with ignored events at each state, gives 
the opportunity to the designer to handle even the 
most complicated real-time systems.  
 
 
3.2 Comparison with Hybrid Automata 
 
Hybrid automata have been proposed as a formal 
model for hybrid systems and are a hyper-set of finite 
state automata, as they have in addition, continuous 
dynamics corresponding to each discrete state of the 
automaton. These dynamics are typically modelled 
via differential equations.  
 
Definition 3. Hybrid Automata: A hybrid automaton, 
as defined by (Henzinger, 1996), consists of the 
following components:  
• Variables. A finite set X  of real-valued variables.  
• Control graph. A finite directed multigraph (V,E), 

where V are the states or locations and E are the 
transitions or switches.   

• Initial conditions for every variable and the initial 
state.  

• Invariant conditions. Limits for every variable.  
• Flow conditions, according to which variables 

change their value. Flow conditions are, in general, 
differential equations.  

• Jump conditions, which cause a transition between 
two states.  

• Events. A finite set of events, whose members are 
assigned to each transition. 

 
The most typical example (Antsaklis, 2000) of hybrid 
automata is depicted at figure 2 and models a house 
thermostat. The real valued variable x represents the 
temperature. The two states are labelled as On and 
Off and each one has a flow condition according to 
which the temperature rises or falls. Initially the 
temperature is 20 degrees and the heater is off. 
According to the jump condition the temperature 
falls, governed by the differential equation 

xx 1.0−=& , until the threshold of 18 degrees. Then 
the heater turns on and the temperature rises 
according to the flow condition , until 
the upper limit of 23 degrees, where the heater 
returns to off mode.  

xx 1.010 −=&

  
 
 
 
 
 
 
 
 
Fig. 2. A thermostat’s hybrid automaton model. 
 
The automaton shown at figure 2 could be also an 
automaton, which has been designed based on the 
new formal method. This derives from the fact that 
the new type is a hyper-set of hybrid automata 
including all hybrid automata’s parameters. 
Illustrating this conclusion we have to make a 

18=x

Off 
xx 1.0−=&  

18≥x  

23=x

20=x

On 
xx 1.010 −=&

23≤x  



comparison between the two types. Most of hybrid 
automata’s components are exactly the same as at the 
new type, such as variables, events, initial, invariant 
and flow conditions. Control graph has been replaced 
by the set of states and the set of transitions. Finally, 
jump conditions are including at the set of events, as 
defined at section 2.  
 
As denoted above, the new modelling method, in 
comparison with hybrid automata, has an additional 
group of parameters. First of all new type has the 
ability to handle discrete variables with initial 
conditions and different flow conditions at each state. 
In addition, new automata have transition restrictions 
if the relative criteria are not accomplished. 
Restrictions take effect only to the ignored events at 
each state. Finally, the proposed method resets all the 
system variables at each transition.   
 
 

     

4. TWO CASE STUDIES USING THE PROPOSED 
FORMAL METHOD 

 
4.1 The three machines’ stop problem. 
 
Let us suppose that three similar machines start and 
stop manually through an equal number of start–stop 
buttons. For the start handling of the three machines 
the process does not demand any special 
requirement. For the stop handling however, due to 
operational reasons, the action takes place 
immediately for every machine except the last 
operated one, which must be stopped only if an input 
signal (e.g. a timer for 30sec) allows it. It is obvious 
that the other two machines can stop independently 
of the situation of the input when the corresponding 
stop button is pressed. Furthermore, the last operated 
machine is not predefined or constant. On the 
contrary, it is a stochastic parameter and hence can 
be any of the three machines. If input has been 
activated but the stop button of the last operated 
machine has not been pressed, the machine continues 
to operate. Summing up, we can claim that any of the 
three machines can be the last operated one, which 
must stop in combination with an input while the 
other two machines will stop in the usual way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Full state diagram for the three machine’s 

stop problem.  
 

In figure 3 the state diagram with all operating 
combinations of the three machines is shown. Let si 
and pi denote the signals “start” and “stop” of 
machine i respectively and Mi denotes the operating 
status of each machine (i = 1, 2, 3). States q1, q4 and 
q7 are the states where only one machine operates 
(hence is the last one) and from which the transition 
to q0 requires the intermediate state q6. This state 
diagram seems alike to common finite state 
diagrams, as it has the same number of states and 
equivalent transitions. But, if we try to take 
advantage of every capability the new type of 
automata offers, we can succeed to have state 
aggregation. The transformation merges states q1, q4 
and q7 to a new state labelled “Only one machine 
operates” and states q2, q5 and q8 to a new state, 
where two machines operate. The new state diagram 
has only five states, compared with nine at the initial 
diagram, and is shown at figure 4.  
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Fig. 4. Reduced state diagram with five states.  
 
The notation at figure 4 has to be clarified. Firstly, 
states q1 and q2, have six couples of restrictions and 
events to be ignored. Particularly first three are, 
[Mi=1], {si}, where i=1,2,3 and the latter three are 
[Mi=0], {pi}, where i=1,2,3. State q3, where all 
machines operate, has no restrictions. All transitions 
labeled Hsi are triggered by the events si and cause 
the set of discrete variables Mi to value 1 
respectively. Equivalently, transitions Hpi are 
triggered by the events pi and cause the reset of 
discrete variables Mi to value 0. Finally, transitions 
Hri, which are caused by the events si, set discrete 
variables Mi to value 1 and reset discrete variables Mj 
(where ij ≠ ) to value 0.   
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Fig. 5. Reduced state diagram with three states. 
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Another approach, adding a new variable k that is the 
number of operating machines, is shown at figure 5. 
The new state diagram has only three states, as it 
merges states q1, q2 and q3 to a new state in which at 
least one machine operates. 

     

 
State q1 now has seven couples of restrictions and 
events to be ignored. Six first are exactly the same as 
before, [Mi=1], {si}, and [Mi=0], {pi}, where 
i=1,2,3, and seventh is [k=1], {p1, p2, p3}. Similarly 
to the previous approach, all transitions labeled Hsi 
are triggered by the events si and cause the set of 
discrete variables Mi to value 1 and increase 
counter’s k value by one unit. Equivalently, 
transitions Hpi are triggered by the events pi and 
cause the reset of discrete variables Mi to value 0 and 
the decrease of counter k. Transitions Hri, which are 
caused by the events si, set discrete variables Mi to 
value 1, reset discrete variables Mj (where ij ≠ ) to 
value 0 and initialize counter k to value 1. Finally, 
event α is defined as 

332123211321 pMMMpMMMpMMM ++=α . A run 
or computation of this automaton on an input 
sequence sec30,,,,,, 3112 == Tspssu αα  is 
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The notation:  
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denotes the transition from state q0 to state q1 caused 
by the event σ. The two equations under each state 
initialize the system variables according to reset table 
for transition σ. The other two differential equations 
are current state’s flow conditions.  
 
The diagram of figure 5 after the appropriate 
modification can be used for modeling a system with 
n machines without adding new states. The new 
automaton is depicted at figure 6. 
 
All the changes made concern primarily the number 
of transitions between the states maintaining the type 

of existing transitions. Another change has been 
made at event α, which now is 

nnnn pMMMpMMMpMMM 21221121 ......... +++=α . 
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Fig. 6. State diagram for the n machine’s stop 

problem according to the proposed formal 
method.  

   
 
4.2 Token Passing Bus Protocol.  
 
The automaton of figure 7 models a local area 
network with four nodes using the token passing bus 
protocol. The four states reconstruct the virtual ring 
between the nodes. When the automaton is in qi state, 
i node has the token and the capability to use the 
network. The variable t represents the time and τ is 
an additional clock variable. The variables M1, M2, 
M3 and M4 represent the number of queuing packets 
in each node. The discrete variables s1, s2 s3 and s4 
represent the arrival of a new packet at the queuing 
list in each node. The constant parameter Ts is the 
token’s transmission time, while Ps is a single data 
packet’s transmission time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

q1

q4

q2

q3

τ=0
t=0

 
Fig. 7. Token Passing Bus Model with four nodes.  

 
All transitions labeled Hsi are triggered by the events 
si and increase counters Mi by one unit, for i=1,2,3,4. 
In the other hand, transitions Hti are triggered by the 
event ss PT +=τ  and cause the reset of variable τ to 
zero value and decrease counters Mi by one unit, for 
i=1,2,3,4. Finally, transitions HT are caused be the 
event sT=τ  and reset variable τ to zero value. In 

Hs1 

Hs1 

Hs1 
1 

2 

Hs2 

Hs2 
2 

Hs3 

Hs3 

Hs3 Hs3 

Hs4 

Hs4 

Hs4 Hs4 

HT 

HT 

HT 

HT 

Ht1 

Ht2 

Ht3 

Ht4 

Hs

Hs

Hs



each state are two flow conditions, one for each 
clock variable:  and 1=t& 1=τ& . There is also a couple 
of an ignored event and a restriction, which are: 
[ ] { 0, >= is MT }τ . This means that when the 
automaton is at qi state and , the event 0>iM sT=τ  
will be ignored. So, a transition from state qi to state 
qi+1 takes place after Ts time units, if Mi = 0, or else 
after Ts+Ps time units.  
 
Initially the automaton is in q1 state and stays there 
until t=Ts, if M1=0, or until t=Ts+Ps, if M1>0, where 
M1 is the number of queuing packets at the queuing 
list of node 1. The above condition means that if 
node 1 has not any packets to send, the bus’s 
management will pass to node 2 after the token’s 
time (Ts) elapses. In the other case (M1>0), node 1 
will send the first packet of his list and the transition 
to state 2 will take place after Ts+Ps time units 
(token’s time and time for one packet respectively). 
These two different types of transitions cause the 
change from one state to the following one.  
 
Each state has also four loop transitions caused by 
the events si, which represent the arrival of a new 
packet at the queuing list of node i. Consequently, 
the corresponding counter Mi increases by one unit.  
 
A run of this automaton is shown above presenting 
the system’s states and variables in connection with 
time. For this example we assumed that Ts=1 and 
Ps=2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

 
5. CONCLUSIONS – FURTHER WORK 

 
Industrial systems are usually described as DESs and 
mostly controlled by Programmable Logic 
Controllers (PLC). Modelling DESs is an open 
research field and many modelling methods have 
been proposed, such as Petri nets and controlled 
automata. The main problem is that there is not 
consensus on which is the most suitable as the 
“lingua franca” for DESs, primarily because most 

methods are strongly problem dependent. In addition, 
most industrial applications require mixed modelling 
with both continuous and discrete components. 
Based on this assumption, an industrial production 
system would be defined more precisely as a real-
time system.    
 
This paper presents a mathematical abstraction for 
modelling real-time systems as a new formal method. 
This method has some common features with 
existing methods and introduces some new modelling 
parameters. It handles both discrete and real valued 
variables and seems to be application independent, as 
shown at the given examples. Of course further work 
must be done so as to have a formal representation 
method for real-time systems. Additionally, a new 
software tool for modelling, verification and 
simulation of industrial systems must be developed, 
based on this new formal method.  
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