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Abstract: The identification process aimed at estimating the model parameters of
a COMAU Smart S2 industrial robot for controller design purposes is presented.
The principal challenges include the existence of a controller-in-the-loop and the
absence of joint sensors for acceleration and velocity measurements. A method
valid in this context has been applied, and suitable trajectories were generated to
avoid the excitation of the unmodelled dynamics. This method was applied to an
industrial robot, its parameters estimated and used for the design of a model-based
controller. Copyright c©2005 IFAC
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1. INTRODUCTION

To improve robot geometric performances it is
often necessary to design advanced model-based
controllers that require an accurate estimate of
the model parameters. Since the robot producers
very rarely provide this information, users need
to follow a reliable procedure allowing to recover
a model valid in the frequency range of interest.

The dynamic model of a robot depends on such
parameters as links inertia, mass and center of
mass, but only a subset of them, called Base Pa-
rameters (Gautier and Khalil, 1990; Gautier and
Khalil, 1988; Mayeda et al., 1990; Pham and Gau-
tier, 1991; Kozlowzki, 1998), must be estimated
to avoid a rapid rise in computational complexity
when the number of degrees-of-freedom (DoF)
grows.

Many identification methods exist for system op-
erating in open loop (Ljung, 1987; Forssell and
Ljung, 1999; Forssell and Ljung, 2000; Sun et
al., 2000; Welsh and Goodwin, 2002), but several
of them fail when the system is under closed-loop
action, as in the robot case, where it cannot oper-
ate without an active controller, for safety reasons.
One of the methods for closed loop system identifi-
cation (Ljung, 1987), (Welsh and Goodwin, 2002)
shall be used instead; in this paper the Projection

1 This work was partially supported by MIUR 2002 PRIN
“MATRICS” project.

Method (PM) was chosen since it does not rely on
any hypothesis about the controller structure.

Velocity and acceleration measurements are nec-
essary in the identification process, but often the
relevant sensors are not present for cost reasons.
To avoid numerical derivation, a Finite Fourier
series was used to generate reference trajectories;
this allows also to average the data, improve the
signal-to-noise ratio, compute statistical charac-
teristic of noise measurements, and define the
bandwidth of the exciting trajectory.

Section 2 introduces the robot model (assumed to
be rigid) and its parameters, and reviews possible
identification methods, while in Section 3 the
results obtained implementing the PM method on
a real COMAU Smart-3 S2 industrial robot will be
presented and discussed. Conclusions are drawn in
Section 4.

2. THE ROBOT MODEL

The assumed model is based on open-chain n-
links physical model, with the following additional
hypothesis: (i) rigid links and joints are assumed;
(ii) joint gears are ideal, i.e. 100% efficient, with-
out dead bands, etc.; (iii) friction is modelled as
the sum of viscous and Coulomb friction only, i.e.
no stiction is considered.

Lagrange equations are applied for each link i =
1, · · · , n, (Bona, 2002; Kozlowzki, 1998)
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where n is the number of joints, L is the Lagrange
Energy Function

L (q, q̇) = C (q, q̇) − P (q)

where C and P, are respectively, the kinetic coen-
ergy and the potential energy, q ∈ R

n is the joint
position vector, q̇ ∈ R

n the joint velocity vector,
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The link parameters to be estimated are the iner-
tial parameters (mass mi, inertia tensor Γ i and
center of mass ci expressed in local coordinate
frames assigned to individual axes), and the fric-
tion parameters (βv+

i , βv−
i , βc+

i , βc−
i ).

2.1 Base Parameters

Ten inertial parameters must be estimated for
every link and, numerical complexity of the proce-
dure increases with the degrees-of-freedom n. For-
tunately, only the parameters that influence the
dynamic behaviour, i.e. the Base Parameters, are
to be estimated (Gautier and Khalil, 1988; Pham
and Gautier, 1991). Assuming that the inertial
parameters of link i are given by
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where Γxx
i , . . . ,Γ zz

i are the elements of the inertia
tensor Γ i, and mi is the mass of link i, we can
write C an P as:
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where Xj is an element of Xj and Wj is a
constant. If the following conditions hold:

DCj = 0 and dPj = 0 (6)

the parameter Xj has no effect on the dynamic
model and does not belong to the base parameter
set. Inertial parameter satisfying (6) are those of
the axis near the base side, and there exist rules
(Gautier and Khalil, 1988; Gautier and Khalil,
1990) to find those parameters without using (6).

For some other parameters we can write:

DCj = αj1DCj1 + . . . + αjrDCjr =

r
∑
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αjkDCjk

(7)

and

dPj = αj1dPj1+. . .+αjrdPjr =

r
∑

k=1

αjkdPjk (8)

so that the parameter Xj is a linear combination
of other parameters.

2.2 Identification Method

Using the base parameters set we can write the
model as a linear regression:

Φ (q, q̇, q̈)θ = τ (9)

where θ = [θB , θf ]T is the vector of parameters
to be estimated, with θB the base parameters
vector and θf the friction parameters vector. Φ

is the linear regressor which include dynamic and
friction model of the robot, function of the joint
position, velocity and acceleration, while τ is the
command torque.

Different methods exist (Ljung, 1987) to identify θ
in (9); all these methods are valid if the plant is in
open loop, but, since the robot operates in closed
loop for safety reasons, some of these methods
may fail when applied to it. Figure 1 represents
a closed-loop system, where G is the system to be
identified, C the controller, H models the noise
dynamics, e(t) is a white noise disturbance, r(t)
is the reference signal, u(t) the torque command
and y(t) the measured position of the robot.

u(t)
y(t)r(t)

e(t)

G

C

H

Fig. 1. SISO Closed-loop system.

The Projection Method (PM) (Forssell and Ljung,
1999; Forssell and Ljung, 2000) has been used
here; it is a particular case of joint input-output
method that tries to identify the controller from
the measurement, with no hypothesis about its
structure. PM is a two stage method, as follows:

(1) In the first stage, the sensivity function S
is estimated using a non causal FIR (Finite
Impulse Response) filter from the equation:

u(t) = S(q,θ)r(t) + H2(q,θ)e(t)

=

M2
∑

k=−M1

skr(t − k)+H2(q,θ)e(t)(10)

Using the estimated sensivity Ŝ, an estimate
of the torque command is computed as:

û(t) = Ŝ(q,θ)r(t) =

M2
∑

k=−M1

skr(t − k)(11)

where M1 and M2 are chosen to avoid cor-
relation between û(t) and ũ(t) = u(t)− û(t);
q−kr(t) = r(t− k) is the time-shift operator.



(2) In the second stage, using the estimated
command (11), we can write:

y(t) = G(q,θ)û(t) + H1(q,θ)e(t) (12)

and employ this equation to estimate the
system transfer function G with one of the
identification methods valid for open-loop
systems. H1 and H2 are suitable functions
of G, C and H.

This method finds the best projection of the
torque command u(t) in the space defined by
the reference r(t), obtaining an estimate û(t) not
influenced by the closed-loop control.
2.2.1. Maximum Likelihood Estimation The sec-
ond stage of the PM method requires a pro-
cedure to estimate the parameters in (12). We
use a Maximum Likelihood Estimation algorithm
(MLE) (Olsen, 2003) that estimates the value of
θ maximizing the likelihood of the positions q(t)
and torque τ (t) measurements. Since noise on the
measurements is always present, it is assumed to
be white gaussian with zero mean and variance

σ2. The estimate θ̂ML of θ solves the constrained
optimization problem:

min
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s. t.

Gk(θ, iϕ) = 0 ∀ i, k (14)

where iϕ is the unknown true value of the ith
observation and ix is the measurement corrupted
by noise ix = iϕ + iǫ, ∀ i = 1, . . . n, where n is the
observation number and Gk is the dynamic model
for the link k.

From (13) the maximum likelihood estimation of
θ is obtained:

θ̂ML = arg min
θ
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n
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where:
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= iB(θ) iσ2 iB(θ)T (16)

Equation (16) gives the covariance matrix of the
model parameters estimated with the MLE.

2.3 Generation of the Robot Trajectories

An appropriate exciting robot trajectory is nec-
essary to identify θ. We should consider that the
observation time is finite and aliasing errors are
present; to avoid leakage errors, a periodic exci-
tation trajectory has been planned and repeated
measurements collected to average the data and

obtain a white gaussian noise error, according to
the Central Limit Theorem.

Joint positions and torques are the only data
ready for use, since no information about joint ve-
locities and accelerations is available. If the above
quantities are analytic functions of the position,
then velocity and acceleration can be computed by
analytical derivation; for this reason an exciting
trajectory given by the following Finite Fourier
series has been selected (Swevers et al., 1997):

qi(t) =
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∑

k=1
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2πf0k
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where f0 is the fundamental frequency and Ni

the number of harmonics. The choice of f0 and
Ni determines the bandwidth of the exciting tra-
jectory and we can choose a specific bandwidth
to avoid excitation of the elastic modes of the
structure. Moreover, the reference signal should
be persistently exciting with an order greater or
equal to the model order we want to identify.

With this exciting trajectory only the 2Ni + 1
parameters

δi = [ai(1), . . . , ai(Ni), bi(1), . . . , bi(Ni), qi0]
T

∀ i = 1, . . . , 6 are to be computed. The vector
δi shall maximize the information of the obser-
vations; to do this (Presse and Gautier, 1993)
the Singular Value Decomposition (SVD) of the
regressor Φ was considered and its condition
number κ

(

Φ
)

computed so that the optimal
parametrization of the exciting trajectory is given
by:

δ̂i = arg min
δi

κ
(

Φ
)

(20)

subject to given position, velocity and acceler-
ation constrains on each joint and end-effector
constrains.

3. TEST CASE: COMAU SMART-3 S2 ROBOT

The PM approach was tested on a COMAU
Smart-3 S2 robot with n = 6 revolute joints. A
joint-decoupled model of the robot can be used
since each joint has a gearbox with an high gear
ratio that reduces the interaction among joints. To
estimate the dynamic parameters, one joint at a
time was moved, while the others were kept static,
so that only its inertia and gravity effects are to
be taken into account.



3.1 The Robot Model

Each joint was modelled by the Lagrange equation
(1):

q̈i (t) = −
hi (q, q̇i)

Mi

+
τi (t)

Mi

(21)

where Mi is the equivalent mass value of the i-th
link, and hi (q, q̇i) includes gravity and friction
effects (2):

hi (q, q̇i) = gi(q) + f
f
i (q̇i) (22)

3.2 Friction Model

As can be seen in (22), the unknown friction
parameters are part of the linear regressor (9).
Consequently the friction model has an important
role in determining the parametrization of the
trajectory (20), but increases the complexity and
computing time. To reduce them it is possible
to estimate the friction parameters in (2) with
specific observations and use them in the gener-
ation of the trajectory necessary for parameters
identification in (21).
3.2.1. Gravity Compensation Gravity has re-
markable effects on the robot behaviour, and that
these effects must be compensated. Except for the
second and third joint, it is possible to position
the robot so to have the other axes parallel to the
gravity vector, compensating its effects.

If we model the link i as an inverse pendulum
with mass M (mass of the links towards the
end effector) on the tip, the gravity model is
approximately sinusoidal:

τgi = ki sin(qi + qoff
i ) (23)

where ki is the amplitude of the torque gravity
and qoff

i models the offset position of the center of
mass toward the center of the link.

In order to be able to neglect inertia effects and
have constant Coriolis, centripetal and friction
effects, a slope trajectory is used: in particular
two slope trajectories, with the same velocity
amplitude but opposite sign are used. The results
are reported in Figure 2, where we observe a
sinusoidal torque, modelled in (2), and a constant
offset due to various effects (centripetal, Coriolis
and friction) that depend linearly on the constant
velocity of the trajectories. The gravity parameter
were estimated (see Table 1), and plotted in
Figure 2 (dashed line); the torque was estimated
according to (2). Using these parameters we can
proceed with the friction identification for axes 2
and 3.
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Fig. 2. Measured torque and estimated gravity
torque.

3.2.2. Friction Identification Trajectories that
enable to recover the information about viscous
and Coulomb friction, as modelled in (2), must
be generated. A bang-bang acceleration trajectory
was used for all links; with this trajectory the iner-
tia has opposite effects, since during acceleration
it contrasts the joint motion causing a boost of
the torque, and in deceleration it bears the joint
motion causing a reduction of the torque.

For space reasons, only the results of one axis are
reported. As expected, plotting the measurement
for axis 2 in Figure 3, one can notice an hystere-
sis due to the link inertia and a bending of the
plot due to the gravity effects. Compensating the
hysteresis and the gravity, with the parameters
from Table 1, we found a value of the torque to
be associated only to the friction effects (Coriolis
and centripetal effects are neglected in this dis-
cussion). The friction parameters are estimated
plugging this value of the torque in a Least Square
method: the results, reported in Table 2 were
used to estimate the friction torque (dashed-line
in Figure 3).

3.3 Trajectory Generation

The trajectory used in the experiment was based
on the method presented in Section 2.3, with an
appropriate choice of the bandwidth and of the
excitation order. Since the COMAU Smart-3 S2
robot has a resonance frequency between 3 and 20
Hz for the shoulder joints, and between 5 and 30
Hz for the wrist joints, the order of the joint model
is 2 and the sampling frequency is fs = 1 kHz,
we choose a fundamental frequency of f0 = 0.1
Hz with Ni = 5 harmonics and a bandwidth of
Bw = 0.5 Hz, which is considerably less than
the minimum resonance frequency of the shoulder
joints. With the values of the estimated friction
parameters, a trajectory has been generated that
allows to solve the constrained optimization prob-
lem (20), using the fmincon function of the Mat-
lab Optimization Toolbox; the iteration process
was stopped after 2000 iterations. Figure 4 shows
the resulting trajectory for link 3.
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3.4 Parameters Identification

Every observation was repeated 25 times to aver-
age the data, that were filtered with a 8-th order
Chebyshev low pass filter, with cut-off frequency
fc = 80 Hz and resampled at fs = 200 Hz. From
the averaged data is possible compute the proba-
bility density function (PDF) of the measurement



noise and compare it with a gaussian one (see
Figure 5). In Figure 5 one observes that the torque
noise is greater than position noise so that we can
neglect the position noise and consider only the
torque noise.

The measured torque includes friction effects and,
to correctly identify robot parameters, one should
compensate them using the friction parameters
in Table 2, obtaining a value of the torque that
depends only on the robot dynamics (see Figure
6) and can be used in the identification process.

In the first step of the PM procedure the ex-
citation spectrum was computed using the Fast
Fourier Transform (FFT), that has spectrum lines
only at 0.1 Hz and its multiples until 0.5 Hz.

If we compute the actual torque spectrum we
find that there are some components over 0.5 Hz,
apparently due to the presence of the controller,
that gives rise to a correlation between the noise
measurements. The best estimate for this torque is
obtained filtering the frequencies greater than the
bandwidth and considering only the frequencies
lower than 0.5 Hz (see Figure 7); thus a coefficient
of correlation between the estimate τ̂3 and the
estimation error τ̃3 = τ3 − τ̂3 was obtained as
Φτ̂3τ̃3

= 2.9238 e−14.

In the second step, the robot model parameters
were estimated using a MLE torque τ̂i. They are
summarized in Table 3; for each link, the follow-
ing quantities are reported: the parameter symbol
with its unit of measure, the mean value and the
standard deviation obtained in the identification
process and the half amplitude of the 99.9% con-
fidence interval with tγ , found using the Student
distribution with (n−1) DoF. The analysis of the
results shows, as expected, that the first moments
for axis 2 and 3 are greater than the others, due
to the gravity effects. Axis 2 inertia is the largest,
with greatest standard deviation and confidence
interval, due to its large variation with respect to
robot configuration space. The inertia of the wrist
links are lower than those of the shoulder links, as
one expects from their smaller size.

3.5 Model Validation

The model was validated comparing the real be-
haviour of the robot with the one simulated using
the estimated parameter values from Table 3. Ref-
erence trajectories with trapezoidal velocity shape
were used, moving one joint a time. The measure-
ments were filtered by a 8-th order Chebyshev low
pass filter. The error between simulated and mea-
sured data was computed together with its PDF.
The position error was always lower than 0.1◦,
while the torque error was lower than 0.2 Nm. The
error PDFs were compared with gaussian ones
(see Figure 8) and, apart from the distribution
relative to the first link, all others are in good
accordance with gaussian distribution; therefore
we can conclude that the estimated model is a
valid approximation of the true system in the
assumed frequency range.

3.6 Model-Based Controller Design

A model-based controller was designed for the
6-th joint, on the basis of the estimated model
parameters, in order to test the relevance of the
identification procedure for control purposes, then
implemented on the Linux-RTAI real-time archi-
tecture on the PC connected with the robot in our
Laboratory, as described in (Alotto et al., 2004).

In Figure 9 the track error is reported, relative
to two different controllers, i.e. the original con-
troller used during the identification process (a
simple PID-type control) and that based on the
identified model. We could see that, after the
initial transient, a reduction of the maximum error
peak occurs when there is a change of sign in the
velocity; furthermore the model-based controller
is faster than original.

We are aware that these are only preliminary
results and the controller needs still to be tested
on the entire structure and tuned to improve its
performances.

4. CONCLUSION

The aim of this work was to identify the model
of an industrial robot and use it in model-
based (computed torque) controller design. A
rigid structure was assumed, so its range of va-
lidity is limited to low frequencies (approximately
under 1 Hz). A periodic excitation trajectory with
a band-limited frequency content was used, in
order to compute joints velocities and accelera-
tions analytically. A serious obstacle for a cor-
rect estimation of the model parameters was the
presence of the original controller in the feedback
loop. Neglecting its presence could lead biased or
unreasonable parameters; to avoid this fact the
Projection Method was used, that is a valid choice
in closed-loop systems.

The identification procedure was applied on a
COMAU Smart-3 S2 robot moving one joint at
time. The experimental result showed that the
presented approach is feasible, and we obtained
a model that afterward was successfully used for
controller design. This controller was tested on the
1-st and 6-th joint.

To further improve the results, the control vali-
dation shall be extended to other links, flexible
modes of the structure identified and a more ac-
curate model of the friction torques introduced.
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Table 1. Estimated Gravity Parameters

Parameter Axis 2 Axis 3
k −0, 7823 Nm 0, 4097 Nm

qoff 7, 5◦ 25◦

Table 2. Estimated Friction Parameters

Parameter βv+ βv− βc+ βc−

Axis 1 31, 8757 26, 0000 16, 1376 15, 0676

Axis 2 36, 6197 73, 0530 65, 4187 45, 9598

Axis 3 10, 6964 11, 5955 13, 3809 11, 3347

Axis 4 3, 0686 3, 1806 2, 0526 1, 9685

Axis 5 3, 5672 3, 2386 1, 7545 1, 7161

Axis 6 1, 8245 1, 9985 2.4545 2.4161

Table 3. Estimated Robot Model Pa-
rameters

Axis Parameter θ σ
tγ

√
n−1

σ

1 Γ
zz

1
[kgm2] 28, 7822 0, 3207 0, 2179

Γ
zz

2
[kgm2] 64, 1881 1, 8838 1, 2800

2 mx2 [kgm] 39, 9920 0, 2252 0, 1530
my2 [kgm] 6, 0617 0, 0539 0, 0366

Γ
zz

3
[kgm2] 7, 4838 0, 1214 0, 0825

3 mx3 [kgm] 2, 8006 0, 0115 0, 0078
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Γ
zz

4
[kgm2] 0, 2844 0, 0107 0, 0072
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Γ
zz
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[kgm2] 0, 3541 0, 0099 0, 0067

5 mx5 [kgm] −0, 0518 0, 0030 0, 0020
my5 [kgm] 0, 1428 0, 0028 0, 0019

Γ
zz

6
[kgm2] 0, 4601 0, 0436 0, 0296

6 mx6 [kgm] 0, 0313 0, 0152 0, 0103
my6 [kgm] −0, 0194 0, 0169 0, 0115
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Fig. 5. PDF of the measurement noise for axis 3.
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Fig. 6. Measured torque with and without friction
compensation.
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Fig. 7. Axis 3 torque (dash-dotted line: measured,
solid line: estimated).
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Fig. 8. PDF error of the position error.
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Fig. 9. Controller track error (original and newly
designed) for axis 1.


