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Abstract: The problem of  tuning of adjustable parameters of a nonlinear system to
unknown values ensuring the desired bifurcation properties is introduced. An adap-
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1. INTRODUCTION

The paper deals with the problem of bifurcation con-
trol design, that is a relatively new area of the control
theory. The typical task solving in this area consists
in synthesis a controller providing the desired bifur-
cation properties for a given nonlinear system (see
(Chen, et al., 2003; Chen, et al., 2000) and references
therein). However, parameters of the control law
would in complicated manner depend on parameters
of the plant model. In practice these parameters of
the plant can differ from the nominal values used
during synthesis phase. Since bifurcation or reso-
nance properties of system are sensitive to small
changes in parameter values, even small parametric
error of control may result in significant changes of
the system behavior (Leung, et al., 2004). Moreover,
since the system near bifurcation point lies on the
border of stability, small parametric error may even
lead to instability of the system.

To overcome the above difficulties in paper (Efimov,
and Fradkov, 2004) it was proposed to use adaptive
control approach for tuning adjustable parameters of
the system in order to guarantee its desired bifurca-
tion or resonance properties. This solution was ob-
tained for a subclass of Lurie systems excited by ex-
ogenous input and basing on output measurements.
In the papers (Moreau, and Sontag, 2003; Moreau, et
al., 2003) the same problem, motivated by biological
applications, was posed and solved for autonomous
linear systems using state dynamical feedback. In the
standard adaptive control theory for nonlinear sys-
tems with linear parameterization (Fomin, et al.,

1981; Fradkov, et al., 1999; Krstić, et al., 1995) it is
usually assumed that it is possible to ensure its as-
ymptotic stability without asymptotic convergence of
parameters estimates to their desired values. Such
assumption is not suitable for bifurcation control
where for exactly tuned system only stability or for-
ward completeness is guaranteed and asymptotic
stability may be absent. The solution of work (Efi-
mov, and Fradkov, 2004) was built on passification
based adaptive observer design (Fradkov, 1995;
Fradkov, et al., 1999) for systems with relative de-
gree { }1,..,1 .

In this paper a extension of solution proposed in
(Efimov, and Fradkov, 2004) is presented for the
class of systems, which have relative degree higher
than { }1,..,1  with persistently exciting available for
measurements input. The result utilizes non-
passification based adaptive observer design theory
(Efimov, and Fradkov, 2003; Fradkov, et al., 2002).
In Section 2 the necessary statements and definitions
are introduced. Main result is formulated in Section
3. Two application examples are included in Section
4. Some conclusions are given in Section 5.

2. STATEMENTS AND DEFINITIONS

Consider the following model of nonlinear system
 dyByxyAx +µ−µ+ϕ+= )()()()( 0& , Cxy = ,(1)
which possesses non-passification based adaptive
observer (Efimov, and Fradkov, 2003; Fradkov, et
al., 2002). Here nR∈x , pR∈y , nR∈d  are state
space vector, measurable output and exciting input



vectors; qR∈µ  is vector of adjustable parameters
serving as estimate of unknown constant vector

qR∈µ0 . Functions A , ϕ  and B  are continuous

and locally Lipschitz. The signal nRR →+:d ,
{ }0, ≥τ∈τ=+ RR  is assumed Lebesgue measurable

and essentially bounded function of time 0≥t , i.e.
∞+<d , [ )∞+= ,0dd ,

[ ) [ ){ }TttessT ,0,)(sup,0 ∈= dd ,

⋅  denotes Euclidean vector norm. For continuous
input )( tµ  the solution of such system )( tx  is well
defined at the least locally for [ )Tt ,0∈ , ∞+<T . If

∞+=T , then such system is called forward com-
plete (Fradkov, et al., 1999).

The problem is to find an algorithm of adjusting
)( tµ , ensuring forward completeness of the plant

model (1), boundedness of regulator solutions and
the limit relation

0)(lim µ=µ
∞+→

t
t

.

The posed problem differs from standard adaptive
observer design problem due to presence of the feed-
back via µ  in equation (1), i.e. it can be classified as
adaptive observer based controller design. Opposite
to paper (Efimov, and Fradkov, 2004) here we as-
sume existence of high relative degree from input

µ−µ0  to output y  (i.e. only output time derivatives
)(ky  of order 1>k  depends on input µ−µ0  in ex-

plicit fashion). An additional difficulty is in that the
solutions of the system (1)  may not be assumed
bounded for some values of µ  since it is not the case
near bifurcation point  0µ=µ . It is supposed that
signal )( td  can be directly measured or estimated,
that is a realistic assumption for some examples (e.g.
for some biological systems).

A s s u m p t i o n  1 . For any Lebesgue measurable
and essentially bounded inputs )( tµ , )( td  and any

initial conditions nR∈)0(x  system (1) has well de-
fined solution )( tx  for all 0≥t  (forward complete-
ness property). □

A s s u m p t i o n  2 . There exists locally Lipschitz
continuous matrix function )( yK , pR∈y , such,
that solution of the system

usyGs += )(& , CyKyAyG )()()( −= (2)

for any initial conditions nR∈0s , any Lebesgue
measurable y  and any Lebesgue measurable and
locally essentially bounded input u  admits estimate:

[ )tddt ,0201)( uss +≤ , 0≥t

for some 1d  and 2d  from +R .    □

A s s u m p t i o n  3 . There exist some continuously
differentiable function +→ RRV n:  and matrix L ,
such, that

2
2

2
1 )( xxx cVc ≤≤ , xLxC ≤ ,

2
3)( xLxyGx cV −≤∂∂

for any nR∈x  and pR∈y , 210 cc ≤< , 5.03 >c .□

Let us discuss the above assumptions. The Assump-
tion 1 ensures existence of original system solutions
for all 0≥t , see also paper (Angeli, and Sontag,
1999) for necessary and sufficient conditions of for-
ward completeness. Assumption 2 claims that it is
possible to provide so-called bounded-input-
bounded-state property for linear part of the system
(1) by appropriate choice of output feedback gain
matrix K . Assumption 3 establishes conditions, un-
der which system (2) is globally asymptotically sta-
ble with respect to part of variables sL  with known
Lyapunov function (Rumyantsev, and Oziraner,
1987). Conditions of previous assumptions are
enough to design adaptive observer for (1) (see also
(Efimov, and Fradkov, 2003; Fradkov, et al., 2002)):

( ) DzCyyKyzyAz +−+ϕ+= )()()(& ; (3)

)()( yBΩyGΩ −=& ; (4)
µ−= && ΩηyGη )( , (5)

where nR∈z  is estimate of x ; nR∈η  and
qnR ×∈Ω  are auxiliary vector and matrix variables,

which help us to overcome high relative degree ob-
struction; nRR →+:D  is Lebesgue measurable and
locally essentially bounded estimate of exciting input
d . To solve the posed problem it is suggested to ad-
just the estimates µ  of unknown parameters 0µ   by
the speed gradient algorithm:

( )ηCzCyCΩ +−γ=µ TT& , 0>γ . (6)
Therefore, the proposed adaptive observer based
controller is described by equations (3)–(6). Before
we proceed let us introduce the following useful
property proposed in (Efimov, and Fradkov, 2003).

D e f i n i t i o n  1 . Function RRa →+:  is called
),( ∆r –positive in average (PA) if for any 0≥t  and

any 0>∆≥δ , 0>r ,

δ≥ττ∫
δ+

rda
t

t
)( . □

In other words, time function )( ta  is ),( ∆r –PA, if
its average value ava  on any large enough time in-
terval [ ]δ+tt, , ∆≥δ ,

∫
δ+

ττ
δ

=
t

t
av daa )(1

is not smaller than some positive constant r . Impor-
tance of PA property is explained in the following
lemma, which slightly modified version was proved
in (Efimov, and Fradkov, 2003).

L e m m a  1 . Let us consider time-varying linear
dynamical system

( ) ( )tbptap +−=& , 00 ≥t ,
where Rp∈ , Rtp ∈)( 0  and functions RRa →+: ,

RRb →+:  are Lebesgue measurable, b  is locally



essentially bounded, function a  is ),( ∆r –PA for
some 0>r , 0>∆  and essentially bounded from
below, i.e. there exists +∈RA , such, that:

( ){ } Atttaess −≥≥ 0,inf .
Then solution of the system is defined for all 0tt ≥
and it admits estimate
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□

It is possible to show that PA property is equivalent
to persistent excitation (PE) property (Fomin, et al.,
1981; Fradkov, et al., 1999; Loria, et al., 2002) under
some mild conditions (for example, in scalar case).
Recall that the essentially bounded qn×  matrix-
function )( tB  is called PE if there exist positive
constants L  and ϑ , such, that for any 0≥t

n
Lt

t

T dsss IBB ϑ≥∫
+

)()( ,

where nI  is identity matrix with dimension nn× .

Note, that if ( )Tt )(yB  in (1) possesses PE property
then, according to (4) signal Ω  should possess the
same property. The above idea is equivalent to the
following supposition.

A s s u m p t i o n  4 . The smallest singular value
)( ta  of matrix function )( tTT ΩC  is ),( ∆r -PA for

some 0>r , 0>∆ . □

Like in classical adaptive control theory (Fomin, et
al., 1981; Fradkov, et al., 1999; Krstić, et al., 1995)
this assumption will be used to justify convergence
of the parametric error to zero.

3. MAIN RESULTS

Before we formulate and substantiate our main re-
sults a note should be done about measurements of
output signal )( ty . Typically, in practice these
measurements are available with some noise:

)()()( tttp pyy += ,
where p  is a Lebesgue measurable and locally es-
sentially bounded function of time. It is obvious, that
such noise p  presence in measurement channel seri-
ously complicates functioning of the system as well
as corresponding proofs. So at first part we will con-
sider the case without measurement noise p , and
after that present result for a subclass of system (1)
for noisy case.

3.1. Tuning without measurement noise

To formulate results of this paragraph we should im-
pose additional requirement on boundedness proper-
ties of matrix function ( ))( tyB .

T h e o r e m  1 . Let for the system (1) Assumptions 1,

2 and 4 hold, ∞+<d , ∞+<D  and
( ) ByB ≤)( t  for all 0≥t . Then solution of system

(1) is forward complete and solution of (3)–(6) is
bounded. Furthermore, if Assumption 3 is satisfied
and )()( tt dD =  for almost all 0≥t , then the fol-
lowing limit relation holds:

0)(lim µ=µ
∞+→

t
t

(7)

and ( ) 0)()( →− tt zxL  for ∞+→t .
P r o o f . Let us consider differential equations de-
scribed dynamics of observer estimation error

zxe −= ,
which can be written as follows:
   ( ) ( )( ) )()()()( 0 tttt deyBeyGe +µ−µ+=& , (8)
where )()()( tttd Dde −=  is exciting input d  esti-
mation error (by conditions ∞+<de ). Let us also
analyze the following auxiliary error signal:

)( 0µ−µ++=δ Ωηe , (9)
which behavior obeys differential equation:

( ) )()( tt deyG +δ=δ& . (10)
So, applying Assumption 2 it is possible to obtain
boundedness of variables δ  and Ω . Rewriting
equation (6) for 0

~ µ−µ=µ  and tacking in mind (9),
it is possible receive

( )µ−δγ=µ ~~ ΩCCΩ TT& . (11)
From Assumption 4 the smallest eigenvalue )( ta  of

matrix )()( tt TT CΩCΩ  is PA and signal δCCΩ TT

is bounded, that according to result of Lemma 1
means boundedness of µ~ . From Assumption 1 sys-
tem (1) is forward complete. Application of As-
sumption 2 to the system (8) justifies boundedness of
variable e . Variable η  is also bounded since it is a
part of (9), where all other variables are bounded.
Thus we obtain boundedness of the regulator solu-
tion. If Assumption 4 holds and 0)( =tde  for almost
all 0≥t , then system (10) is globally asymptotically
stable with respect to variable δL . Therefore, signal

)()( tt TT δCCΩ  converges to zero while ∞+→t .
Applying the result of Lemma 1 to (11) it is possible
to obtain (7). Since the variable e  is bounded, it has
non empty closed and compact set of ω -limit values.
In this set the system (8) can be reduced to

( )eyGe )( t=&
and desired conclusion follows by recollecting As-
sumption 4 for the system. ■

If the boundedness of signal ( ))( tyB  or )( ty
( )( tx ) is not assumed, then it is not possible to jus-
tify boundedness of regulator solution, but it is still
possible to prove (7). Probably in some applications,
like adaptive tuning of resonance regimes, require-
ment of boundedness of overall system solution

TTTTTT )( µ= ηΩzxX  is not natural and it reduces
possible applicability of proposed approach. So let us
consider the next result, where the boundedness of
( ))( tyB  is not assumed. Recall that a continuous

function ++ →χ RR:  is from class K  if it is mo-



notonously increasing and 0)0( =χ .

T h e o r e m  2 . Let for the system (1) Assumptions
1–4 hold, ∞+<d , )()( tt dD =  for almost all

0≥t  and

 
( ) ( ) [ )

[ ) ( ) t
t

t

e

t

4)0(~

)0()(

3,02

,021

χχ+




 µχ+

+




χ+χ≤

X

dXyB
 (12)

for all 0≥t , for some 1χ , 2χ , K∈χ3  and positive
constant 4χ . Assume that by appropriate choice of
matrix function K  from Assumption 2 it is possible
to assign arbitrary constant 3c  from Assumption 3,
where additionally

2
2

2
1 )( xLxxL cVc ≤≤ .

Then there exists matrix function K , such, that sys-
tem (1), (3)–(6) is forward complete and (7) holds.
P r o o f . By conditions 0)( =tde  for almost all

0≥t . Let us consider Lyapunov function
)()(5.0)(),( 00

1 µ−µµ−µγ+δ=δµ − TVW ,
which time derivative by virtue of Assumptions 3
and 4 and equations (10) and (11) takes form

( )

,~)(

~~)(

~~)(

2
21

2
3

µ−δ−≤

≤δµ+µ−δ−≤

≤µ−δµ+δδ∂∂=

tarr

tac

VW
TTT

TTT

L

CCΩL

ΩCCΩyG&

for some positive 1r  and 2r . Thus, variables δL  and
µ~  are bounded, that with Assumption 1 means for-
ward completeness property for system (1). Now it is
possible to note, that according to (12) inputs of sys-
tems (4) and (8) are defined for all 0≥t . Applying
Assumption 2 to these systems one can obtain for-
ward completeness property of overall system. To
base goal limit relation (7) it is possible to use results
of Lemma 1, if we apply it to system (11) with con-
vergent to zero signal )()( tt TT δCCΩ . Using results
from Rumyantsev, and Oziraner (1987) it is possible
to claim that the estimate

tet α−δα≤δ )0()( 0C (13)
is satisfied due to for system (10) with 0=de  As-
sumption 3 is fulfilled, where 00 >α , 01 >ακ=α ,

01 >α . Coefficient 0>κ  is dependent on form of
matrix function )( yK  and by conditions of the
Theorem it is possible to increase value of κ  by ap-
propriate choice of )( yK . According to Assumption
2 and (12) variable )( tΩ  possesses estimate:

( )[

[ ) [ )

( ) ]t

tt

e

ddt

4)0(

~

)0()0()(

3

,02,02

121

χχ+

+




 µχ+





χ+

+χ+≤

X

d

XΩΩ

for all 0≥t . Therefore, multiplying the right hand
side of above estimate on right side of (13) we ob-
tain, that signal )()( tt TT δCCΩ  would asymptoti-

cally vanish if 1
14
−αχ>κ . ■

It is worth to note, that if system (1) is forward com-
plete, then according to results of paper (Angeli, and
Sontag, 1999) the following estimate holds:

( ) [ )

[ ) ( ) 43,02

,021

~

)0()(

γ+γ+




 µγ+

+




γ+γ≤

t

t

t

tdxx

for some 1γ , 2γ , K∈γ3  and positive constant 4γ .
Comparing this estimate with (12) it is possible to
conclude, that (12) is a mild technical assumption,
which can be viewed as a corollary of forward com-
pleteness property of system (1). The main difference
between (12) and above estimate is the character of
dependence on time argument. For example, signal

( ))( tyB  grows not faster than exponentially for
essentially bounded µ  and d  if the following series
of inequalities hold for system (1) for some positive
constants iα , 4,0=i :

0)( α≤yA , 21)( α+α≤ϕ xy , 43)( α+α≤ xyB ,
here and further the norm of matrix A  is defined by
the maximum singular value.

3.2. Case with presence of measurement noise

Let us suppose that regulator measures plant (1) out-
put with some noise:

)()()( tttp pyy += , (14)
where p  is a Lebesgue measurable and locally es-
sentially bounded signal. In such situation equations
of regulator (3)–(6) should be rewritten with substi-
tution (14) as follows:
 ( ) DzCyyKyzyAz +−+ϕ+= pppp )()()(& ;(15)

)()( pp yBΩyGΩ −=& ; (16)

µ−= && ΩηyGη )( p ; (17)

( )ηCzCyCΩ +−γ=µ p
TT& , 0>γ . (18)

Let us rewrite equation for estimation error (8):

 
( )

( ) ( ) xyAyAyy

pyKeyBeyGe

)()()()(

)()()( 0

pp

pdp

−+ϕ−ϕ+

+−+µ−µ+=&
(19)

and equation (10) for δ  dynamics:
( )( )

( )
( ) .)()(

)()()(

)()()( 0

xyAyA

yypyKe

yByByG

p

ppd

pp

−+

+ϕ−ϕ+−+

+µ−µ−+δ=δ&

(20)

If one would apply technique used above to prove
Theorems 1 and 2 in this case, then presence of vari-
able x  in equations (19) and (20) would prevent it. A
way to overcome this obstacle consists in supposi-
tion, that matrix functions )( yA  and )( yB  are con-
stant matrices.

T h e o r e m  3 . Let for the system (1) Assumptions 1,
2 and 4 hold; ∞+<d , ∞+<D , ∞+<p ;

AyA =)( , ByB =)(  and function ϕ  is globally
Lipschitz continuous. Then solution of system (1) is
forward complete and solution of (15)–(18) is
bounded. Furthermore, if Assumption 3 is satisfied
and )()( tt dD = , 0)( =tp  for almost all 0≥t , then
(7) holds and ( ) 0)()( →− tt zxL  for ∞+→t .



P r o o f . In this case differential equations (19) and
(20) take forms:

( )
( ) ;)()(

0

p

d
yy

pKeBeGe
ϕ−ϕ+

+−+µ−µ+=&
(21)

( ))()( pd yypKeG ϕ−ϕ+−+δ=δ& , (22)
where it was assumed, that in this case matrix func-
tion KyK =)(  and the same property holds for ma-
trix GyG =)( . Let us introduce auxiliary signal

( ) ( )[ ] )()()()()( ttttt dp epKyyN +−ϕ−ϕ= ,
that is essentially bounded. Indeed,

( ) dLt epKN ++≤ ϕ)( ,

where ϕL  is Lipschitz constant of function ϕ . Fur-
ther, applying Assumption 2 to systems (16) and (22)
it is possible to recover boundedness of variables δ
and Ω . Rewriting equation (18) in form (11), one
can receive

( )[ ]µ−δ+γ=µ ~~ ΩCpCΩ TT& . (23)
From Assumption 4 the smallest eigenvalue )( ta  of

matrix )()( tt TT CΩCΩ  is PA and signal

[ ]δ+ CpCΩ TT  is bounded, that according to result
of Lemma 1 means boundedness of µ~ . From As-
sumption 1 system (1) is forward complete. Now
applying to system (21) Assumption 2 it is possible
to base boundedness of variable e . Variable η  is
also bounded due to it is a part of (9), where all other
variables are bounded. Thus we obtain boundedness
of regulator (15)–(18) solution.

If Assumption 4 holds and 0)( =tde , 0)( =tp  for
almost all 0≥t , then system (22) is globally as-
ymptotically stable with respect to variable δL .

Therefore, signal )()( tt TT δCCΩ  asymptotically
converges to zero. Further applying to (23) result of
Lemma 1 it is possible obtain (7). Relation

( ) 0)()(lim =−
∞+→

tt
t

zxL

can be established by the same arguments as in proof
of Theorem 1. ■

R e m a r k  1 . Note, that in all theorems only for-
ward completeness of system (1) was used. This
property does not contradict to fulfillment of any
other stability property for system (1). In fact one can
additionally impose some stability properties for
system (1) to use proposed approach to obtain classi-
cal problem solution. For example, let in case of
Theorem 3 nominal part of system (1)

)( yxAx ϕ+=&
be asymptotically stable. Then it is also globally ex-
ponentially asymptotically stable. Hence, for any
bounded additive disturbance trajectories of nominal
part of system (1) are bounded. If all conditions of
Theorem 3 are satisfied, then due to (7) asymptotic
behavior of system (1) is determined by properties of
exciting signal d  and we recover the classical adap-
tive stabilization problem for system (1) with distur-
bance input and measurement noise. In such a case
the result of Theorem 3 presents a new solution of

adaptive stabilization problem for system (1). The
same remark is valid for all other theorems. □

R e m a r k  2 . The results of the paper were obtained
with utilizing of adaptive observer design method
borrowed from (Efimov, and Fradkov, 2003; Frad-
kov, et al., 2002). It is possible to simplify obtained
solution excluding from consideration auxiliary vari-
able η  if one would modify equations (3)–(6) in the
following way:

( ) DzCyyKyByzyAz +−+µ+ϕ+= )()()()(& ;

)()( yBΩyGΩ −=& ;

( )µ−−γ=µ ΩCzCyCΩ TT& , 0>γ . (24)
Differential equation described observer estimation
error zxe −=  has form:

( ) ( ) )()()( 0 ttt deyBeyGe +µ−=& ,
and dynamics of auxiliary error 0µ−=δ Ωe  yields
to (10), while (24) can be rewritten as (11). For this
regulator with this new δ  it is possible to repeat
without any modifications all proofs of all theorems
with saving of results. □

In order to illustrate verification of the conditions of
theorems and assumptions below some examples are
presented.

4. APPLICATIONS

1. Resonance tuning of a pendulum. Let us consider
the pendulum equations

,)()sin()(

;

21
2

2

21

tdxxx

xx

+ε−ω−µ=

=

&

&

where 0>ω  is unknown natural frequency of the
pendulum; 0>ε  is small friction factor; R∈µ  is the
adjusted parameter, as before, that is introduced to
tune pendulum frequency to the desired value;

)sin()( ttd dω=  is a sinusoidal signal with known
exciting frequency 0>ωd . The problem is to tune
the resonance regime of the pendulum to diminish
the tuning error 22

dω−ω=µ  when natural fre-
quency of the pendulum and frequency of external
input d  coincide and pendulum solution exhibits
oscillations with infinite amplitude (for sufficient
small values of ε ). Such a problem is important for
practice, since resonance regime with growing am-
plitude arises only for coinciding frequencies of  the
pendulum and the input d . It  can be generated by
designer for the case of known frequency dω , while
the natural frequency of the pendulum ω  may de-
pend on uncertain and unpredictable external factors
and its exact value is unmeasured. Note, that if we
extend state space of the plant (1) by dynamical sys-
tem generating exogenous disturbance d , then this
extended system possesses the bifurcation for 0~ =µ .
That explains application of task of resonance regime
stabilization in this paper as examples.

Let 1xy =  (in paper (Efimov, and Fradkov, 2004)
such example was previously considered for case of
full state measurements and 0=ε ) and pendulum



equations can be rewritten as follows

,)()sin()()sin(

;

1021
2

2

21

tdxxxx

xx

d +µ−µ+ε−ω−=

=

&

&

where 22
0 dω−ω=µ . It is possible to see that in this

case matrix function )( yB  is bounded and it is the
case of Theorem 1. Appealing to Remark 2 adaptive
regulator takes form

( ) ;)()()sin(

;

1
2

22

21

tDzyKyzz

zz

d +−+µ−ω−ε−=

=

&

&

;)sin(

;

122

21

yK −Ω−Ωε−=Ω

Ω=Ω
&

&
( )µΩ−−Ωγ=µ 111 zy& .

It is possible to show, that conditions of the Theorem
hold in this example, especially PA condition is satis-
fied for sinusoidal function of runaway argument.

2. Filtering of steady component of input exciting
signal for a pendulum. Let us again consider a pen-
dulum equations:

,)()()sin(

;

01
2

22

21

tdxxx

xx

+µ−µ+ω−ε−=

=

&

&

where 0>ω  is known natural frequency of the pen-
dulum; 0>ε  is small friction factor;

)sin()( ttd dω=  is a sinusoidal signal with known
exciting frequency 0>ωd ; R∈µ  is the adjusted
parameter, that is introduced to annihilate possible
steady (parasitic) component of the exciting input.
Let again 1xy =  and this task admits all conditions
of Theorem 3. So, let output measurements are avail-
able with additive noise )()()( 1 tptxty p += . Rec-
ollecting Remark 2, equations of adaptive regulator
take form:

;)()()sin(

;

1
2

22

21

tDzyKyzz

zz

pp +−+µ+ω−ε−=

=

&

&

 
;1

;

122

21

−Ω−Ωε−=Ω

Ω=Ω

K&

&
 ( )µΩ−−Ωγ=µ 111 zy p& ,

where )()()( tptdtD += . Results of computer
simulations for both examples are not included due to
space limitation.

5. CONCLUSION

An adaptive output feedback controller is proposed
which tunes a nonlinear uncertain dynamical system
to its bifurcation point under some mild conditions.
This solution is based on theory of adaptive observ-
ers design proposed in (Efimov, and Fradkov, 2003;
Fradkov, et al., 2002). The result differs from the
previously proposed in (Efimov, and Fradkov, 2004)
in that it is applicable to the systems with relative
degree greater than one. Besides, a more general
form of nonlinear system is considered. Possibility of
noisy measurements is taken into account.
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