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Abstract: This paper deals with the dynamic visual feedback control with a
movable camera instead of a fixed camera in the fixed camera configuration. Firstly
the brief summary of the visual feedback system with a fixed camera is given
with the fundamental representation of a relative rigid body motion. Secondly we
construct the new error system in order to consider the camera field of view. Next,
we derive the passivity of the dynamic visual feedback system by combining the
manipulator dynamics and the visual feedback system. Based on the passivity,
stability and L2-gain performance analysis are discussed. Finally the validity of
the proposed control law can be confirmed by comparing the simulation results.
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1. INTRODUCTION

The combination of mechanical control with vi-
sual information, so-called visual feedback control
or visual servoing, should become extremely im-
portant, when we consider a mechanical system
working under dynamical environments (Hutchinson
et al., 1996), (Christensen and Corke, 2003). Clas-
sical visual servoing algorithms assume that the
manipulator dynamics is negligible and do not in-
teract with the visual feedback loop. However, this
assumption is invalid for high speed tasks, while it
holds for kinematic control problems. Kelly con-
sidered the set-point problems with a static target
for the dynamic visual feedback system which
includes the manipulator dynamics (Kelly, 1996).
Bishop et al. proposed an inverse dynamics based
control law for the position tracking and the cam-
era calibration problems of the dynamic visual

feedback system (Bishop and Spong, 1999). Re-
cently, Zergeroglu et al. developed an adaptive
control law for the position tracking and the cam-
era calibration problems of the dynamic visual
feedback system with parametric uncertainties
(Zergeroglu et al., 2001). More recently, the au-
thors proposed the passivity-based dynamic visual
feedback control for the 3D target tracking (Kawai
and Fujita, 2004), (Kawai et al., 2004). Although
these control laws guarantee the stability for the
dynamic visual feedback system, the problems of
the camera field of view (Chaumette, 1998) are
not dealt with in these issues. However, it is im-
portant to consider the problems of the camera
field of view in order to enlarge the available
workspace for the robot hand with the configura-
tion separated a camera frame and a hand (end-
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Fig. 1. Visual feedback system in the fixed camera
configuration.

effector) one, we call the fixed camera configura-
tion, as shown in Fig. 1.

In this paper, we discuss the dynamic visual feed-
back control with a movable camera instead of a
fixed camera in the fixed camera configuration in
order to increase the available workspace for the
robot hand. This can be regarded as a solution for
one of the problems of the camera field of view in
the proposed framework which is based on our
previous works (Fujita et al., 2002), (Kawai and
Fujita, 2004), (Kawai et al., 2004). Moreover, we
can derive that the dynamic visual feedback sys-
tem preserves the passivity of the visual feedback
system which is obtained in our previous works.

Throughout this paper, we use the notation
eξ̂θab ∈ R3×3 to represent the change of the prin-
ciple axes of a frame Σb relative to a frame Σa.
The notation ‘∧’ (wedge) is the skew-symmetric
operator such that ξ̂θ = ξ×θ for the vector cross-
product × and any vector θ ∈ R3. The notation
‘∨’ (vee) denotes the inverse operator to ‘∧’: i.e.,
so(3) → R3. ξab ∈ R3 specifies the direction of
rotation and θab ∈ R is the angle of rotation. Here
ξ̂θab denotes ξ̂abθab for the simplicity of notation.
We use the 4 × 4 matrix

gab =
[
eξ̂θab pab

0 1

]
(1)

as the homogeneous representation of gab =
(pab, e

ξ̂θab) ∈ SE(3) which is the description of the
configuration of a frame Σb relative to a frame Σa.
The adjoint transformation associated with gab is
denoted by Ad(gab) (Murray et al., 1994). Let us
define the vector form of the rotation matrix as
eR(eξ̂θab) := sk(eξ̂θab)∨ where sk(eξ̂θab ) denotes
1
2 (eξ̂θab − e−ξ̂θab ).

2. PASSIVITY-BASED VISUAL FEEDBACK
SYSTEM IN THE FIXED CAMERA

CONFIGURATION

2.1 Fundamental Representation for Visual Feedback
System

Visual feedback systems typically use four coordi-
nate frames which consist of a world frame Σw, a

target object frame Σo, a camera frame Σc and a
hand (end-effector) frame Σh as in Fig. 1. Then,
gwh, gwc and gwo denote the rigid body motions
from Σw to Σh, from Σw to Σc and from Σw to
Σo, respectively. Similarly, the relative rigid body
motions from Σc to Σh, from Σc to Σo and from
Σh to Σo can be represented by gch, gco and gho,
respectively, as shown in Fig. 1.

The relative rigid body motion from Σc to Σo can
be led by using the composition rule for rigid body
transformations ((Murray et al., 1994), Chap. 2,
pp. 37, eq. (2.24)) as follows

gco = g−1
wc gwo. (2)

The fundamental representation of the relative
rigid body motion involves the velocity of each
rigid body. To this aid, let us consider the velocity
of a rigid body as described in (Murray et al.,
1994). Now, we define the body velocity of the
camera relative to the world frame Σw as

V̂ b
wc = g−1

wc ġwc =
[
ω̂wc vwc

0 0

]
V b

wc =
[
vwc

ωwc

]
(3)

where vwc and ωwc represent the velocity of
the origin and the angular velocity from Σw to
Σc, respectively ((Murray et al., 1994) Chap. 2,
eq. (2.55)).

Then, the fundamental representation of the rela-
tive rigid body motion gco is described as follows
(Kawai and Fujita, 2004).

V b
co = −Ad(g−1

co )V
b
wc + V b

wo (4)

where V b
wo is the body velocity of the target object

relative to Σw. Roughly speaking, the relative
rigid body motion gco will be derived from the
difference between the camera velocity V b

wc and
the target object velocity V b

wo.

2.2 Estimation Error and Control Error Systems

Here the brief summary of our prior works in
(Kawai and Fujita, 2004) and (Kawai et al., 2004)
are given. The visual information f which includes
the relative rigid body motion can be exploited,
while the relative rigid body motion gco can not
be obtained directly in the visual feedback system.
In order to bring the actual relative rigid body
motion gho to a given reference gd in Fig. 1,
we consider the control and estimation problems
in the visual feedback system. Firstly, we shall
consider the following model which just comes
from the fundamental representation (4).

V̄ b
co = −Ad(ḡ−1

co )V
b

wc + ue (5)

where ḡco is the estimated relative rigid body
motion from Σc to Σo and ue is the input in
order to converge the estimated value to the actual
relative rigid body motion. Next, the estimation
error of the relative rigid body motion from Σc to



Σo, i.e. the error between ḡco and gco, is defined
as

gee = ḡ−1
co gco, (6)

which is called the estimation error. Using the
notation eR(eξ̂θ), the vector of the estimation
error is given by ee := [pT

ee eT
R(eξ̂θee)]T . Then,

the estimation error vector ee can be obtained by
using image information f . The estimation error
system is represented by

V b
ee = −Ad(g−1

ee )ue + V b
wo. (7)

Similarly, we define the error between gd and ḡho,
which is called the control error, as follows

gec = g−1
d ḡho, (8)

where ḡho is the estimated relative rigid body
motion from Σh to Σo and obtained from ḡho =
g−1

ch ḡco. Here, we assume that gch is calculated
by using the known motion, i.e. gwc and gwh,
exactly. The vector of the control error is defined
as ec := [pT

ec eT
R(eξ̂θec)]T . The control error system

is described by

V b
ec = −Ad(ḡ−1

ho
)V

b
wh + ue − Ad(g−1

ec )V
b

d (9)

where V b
wh and V b

d are the body velocity of the
hand relative to Σw and the desired body velocity
of the relative rigid body motion gho, respectively.

Combining (7) and (9), the visual feedback system
in the fixed camera configuration is constructed as
follows[

V b
ec

V b
ee

]
=

[
−Ad(ḡ−1

ho
) I

0 −Ad(g−1
ee )

]
uce+

[
0
I

]
V b

wo(10)

where

uce :=
[

V b
wh + Ad(gd)V

b
d

ue

]
(11)

denotes the input for the visual feedback system.

Let us define the error vector of the visual feed-
back system as ece :=

[
eT
c eT

e

]T which contains
of the control error vector ec and the estimation
error vector ee. Here, we define the output of the
visual feedback system (10) as

νce :=

[
−AdT

(g−1
d

)
0

Ad
(e−ξ̂θec )

−I

]
ece,

then the visual feedback system (10) satisfies∫ T

0
uT

ceνcedτ ≥ −βce where βce is a positive scalar
(Kawai et al., 2004). This would suggest that the
visual feedback system (10) is passive from the
input uce to the output νce just formally as in the
definition in (van der Schaft, 2000).

3. VISUAL FEEDBACK SYSTEM WITH A
MOVABLE CAMERA

3.1 Camera Field Error System

In this section, we construct the error system of
the movable camera in the fixed camera config-

uration, we call the camera field error system,
in order to increase the available workspace for
the robot hand. Here we define the camera field
error between the estimated value ḡco and a given
reference gcd for the camera motion as

gev = g−1
cd ḡco. (12)

If ḡco is equal to gcd, then the target object
can be kept in the center of the camera field
of view. Using the notation eR(eξ̂θ), the vector
of the camera field error is defined as ev :=
[pT

ev eT
R(eξ̂θev )]T . Note that ev = 0 iff pev = 0

and eξ̂θev = I3.

Similarly to (7) and (9), the camera field error
system can be obtained as

V b
ev = ue − Ad(ḡ−1

co )V
b

wc − Ad(g−1
ev )V

b
cd, (13)

where V b
cd is the desired body velocity of the

relative rigid body motion gco.

3.2 Property of Visual Feedback System

Combining (7), (9) and (13), we construct the
visual feedback system with a movable camera in
the fixed camera configuration as follows[

V b
ec

V b
ee

V b
ev

]
=


−Ad

(ḡ−1
ho

)
I 0

0 −Ad
(g−1

ee )
0

0 I −Ad
(ḡ−1

co )


ucev+

[
0
I

0

]
V b

wo

(14)

where

ucev :=

[
V b

wh + Ad(gd)V
b
d

ue

V b
wc + Ad(gcd)V

b
cd

]
(15)

denotes the input for the visual feedback system.
Let us define the error vector of the visual feed-
back system (14) as e :=

[
eT
c eT

e eT
v

]T . It should
be noted that if the vector of the estimation error
is equal to zero, not only ḡco equals gco but also ḡho

equals gho. Moreover, if the vectors of the control
error and the camera field error are equal to zero,
then ḡho and ḡco equal gd and gcd, respectively.
Thus, when e → 0, gho and gco tend to gd and
gcd, respectively. This states that the control ob-
jective can be achieved, in addition, the available
workspace for the robot hand will be increased by
moving of the camera field of view.

Lemma 1. If V b
wo = 0, then the visual feedback

system (14) satisfies∫ T

0

uT
cevνcevdτ ≥ −βcev, ∀T > 0 (16)

where νcev is defined as

νcev :=




−AdT

(g−1
d

)
0 0

Ad
(e−ξ̂θec )

−I Ad
(e−ξ̂θev )

0 0 −AdT

(g−1
cd

)


 e (17)

and βcev is a positive scalar.



PROOF. Consider the following positive definite
function

Vcev = E(gec) + E(gee) + E(gev) (18)

where E(g) := 1
2‖p‖2 + φ(eξ̂θ) and φ(eξ̂θ) :=

1
2
tr(I − eξ̂θ) which is the error function of the ro-

tation matrix (see e.g. (Bullo and Murray, 1999)).
Differentiating (18) with respect to time yields

V̇cev = eT


 Ad

(eξ̂θec)
0 0

0 Ad
(eξ̂θee )

0

0 0 Ad
(eξ̂θev )


[

V b
ec

V b
ee

V b
ev

]
(19)

where we use the property φ̇(eξ̂θ) := eξ̂θω. Ob-
serving the skew-symmetry of the matrices p̂ec, p̂ee

and p̂ev, the above equation along the trajectories
of the system (14) can be transformed into

V̇cev = eT


 −Ad

(g−1
d

)
Ad

(eξ̂θec )
0

0 −I 0
0 Ad

(eξ̂θev )
−Ad

(g−1
cd

)


 ucev

= uT
cevνcev. (20)

Integrating (20) from 0 to T , we can obtain∫ T

0

uT
cevνcevdτ ≥ −Vcev(0) := −βcev (21)

where βcev is the positive scalar which only de-
pends on the initial states of gec, gee and gev.

Remark 2. In the visual feedback system, pT
ec(e

−ξ̂θd

ωec)∧pec = 0, pT
eeω̂eepee = 0, pT

ev(e−ξ̂θcdωev)∧pev =
0 hold. This skew-symmetric property is analo-
gous to the one of the robot dynamics, i.e. xT (Ṁ−
2C)x = 0, ∀x ∈ Rn (where M ∈ Rn×n is the
manipulator inertia matrix and C ∈ Rn×n is
the Coriolis matrix (Murray et al., 1994)). Thus,
Lemma 1 suggests that the visual feedback system
(14) is passive from the input ucev to the output
νcev as in the definition in (van der Schaft, 2000).

4. DYNAMIC VISUAL FEEDBACK
CONTROL

4.1 Dynamic Visual Feedback System

The manipulator dynamics can be written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τd (22)

where q, q̇ and q̈ are the joint angles, velocities
and accelerations, respectively. τ is the vector of
the input torques and τd represents a disturbance
input. The body velocity of the hand is given by

V b
wh = Jb(q)q̇ (23)

where Jb(q) is the manipulator body Jacobian
(Murray et al., 1994). We define the reference of
the joint velocities as q̇d := J†

b (q)ud where ud

represents the desired body velocity of the hand.
Thus, V b

wh in (15) should be replaced by ud.

Let us define the error vector with respect to the
joint velocities of the manipulator dynamics as
ξ := q̇− q̇d. Now, we consider the passivity–based
dynamic visual feedback control law as follows

τ = M(q)q̈d + C(q, q̇)q̇d + g(q)
+JT

b (q)AdT
(g−1

d
)
ec + uξ. (24)

The new input uξ is to be determined in order to
achieve the control objectives.

Using (14), (22) and (24), the visual feedback
system with manipulator dynamics (we call the
dynamic visual feedback system) can be derived
as follows


ξ̇

V b
ec

V b
ee

V b
ev


 =




−M−1Cξ + M−1JT
b AdT

(g−1
d

)
ec

−Ad
(ḡ−1

ho
)
Jbξ

0

0




+




M−1 0 0 0

0 −Ad
(ḡ−1

ho
)

I 0

0 0 −Ad
(g−1

ee )
0

0 0 I −Ad
(ḡ−1

co )


u+




M−1 0
0 0

0 I
0 0


w

(25)

where

u :=




uξ

ud + Ad(gd)V
b
d

ue

V b
wc + Ad(gcd)V

b
cd


 , (26)

and x := [ξT eT ]T . We define the disturbance
of dynamic visual feedback system as w :=[
τT
d (V b

wo)T
]T . Before constructing the dynamic

visual feedback control law, we derive an impor-
tant lemma.

Lemma 3. If w = 0, then the dynamic visual
feedback system (25) satisfies∫ T

0

uT νdτ ≥ −β, ∀T > 0 (27)

where

ν := Nx,N :=




I 0 0 0

0 −AdT

(g−1
d

)
0 0

0 Ad
(e−ξ̂θec)

−I Ad
(e−ξ̂θev )

0 0 0 −AdT

(g−1
cd

)


 .

Due to space limitations, the proof is only
sketched. By using the following positive definite
function, the proof can be completed.

V =
1
2
ξTMξ + E(gec) + E(gee) + E(gev). (28)

Remark 4. Similarly to Lemma 1, Lemma 3 would
suggest that the dynamic visual feedback system
is passive from the input u to the output ν just
formally. From Lemma 3, we can state that the
dynamic visual feedback system (25) preserves the
passivity of the visual feedback system (14). This
is one of main contributions of this work.



4.2 Stability Analysis for Dynamic Visual Feedback
System

It is well known that there is a direct link be-
tween passivity and Lyapunov stability. Thus, we
propose the following control input.

u = −Kν = −KNx, K :=




Kξ 0 0 0

0 Kc 0 0
0 0 Ke 0

0 0 0 Kv


(29)

where Kξ := diag{kξ1, · · · , kξn} denotes the pos-
itive gain matrix for each joint axis. Kc :=
diag{kc1, · · · , kc6}, Ke := diag{ke1, · · · , ke6} and
Kv := diag{kv1, · · · , kv6} are the positive gain
matrices of x, y and z axes of the translation and
the rotation for the control error, the estimation
one and the camera field one, respectively. The
result with respect to asymptotic stability of the
proposed control input (29) can be established as
follows.

Theorem 5. If w = 0, then the equilibrium point
x = 0 for the closed-loop system (25) and (29) is
asymptotic stable.

Theorem 5 can be proved using the energy func-
tion (28) as a Lyapunov function. The proof is
omitted here due to space limitations. Considering
the manipulator dynamics, Theorem 5 shows the
stability via Lyapunov method for the full 3D
dynamic visual feedback system. It is interesting
to note that stability analysis is based on the
passivity as described in (27).

4.3 L2-gain Performance Analysis for Dynamic
Visual Feedback System

Based on the dissipative systems theory, we con-
sider L2-gain performance analysis for the dy-
namic visual feedback system (25) in one of the
typical problems, i.e. the disturbance attenuation
problem. Now, let us define

P := NTKN − 1
2γ2

W − 1
2
I (30)

where γ ∈ R is positive and W := diag{I, 0, I, 0}.
Then we have the following theorem.

Theorem 6. Given a positive scalar γ and consider
the control input (29) with the gains Kξ, Kc, Ke

and Kv such that the matrix P is positive semi-
definite, then the closed-loop system (25) and (29)
has L2-gain ≤ γ.

The proof is omitted due to space limitations,
Theorem 6 can be proved using the energy func-
tion (28) as a storage function for L2-gain perfor-
mance analysis. The L2-gain performance analysis
of the dynamic visual feedback system is discussed

via the dissipative systems theory. In H∞-type
control, we can consider some problems by estab-
lishing the adequate generalized plant. This paper
has discussed L2-gain performance analysis for the
disturbance attenuation problem. The proposed
strategy can be extended for the other-type of
generalized plants of the dynamic visual feedback
systems.

5. SIMULATION

The simulation results on the two degree-of-
freedom manipulator as depicted in Fig. 2 are
shown in order to understand our proposed
method simply, though it is valid for 3D visual
feedback systems. The target object has four fea-
ture points and moves for t = 4.8 [s] along a
straight line (0 ≤ t < 2) and a “Figure 8” mo-
tion (2 ≤ t < 4.8). Specifically, we compare the
performance in the case of the movable camera
system and the fixed camera system discussed
in (Kawai et al., 2004). We use the reference of
the relative rigid body motion as constant values,
i.e. pd = [0 0 −0.81]T , eξ̂θd = I, pcd = [0 0 −2]T ,
eξ̂θcd = I, V b

d = 0 and V b
cd = 0, for the tracking

problems in the simulation.
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Fig. 2. Coordinate frames for dynamic visual
feedback system with two degree of freedom
manipulator.

Fig. 3 shows the error between gho and gd which is
defined as ger := g−1

d gho for the control objective,
the left graphs denote the error of the case of
the proposed control law, and the right ones
denote the error of the case of the previous one
(Kawai et al., 2004). In this figure, we focus
on the errors of the translations of x and y
and the rotation of z, because the errors of the
translation of z and the rotations x and y are
zeros ideally on the defined coordinates in Fig. 2.
Clearly, the proposed control law achieves the
control objective, not causing the performance
deterioration in comparison with the previous one.
Omitted due to space limitations, stability and
L2-gain performance analysis are verified as same
as the simulation in (Kawai et al., 2004). Fig. 4



"#�

$"#�

"

"#"%

"

$"#"%

" �#" &#" '#"
��	
�()*



�
��
�(
	

*


�
��
�(
	

*
��

�
�
��

+
(�
�
�
*

"#"�

"

$"#"�

" �#" &#" '#"

" �#" &#" '#"

"#�

$"#�

"

"#"%

"

$"#"%

" �#" &#" '#"
��	
�()*



�
��
�(
	

*


�
��
�(
	

*
��

�
�
��

+
(�
�
�
*

"#"�

"

$"#"�

" �#" &#" '#"

" �#" &#" '#"

Fig. 3. Error for the control objective. (Left side:
Movable camera system, Right side: Fixed
camera system)


�
��

(�
�,


�
*

"

�""

%"

$%"


�
�
�(
�
�,


�
*

�"

$-"

%"

$�"

-"

" �#" -#" %#"&#"�#" '#"
��	
�()*

" �#" -#" %#"&#"�#" '#"

Fig. 4. One of feature points. (Movable camera
system: solid, Fixed camera system: dashed)

presents one of the four feature points. In this
figure, the solid lines denote the feature point
of the case of the proposed control law, and the
dashed lines denote the feature point of the case of
the previous one. We can verify that the change of
the feature point with the proposed control law is
less than with the previous one. This result states
that the target object almost exists in the center
of the camera, and the camera can move not to
miss the moving target object. Thus, we consider
that the dynamic visual feedback control with a
movable camera can enlarge the camera field of
view, not causing the performance deterioration,
in comparison with a fixed camera (Kawai et
al., 2004).

6. CONCLUSIONS

This paper dealt with the dynamic visual feedback
control with a movable camera instead of a fixed
camera in the fixed camera configuration in order
to increase the available workspace for the robot
hand. Moreover, we derived that the dynamic
visual feedback system preserved the passivity of
the visual feedback system by the same strategy

in our previous works (Fujita et al., 2002), (Kawai
and Fujita, 2004), (Kawai et al., 2004). Stability
and L2-gain performance analysis for the dynamic
visual feedback system have been discussed based
on passivity with the energy function. The validity
of the proposed control law was confirmed by
comparing the simulation results.
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