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Abstract: The Artificial Intelligence (AI) based modeling techniques applied to the 
industrial grinding operation of a lead-zinc ore-beneficiation plant to predict the key 
performance indicators (KPIs) for the circuit. As system identification of the non-linear 
process is a must in advanced control, AI based techniques are applied to predict the KPIs 
within some acceptable limits. The nonparametric model for these KPIs is constructed 
using Feed-Forward Neural Networks (FNN), and wavelet-frames. A well-validated 
hybrid-model, using physico-empirical methodologies, is used to approximate the actual 
behaviour of the plant. Merits and demerits of each of these techniques are presented. 
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1.INTRODUCTION 

 
Grinding plays a critical role in most of the ore 
beneficiation operations in mineral processing plants. 
As the size of the particles produced while grinding 
operation becomes the key performance driver for 
the following separation units, flotation in this case, 
modeling and thereafter the control of the grinding 
operation of industrial scale has been a continuous 
endeavour of the mineral engineers. Over the years, 
the modeling of grinding operation has attained a 
reasonable state of robustness (Herbst, et al., 1983; 
Rajamani, et al., 1991a). Most of these cases, the 
hybrid path of physical and empirical modeling 
routes are followed. Research has been carried out on 
several aspects of single as well as multiple objective 
optimization and control of industrial grinding 
operations using hybrid modeling approaches 
(Rajamani, et al., 1991b). These kind of hybrid 
grinding models are reported to work really well  
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(Mitra and Gopinath, 2004) if tuned properly with 
the plant data. But hybrid-modeling approaches have 
a lot of parameters embedded in empirical 
correlations. Tuning of these parameters needs a 
huge data requirement from plant, as this requires 
measurement in almost every stream. Unfortunately, 
most of the industrial grinding operations lack in 
adequate hardware sensors in intermediate streams 
and have sensors only in the input and final product 
streams. This makes the tuning process of empirical 
parameters used in hybrid approach (e.g. grinding, 
hydrocyclones etc.) extremely difficult. Above this, a 
multi-variable system identification of the plant 
operation is very badly needed to control a grinding 
operation successfully, as control of industrial 
grinding operation is fairly non-linear in nature and 
difficult to control. To meet the need of the scenarios 
stated above, some form of system identification 
based on data driven modeling procedures come to 
rescue to deploy control system to operate the plant 
efficiently. The data based modeling strategies 
proposed here are based on Artificial Neural 
Networks (ANN) and wavelets-based networks. 
Artificial Intelligence (AI) techniques offer 



     

interesting possibilities for performing the system 
identification as they provide structures for function 
approximation with learning capability.  
Methods based on neural networks have been 
proposed as useful tools for process modeling, 
diagnosis, data rectification and control (Karjala, et 
al., 1994; Himmelblau, et al., 1993; Pollard, et al., 
1992). In identification kind of work, neural 
networks provide an effective way of initialization. A 
trained neural network could predict the parameter 
values called as weights associated with process 
input and output data and this type of network forms 
a feed forward identifier. A generic ANN consists of 
several layers of interconnected neurons. In Feed 
forward Neural Network (FNN), three types of layers 
can be distinguished: the input layer (the first layer), 
the output layer (the final layer) and hidden layers 
(layers of neuron between the input and output 
layer). The output of the neuron is determined by 
functions called as activation functions, which may 
be non-linear such as sigmoid activation function or 
squashing function. Each neuron produces a 
weighted sum of its inputs giving a net result and this 
net result upon operation by activation function 
produces the output without any feedback. ANN 
application development mainly has three phases: the 
training phase, the testing phase and the users 
(validation) phase. The training phase determines the 
weights based on input training pattern, the testing 
phase calculate output pattern compared against 
target pattern and the validation phase contains 
application to an unknown problem. FNN acts as 
pattern associators and generate a functional 
relationship that correlates a set of input vectors with 
its corresponding output vectors.  

 
 
Fig. 1.Industrial grinding circuit 
 
The industrial grinding operation under consideration 
is a part of two stage (grinding followed by flotation) 
lead-zinc ore beneficiation process. After crushing in 
primary and secondary crushers, the ore from the 
mine is sent to fine ore storage bin from where the 
fresh ore along with water is fed to the rod mill. The 
rod mill discharge slurry is mixed with the ball mill 
discharge slurry in a sump known as the primary 
sump. Water is added to the primary sump to 
facilitate the flow of the slurry smoothly within the 
circuit. The slurry from the primary sump is fed to 

primary cyclone. The overflow from the primary 
cyclone goes to another sump, namely secondary 
sump, where water is added to facilitate the slurry 
flow further. The mixed slurry from the secondary 
sump is fed to the secondary cyclone. The underflow 
product from both cyclones is fed to the ball mill. 
The overflow from the secondary cyclone is the final 
product and goes to flotation circuit as feed. The 
complete circuit configuration is given in Figure 1. In 
this circuit, only the input and output streams are 
having the hardware sensors (as shown by black 
circles in Figure 1) that can indicate the status of key 
performance indicators (KPI) of the circuit (some 
properties of slurry at the final product stream) 
dynamically. 
 

2.FORMULATION 
 

In the grinding circuit presented in Figure 1, three 
main inputs that are manipulated to control the 
grinding operation (manipulated variables) are solid 
stream of raw ore and water streams going to primary 
and secondary sumps. The circuit has only one 
output that is secondary cyclone overflow stream. 
The five KPIs identified for grinding circuit control 
are throughput (output 1), percentages of three size 
classes (+150μ, -63μ and -38μ) i.e. output 2, output 
3, output 4 respectively and percent solids (output 5) 
present in the final output stream. Here + sign is used 
to denote percentage retained whereas – sign is used 
to denote percentage passing through the given mess 
size in micron. These are termed as control variables 
and measured dynamically only at the output stream. 
System identification procedure needs data across all 
operational regimes in which the grinding circuit is 
operated. For this, the plant has to be run under 
various possible combinations of input solids and 
water flow rates. Running the plant over all these 
possible operating regimes to facilitate data 
collection is not an affordable task. It disturbs the 
settings for running the plant in stable mode that 
incurs a huge loss for this energy intensive process, 
as the data collection for system identification is a 
huge time consuming process. For these reasons, 
input-output data are not collected directly from the 
plant. Rather they are generated by running 
numerous simulations from a hybrid 
(phenomenological and empirical) model of the same 
industrial operation (Mitra and Gopinath, 2004). This 
model represents the plant operation very well across 
all possible operating zones and therefore considered 
as a very close possible mimic of the plant. Details of 
this modeling procedure, parameter estimation and 
plant validation results for this hybrid model can be 
found in Mitra and Gopinath (2004). Mathematically 
this hybrid model is a system of differential algebraic 
equations (DAEs) solved using the DASSL routines. 
As the data are generated by simulation exercise, it 
was possible to include another very important KPI 
for the grinding operation, namely recirculation load 
that is not generally measured online. This becomes 
the sixth control variable (output 6) in addition to the 
earlier five control variables leading to three-input-
six-output system identification assignment in hand. 
Input signals passed to the system in a pseudorandom 



     

binary sequence (PRBS) fashion, which ensures 
coverage of frequencies at wide spectrum. These sets 
of data gives a relationship between three 
manipulated variables and six control variables from 
which the AI based techniques are supposed to churn 
out the embedded relationship. Two different 
techniques that are used for system identification 
here are given below:  
(a) FNN: A well-known software package, 
MATLAB® is used for generating results by FNN 
technique. ‘newff’ function of MATLAB® creates a 
feed-forward back propagation network in which 
‘trainlm’ is a network training function that updates 
weight and bias values according to Levenberg-
Marquardt optimization technique. ‘tansig’ (non-
linear) is taken as input layer transfer function and 
‘purlin’ (linear) is the transfer function for output 
layer. ‘trainlm’ function takes the training parameter 
determined by ‘newff’ and trains network with input 
data. Each training iteration is a single representation 
of all inputs to the network and the network is 
updated according to the results of presentations. 
(b) Wavelet: To characterize the target environment 
a non-linear nonparametric regression estimator is 
defined using wavenets as reported in Zhang, et al. 
(1997). The structure under consideration is, 
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Mexican Hat is chosen as wavelet basis function. 
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where, Rc d∈ is linear coefficients, Rb ∈ is bias 
terms. 
Initialization of the network is done using Akaike’s 
final prediction error criterion (AFPE). Basically, it 
decides the smallest number of wavelets, which 
characterizes the target environment.  
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mq is Number of parameters in the estimator, 

( ) Oy,x Z
1kk ∈ is training data of size Z, M is 

number wavelets in network. 
Backward elimination algorithm is used to choose 
best wavelet regressors as reported in Zhang, et al. 
(1997). 
 

3.RESULTS AND DISCUSSIONS 
 

The data for KPI values for grinding circuit final 
output stream are generated using hybrid-grinding 
dynamic model of Mitra and Gopinath (2004) by 
applying different input patterns to it.  
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Fig. 2. Excitation patterns for (a) raw ore to rod mill 

(b) water to primary sump (Feed1) and (c) water 
to secondary sump (Feed 2) 

 
The input patterns of the MVs were randomly 
generated so as to cover the all-possible frequencies 
that may be involved in actual plant operation, inline 



     

with so-called PRBS (as shown in Figure 2). 
Excitation is given to three MVs within their 
respective operating bounds except rod mill water, 
which is kept constant at a pre-specified value. Part 
of the data set generated from model is used in 
training phase and part of it is used for testing and 
validation phase combined together. This is essential 
in a sense to create a sort of noise in the system and 
thus test the model for an unseen data. 
 
3.1 Feed-forward Neural Network 
 
In case of FNN, the tuning parameters are number of 
hidden nodes, iterations, training data size and 
unfolding of the input parameters. Table 1 shows 
comparative study of different tuning parameters in 
testing phase. Data in row 1 in table 1 (T1R1) and 
T1R2 show the results based on number of training 
data size. Here the mean square error (MSE) seems 
to have increased a little since less variability in data. 
Data size of 10K seems to contain enough 
information. T1R1 to T1R5 show the effect of 
hidden nodes where 3 numbers of nodes found to 
yield good results. T1R6 to T1R9 tell us how many 
numbers of input data unfolding is required to attain 
the minimum MSE. It can be seen that MSEs are 
reduced drastically for unfolding of 20 depicting the 
dynamics present in the system. In T1R10, T1R11 
learning rate has been changed to assess the 
performance. Lower learning rate leads to more error 
as well as computation time.  The computation time 
also increases due to lower converging rate. It is 
found that the system is well captured at a learning 
rate of 0.009, unfolding of 20 and 3 hidden nodes. As 
can be seen from Figure 3a to 3d FNN has only 
partially captured sharp transients.  

 
Table 1a: Parameters for FNN  

 

 
 

Table 1b: Results of simulations based on FNN  
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Fig. 3. Output responses for FNN. 
 
3.2 Wavelet 



     

 
Comparisons with respect to tuning parameters 

are given in Table 2. From T3R1, T3R2, T3R7, 
T3R8 it is seen that a single wavelet node is required 
to do the required modeling as with one wavelet 
mode, the MSE presented is the least. T3R2 to T3R4 
show that numbers of observations for repeating 
patterns are not large, resulting in less number of 
wavelet nodes. It is evident from T3R4 to T3R6 that 
not many numbers of levels are required to cover all 
regions of interest and a single level is sufficient. 
T3R7, T3R9, T3R10, T3R11 readings give an idea 
about the dynamics present in system. More number 
of unfolding leads to increased computation time and 
little change in MSE. For output number 2, from 
T3R14, T3R15, number of iterations has 
considerably reduced the MSE at the cost of 
computation time while in case of output number 3 
and 4, from T3R16 to T3R19, MSE has shown less  

 
Table 2a: Tuning parameters for wavelet  

 

 
 

Table 2b: Results for wavelet 
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Fig. 4. Output responses for wavelet. 

 



     

change over the number of iterations, even at the cost 
of computation time. Output number 1,5 and 6 are 
converged in single iterations since increase in cross 
generalization error has terminated the number of 
iterations. T3R11 and T3R13 show the results based 
on number of training data size required. It can be 
inferred that additional number of data set does not 
provide any useful information. It is observed that 
the different tuning parameter cases applied for 
output 1 are approximately applicable for the rest of 
cases. Hence only different cases pertaining to output 
1 are evaluated. From The simulation results in 
Figure 4a to 4d show that the localized effects (sharp 
transients) are also captured. The best tuning 
parameters obtained are unfolding number of inputs 
30, level 1, number of minimum observations 1000. 
All results reported here are normalized to maintain 
the data secrecy agreement. For showing the FNN 
and wavelet model predictions, trends for only 4 CVs 
are shown (Figure 3 and 4) for the shake of brevity. 
The comparative study of the two different AI based 
techniques while modeling the industrial grinding 
operation can be summarized as: 
(1) Wavelets are able to capture local behavior 
(transients) as well as global (mean) behavior while 
neural networks have shortcoming of not capturing 
transients at local region 
(2) Neural network algorithm is run for Multiple 
input multiple output (MIMO) system while wavelets 
are for Multiple input single output (MISO). This is 
due the basic difference in the methodologies they 
use for function approximation. ANNs use the object 
function constructed as a sum of squares of the errors 
between the measured values and estimated values of 
the output and is minimized to get the weights of the 
network. The wavelet networks adjust the dilation 
and translation parameters in addition to the 
coefficients for the nodes, which poses a challenge 
for handling multiple outputs in a single topology. 
(3) Both techniques are able to represent similar 
dynamics based on number of unfolding required. 
(4) Wavelet offers more accuracy in terms of MSE 
than ANN for the problem under consideration 
however is static in nature and requires dynamics to 
be added in the form of regressions of the inputs. 
These kinds of AI technique based models can be 
used as softsensors for grinding operation. Once a 
softsensor of this nature is present, one can make use 
of the same for grinding operations optimization and 
control and thereby running the energy expensive 
grinding operation in optimized fashion. This cannot 
only enhance the operation but also imparts stability 
into the system leading to various practical industrial 
tangible and intangible benefits reported by Mitra 
and Gopinath (2004). 

 
4.CONCLUSIONS 

 
Artificial Intelligence techniques are applied for 
modeling of an industrial Pb – Zn grinding operation. 
All the six KPIs were modeled using three inputs.  
Both techniques found to be good at fitting the data. 
This gives a confidence in applying data based 
modeling techniques to industrial grinding 
operations. Additionally it saves time on building 

first principles models, find the required physical 
parameters and validate the models. Whenever a 
control strategy is implemented for a particular 
process, largely its success depends upon the online 
measurements, reliability of the data and continuous 
availability of the data. Most controllers fail because 
of the former mentioned reason irrespective of 
complex and powerful control strategy devised for 
the class of the problem. Thus, AI based models tend 
to offer an alternative to online measurements 
acquired from hardware sensors and can be used as 
soft sensors. AI based softsensors, when used in 
addition with optimization and control 
methodologies, are capable of reaping tremendous 
tangible and intangible benefits to industrial grinding 
operation. 
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