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Abstract: In this paper, with the utilization of a transport theorem and three-dimensional 
version of Leibniz’s rule, the procedure for deriving the time rate of change of an energy 
functional for axially moving continua is investigated. In the control engineering, the 
correct solution of the time derivation of an energy functional is essential for designing an 
effective controller, especially, in the Lyapunov method. The key point to get the correct 
solution for axially moving continua is that the time derivation of an energy functional 
should be taken into account under Eulerian description with a physical concept. A novel 
way of deriving the time rate of change of the energy functional, then, is proposed. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Axially moving continua can be found in various 
engineering applications. Vibration control schemes 
for moving continua include references (Yang et al., 
2004, 2005; Choi et al., 2004; Fung et al, 2002; Li et 
al., 2002; Zhu, 2002; Li and Rahn, 2000; Lee and 
Mote, 1999) among others. To design a suitable 
controller, most of above references have employed 
the Lyapunov method, in which an effective control 
law is established through the time derivation of the 
energy functional of the considering system. Thus, it 
is essential that the time differentiation of the energy 
functional considered should be exactly performed in 
a proper mathematical manner.  
 
Renshaw et al. (1998) have suggested a derivation 
method in Eulerian description for the energy 
functionals of prototypical axially moving string and 
beam models, and have concluded that a conserved 
Eulerian functional is the Jacobi integral of the 
system and qualifies as a Lyapunov functional when 

it is positive definite. The conclusions have been 
accepted for calculating the time derivation of the 
energy functionals of axially moving systems in 
some papers.On the other hand, other papers have 
accepted the one-dimensional transport theorem or a 
differentiation method in Lagrangian description to 
get the time derivation of the energy functionals. 
Hence, the motivation of this paper is to establish a 
general theory for calculating the time differentiation 
of the energy functional of axially moving continua.  
 
 

2. PROBLEM FORMULATION 
 
Fig. 1 shows the schematic of an axially moving 
string with the fixed two support rolls. Let t  be the 
time, x  be the spatial coordinate along the longitude 
of motion, v  be the traveling speed of the string, 

),( txw  be the transversal displacement of the string 
at spatial coordinate x  and time t , and l  be the 
length of the string from the left to the right supports. 
Also, let ρ  be the mass per unit length and sT  be the 



 

     

tension applied to the string. Because the string 
travels at an axial speed, v , the total derivative 
operator (material derivative) with respect to time 
should be defined as  

  
Dt

D )  ( ⋅
xt v )  ()  (  ⋅+⋅= , (1) 

where tt ∂⋅∂=⋅ )  ()  (  and =⋅ x)  ( x∂⋅∂ )  (  denote the 
partial derivatives. The mechanical energy of the 
string between 0=x  and lx =  is then given by  
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By using the extended Hamilton’s principle for 
axially moving continua (see Section 4, below), the 
equations of motion and boundary conditions of the 
axially moving string are derived as follows: 
 02 2 =−++ xxsxxxttt wTwvvww ρρρ , lx <<0 , 
 0),(),0( == tlwtw . (3) 
In the process of designing a controller using the 
Lyapunov method, it is essential to treat and analyze 
the time derivative of a Lyapunov function candidate, 
that is, the mechanical energy of the system 
considered. The Eulerian description of the 
mechanical energy of the span [0, l ] in Fig. 1 is  

  [ ]dxwTvwwV l
xsxtEul  )(
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22∫ ++= ρ . (4) 

Alternatively, the Lagrangian description of the 
mechanical energy of the set of particles between 

=x vt  and lvt +  is 
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where EulLag VV =  at 0=t . But, note that dtdVEul  
and dtdVLag  are distinct. 
 
For dtdVEul , the following result is derived: 
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where the first equality has been derived using the 
one-dimensional Leibniz’s rule of the form 
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tdAtAtf
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and (3) has been used in deriving the second equality. 
Using (7), the first equality in (6) can also be derived 
from the equation 
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where 0=dtdx  is treated as zero at lx ,0= .  
  
For dtdVLag , conversely, the limits of integration 
are time dependent. Hence, the result using (7) is 
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It is observed that (9) is valid only at 0=t  because 
(3) applies only when the material particles 
associated with LagV  include the string span [0, l ], 
and hence (9) is a valid energy functional only at 

0=t . From the reason, the followings have been 
concluded: A positive definite Lagrangian functional, 
even though it is a material derivative, cannot be 
used as a Lyapunov functional, because its time 
derivative is not valid for more than an instant.  
 
However, strictly speaking, the way of evaluating the 
Eulerian functional (6) is not correct. In fact, the 
derivation methods given by (6) and (8) are only 
mathematics without considering a physical concept 
of axially moving continua. Therefore, the correct 
evaluation of the time derivation of the stringV  in (2) 
should be given in the following form: 

 [ ]dxwTvww
tdt

dV l
xsxt

string  )(
2
1  

0 
22∫ ++

∂
∂

= ρ   

  [ ]l
xsxt wTvwwv

 
0 

22)( 
2
1

+++ ρ
l

xs wvT
 

0 
2= , (10) 

which will be explained in detail in the next section. 
 
 
3. RATE OF CHANGE: THE CORRECT METHOD 
 
To obtain the time derivation of an energy functional 
of axially moving continua, a three-dimensional 
version of the rate of change is derived in this section. 
To accomplish this, with noting that time-varying 
means moving and/or deforming while time-invariant 
means fixed, that is, neither moving nor deforming, 
the following symbols are first defined:  
 (A1) movm

open
tU

_
)(ˆ  is the system volume as a 

collection of translating material particles comprising 
the part of translating continua passing through a 
specific region of interest, that is, a control volume. 
The specific region is supposed to be time-varying 
but not fixed, and then movm

open
tU

_
)(ˆ  seems like an open 

system since the variation of the region means that 
the material particles comprising the system volume 
can be crossing the system boundaries. 
 (A2) On the other hand, if the specific region of 
interest is fixed, the mass of the part of translating 
continua is constant. Hence, such case seems like a 
closed system, and then the system volume is 
described as movm

clos
tU

_
)(ˆ .  

 (A3) When the system is a stationary continua, 
that is, not axially moving, then from (A1) and (A2), 

fixm

open
tU

_
)(ˆ  is used as the system volume for an open 

system with the varying specific region of interest 
while fixm

clos
U

_ˆ  is for an closed system with the fixed 

specific region of interest. 
 
 movv

opentU _)(  denotes the control volume for (A1), and 

the external boundary of which is the control surface 
defined as movv

opentS _)( . The control volume for (A2) is 

time-invariant due to the fixed specific region of 



 

     

interest, and then defined as fixv
openU _ . The control 

surface that encloses fixv
openU _  is used as fixv

openS _ .For the 

stationary continua systems in (A3), movv
opentU _)(  and 

fixv
closU _  are defined as the control volumes for 

fixm

open
tU

_
)(ˆ  and fixm

clos
U

_ˆ , respectively. 

 
Note that, to derive the three-dimensional version of 
the rate of change, the translating continua system 
have to be analyzed in view of Eulerian description 
since our attention is focused on what happens on the 
moving continua (i.e., system volume) in the specific 
region of interest (i.e., control volume) as time 
passes. Hence, now consider the system with 

movm

open
tU

_
)(ˆ  in (A1) which is a typical case for the 

continua systems. Let u
r  be the traveling velocity of 

the axially moving continua, and Su
r  be the moving 

velocity of time-varying control surface bounding the 
time-varying control volume.  
 
At first, it is necessary to deal with the function )(tϕ  
defined by an integral of the form  

∫= movm

open
tU

dUtxt _
)(ˆ  ),()(

r
ρζϕ ∫= movm

open
tU

dUtx_
)(ˆ  ),(

r
ψ , (11) 

where x
r  is the position vector relative to a chosen 

origin, ρ  is the continua density, and the quantity ζ  
denotes the property of interest per unit mass, and 
then ψ  represents the continua property that occurs 
in movm

open
tU

_
)(ˆ  such as fluxes of mass, linear 

momentum, angular momentum, internal energy, and 
kinetic energy, et cetera. In (11), the volume integral 
is a triple integral.  
 
Note that the position vector x

r  is a time-independent 
variable in Eulerian description whereas, in 
Lagrangian description, the vector x

r  is a time-
dependent variable. Hence, in Eulerian description, 
x
r  describing a material point at time t  is called the 

field coordinate, and the velocity given in field 
coordinates is 0=∂∂ tx

r  even though the material 
velocity (Cartesian velocity) is given as  udtxd

rr
= .  

 
Now, an expression for the time rate of change 

dtdϕ  for )(tϕ  in (11), that is, a three-dimensional 
version of axially moving continua, is derived in 
Eulerian description. By introducing a physical 
notion such as fluid dynamics, the time derivation 

dtdϕ  for the system (A1) is obtained as 

∫ movm

open
tU

dU
dt
d

_
)(ˆ  ψ  

∫∫ ⋅+
∂
∂

= movv
open

movv
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tStU
dSnudU

t
__ )()(

 ˆ  
r

ψψ . (12) 

Applying (12), the time rate of change for other 
systems in (A2) and (A3) can be easily obtained. 
 
For the stationary continua systems with fixm

open
tU

_
)(ˆ  

and fixm

clos
U

_ˆ , since the material velocity ur  is zero, and 

then the time derivations of the systems are given as, 
respectively, 

 ∫ fixm
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dU
dt
d

_
)(ˆ  ψ  dU
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 _)(∫ ∂
∂

= ψ , (13) 

 ∫ fixm
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_ˆ  ψ  dU
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 _∫ ∂

∂
= ψ . (14) 

 
Remark 1: Note that, from (6)-(8) and (12), it is seen 
that the calculation method used in (6)-(8) in spite of 
acted in Eulerian description is only Leibniz’s rule 
without considering the physical idea, that is, 

 ∫ )(
 

tU
dU

dt
d ψ  ⎥⎦

⎤
⎢⎣
⎡ ⋅+

∂
∂

= ∫∫ )()(
 ˆ  

tS StU
dSnudU

t
r

ψψ . (15) 

Hence, the controller designed by using (15) might 
bring about an erroneous stability result in actual 
translating systems, and such a situation is shown in 
Section 5, below.  
 
From the above results, with noting that the form of 
(12) for (A2) is the same as Reynolds transport 
theorem, the followings are observed: 
 (C1) Calculating the rate of change of any 
property for axially moving continua needs a flux 
term with the translating speed of moving continua, 
regardless of the moving velocity of varying control 
surface bounding the varying control volume. 
 (C2) From (12) which denotes the classic 
Reynolds transport theorem in the case of (A2), it can 
be asserted that (12) is a general transport theorem 
since (12) has been extended to a translating system 
with a varying control volume (and a varying control 
surface). 
 (C3) From (13), it is seen that, even in the case 
of stationary continua with the varying control 
volume, Leibniz’s rule in (15) cannot be directly 
employed to this system. Indeed, Leibniz’s rule in 
(15) is purely mathematical not stemming from a 
physical concept such as fluid dynamics, and hence, 
ψ  in (15) is not identified with any material property. 
 (C4) As mentioned in (C1), when evaluating the 
time derivation for translating continua, a flux term 
with the traveling speed of continua is always 
contained. This means that the time derivative used 
in the translating continua can be treated as the 
material derivative in (1), that is, 

∫ )(
 

tU
dU

dt
d ψ ∫=

)(
 

tU
dU

Dt
D ψ ∫∫ ⋅+

∂
∂

=
)()(

 ̂  
tStU

dSnudU
t

r
ψψ , 

which is also obtained from (12). Hence, in analyzing 
the behavior of the translating continua system, the 
relationship of DtDdtd )  ()  ( ⋅=⋅  can be employed, 
and which is useful to analyze the system.  
 
Finally, for the one-dimensional axially moving 
string introduced in (3), the material velocity u

r  in 
(12) is v

r . Note that in this system the material points 
at lx  ,0=  still have the material velocity vv  despite 
the fixed boundary positions, which means the fixed 
control volume, i.e., 0=Su

r . Hence, the velocity term 
in (12) is given as vu

rr
= , and then nv ˆ⋅

v  at the 
boundaries is given as v−  at 0=x  and v+  at lx =  
because n̂  is the outwardly positive unit normal 



 

     

vector to )(tS . Thus, using (12), the time derivation 
of stringV  in (2) is obtained as 

[ ]dxwTvww
tdt

dV
V l
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string
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0 
22∫ ++
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== ρ&  
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2= . (16) 

Note that (16) is the same as (10) and entirely 
different from the results in (6) and (9).  
 
 
4. ENERGY CONSERVATION: HAMILTON’S PRINCIPLE 

 
In this section, it is investigated if the energy of the 
translating continua expressed by (12) is 
conservative via Hamilton’s principle since which 
has been expanded through the principle of 
conservation of mechanical energy to dynamic 
problems (see Benaroya and Wei, 2000). 
 
The classic Hamilton’s principle for this system can 
be obtained by integrating d’Alembert’s principle for 
a continua system with respect to time over an 
internal 0t  to ft . However, this is not generally the 
case where the system is comprised with translating 
material elements, which denotes a translating 
continua system. Supposing the material elements 
comprising the translating continua are moving at the 
speed of u

r , then the Cartesian velocity is given as 
udtxd
rr

=  in Eulerian description. This means that on 
the occasion of translating continua systems, the 
system configurations at two distinct times can not 
be readily prescribed. That is, the two end points of 

),( txw
rr  at the beginning and ending times are varied, 

not fixed, due to udtxd
rr

= . Thus, a novel Hamilton’s 
principle extended to such systems is required to 
generalize the analysis to include the translating 
continua systems.  
 
Now, consider the translating system with movm

open
tU

_
)(ˆ  

in (A1) again. Then, for the system, d’Alembert’s 
principle is given as 
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where movm

open
tU

L _
)(ˆ  denotes the Lagrangian of the time-

varying system volume. Hence, by applying (12) to 
the last term in (17), the following is obtained 
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where movv
opentU

L _)(
 denotes the Lagrangian of the time-

varying control volume. Note that comparing (17) 
and (18), it is observed that the variation of the 
property in the system volume can be rewritten in 

terms of that in the control volume. The advantage of 
this approach is that the system configuration in the 
control volume is prescribed at all times since the 
rate of change of the volume integral in (18) has been 
derived under the condition of 0=dtxd

r . Thus, now 
integrating (18) with respect to time, the extended 
form of Hamilton’s principle for a translating 
continua system is given as 
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Now, the principle of conservation of mechanical 
energy is established by using the extended 
Hamilton’s principle in (19b) as well as the 
derivation method in (12). Following (Benaroya and 
Wei, 2000), for translating continua system, let the 
virtual displacement w

r
δ  of the translating material 

particle coincide with the actual displacement wD v . 
Hence, from considering the relationship of 

=w
r

δ DtwDDt
r

⋅ , the variational operator can be 
defined with the material derivative operator such as 

=⋅ )  (δ DtDDt )  ( ⋅⋅ . Let ..cnW  is zero, then replacing 
the variation with the material differential and 
eliminating the common Dt  factor, (18) yields  
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Now applying the derivation method (12) and 
material derivative operator to (20) yields 

  ⎟
⎟

⎠

⎞

⎜
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⎝

⎛
+ movm

open

movm
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tUtU

PK
dt
d

__
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where movm

open
tU

K _
)(ˆ  and movm

open
tU

P _
)(ˆ  denote the kinetic 

and potential energies of the system volume. From 
(21), it is observed that the total mechanical energy 
of the translating continua system is constant, and 
which is a statement of the principle of conservation 
of mechanical energy.  
 
 

5. NUMERICAL SIMULATIONS 
 
In this section, comparing two control systems of the 
axially moving string designed using the derivation 
method proposed and the Leibniz’s rule, respectively, 
the correctness of the proposed method is 
demonstrated through a mathematical analysis and 
numerical simulations. Fig. 2 shows the considered 
axially moving string with a hydraulic touch roll 
actuator in the right boundary. Let the mass and 
damping coefficients of the hydraulic actuator be cm  
and cd , respectively. The control force )(tfc  is 
applied to the touch rolls to suppress the transverse 
vibrations of the axially moving string. 

 



 

     

5.1. Vibration Control: Proposed method (12) 
By employing the extended Hamilton’s principle in 
(19b), the governing equation and boundary 
conditions of the axially moving string are derived as 
 xxsxxxttt wTwvvww =++ 22 ρρρ , lx <<0 , (22) 

 )()0,( 0 xwxw = , )()0,( 0 xwxw tt = , ,0),0( =tw  (23) 
 )()()()( lwTlwdlwmtf xstcttcc ++=− . (24) 
To suppress the vibration energy of the axially 
moving string as well as to attenuate the effect of the 
disturbance at the output of the controller, a 
boundary controller is proposed as follows: 
 )()( 211 tt ξωξ =& ,  (25) 
 lxtxwtt =+−= |),()()( 112 && ξωξ , (26) 

)(|),()()( 1 lwvmtxwklwdtf xtsclxtcc ++−= =& )(22 tk ξ+ ,(27) 
where Ri ∈ξ  for 2,1=i  are the controller states with 
the material velocity feedback at the right boundary 
as the input signal, i.e., )()(|),( lwvlwtxw xstlx +==& , 
and where 1ω , 1k , and 2k  denote the control 
parameters with positive values.  
 
Now, a positive definite functional )(tV , as the total 
energy of the moving string system including the 
actuator, is defined as follows: 

  )(tV = )()( tVtV actuatorstring + , (28) 

where =)(tVstring dxwvw
l

xst  )(
2
1  

0 
2∫ +ρ dxwTl

xs  
2
1  

0 
2∫+ ,  

=)(tVactuator { }2)()( 
2
1 lwvlwm xstc + )(

2
1 2

2
2

12 ξξ ++ k .  

Note that the position of the actuator is fixed at the 
right boundary of the string span while the string is 
axially moving. Hence, for )(tVactuator , both of u

r  
and Su

r  in (12) should be set as all zero. Thus, by 
using (12) and Example 1, the time derivative of the 
Lyapunov function candidate )(tV  is obtained by 

)(tV& = )()( tVtV actuatorstring
&& +  

 [ ]dxwTwwv
t

l
xstxs  )(

2
1  

0 
22∫ ++

∂
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= ρ  

[ ] l
xstxss wTwwvv
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22)(
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+++ ρ  

{ }[ ])()()(  
2
1 2

2
2

12
2 ξξ +++

∂
∂

+ klwvlwm
t xstc  

)0(2
xss wTv−= 2

1 ))()(( lwvlwk xst +− 0≤ . (29) 
 
From (29), it is concluded that all the signals in the 
closed loop system are bounded. By using LaSalle’s 
invariance principle, it is concluded that the solutions 
of the closed loop system asymptotically tend to the 
zero solution. Further, the controller given by (25)-
(27) eliminates the effect of the disturbance )(tn  at 
the output of the controller, and the asymptotic 
stability of the closed loop system is still guaranteed 
in this case. For details of the above results in this 
subsection, we can refer (Yang et al., 2005).  
 
 
5. 2 Vibration Control: Leibniz’s rule (15) 
 
In this subsection, the string system in Fig. 2 is 
analyzed from a purely mathematical standpoint, i.e., 

0=dtxd
r  here. Hence, we face a basic problem such 

as which Hamilton’s principle among (19a) and 
(19b) should be treated in this case. Depending on 
the employment of (19a) and (19b), the boundary 
condition of the string system and boundary 
controller to suppress the vibration energy of the 
axially moving string as well as to attenuate the 
effect of the disturbance at the output of the 
controller are distinctly given, respectively, as: 
(S1) By employing the classic type (19a): 

)()()()()()( 2 lwvTlvwdlwmtf xstcttcc ρρ −+−+=− , (30) 
  )()( 211 tt ξωξ =& ,  (31) 
  )()()( 112 lwtt t+−= ξωξ& , (32) 
  )()()( 1 lwklwdtf ttcc +−= )(22 tk ξ+ . (33) 
(S1) By employing the extended type (19b): 

 )()()()( lwTlwdlwmtf xstcttcc ++=− , (34) 
  )()( 211 tt ξωξ =& ,  (35) 
  )()()( 112 lwtt t+−= ξωξ& , (36) 

)()()( 1 lwklwdtf ttcc +−= )(22 tk ξ+ ))()(( lvwlwv xt +−ρ . (37) 
The stability of the closed-loop systems (S1) and 
(S2) can be easily proved by following the procedure 
in Subsection 5.1. However, the stability is proved 
using Leibniz’s rule given by (15) in this subsection. 
 
Following (6)-(8), a conserved Eulerian functional is 
considered, and then a positive definite functional 

)(tVEul , as the total energy of the moving string 
system, is defined as: 

)(tVEul dxwl
t  

2
1  

0 
2∫= ρ dxwvTl

xss  )(
2
1  

0 
22∫ −+ ρ  

)(
2
1 2 lwm tc+ )(

2
1 2

2
2

12 ξξ ++ k , (38) 

Using Leibniz’s rule given as (15) (or (7)), the time 
derivation of )(tVEul  in (38) is obtained as 

)(tVEul
& [ ]dxwvTw

t
l

xsst  )(
2
1  

0 
222∫ −+

∂
∂

= ρρ  

{ }[ ])()()(  
2
1 2

2
2

12
2 ξξ +++

∂
∂

+ klwvlwm
t xstc  

 )(2
1 lwk t−= 0≤ . (39) 

From (39), it is also concluded the same stability 
result as that of Subsection 5.1. 
 
 
5.3. Simulation Results 
 
In this subsection, the correctness of the stability 
results is verified by numerical simulations. Let 

=ρ 1 kg/m, =v 0.5 m/sec, =cm 0.1 kg, =cd 0.02 
N/m/sec, =sT 1 N, and =l 1 m. Figs. 3 and 4 draw 
the displacement of the whole string under the 
disturbance, in which 11 =k , 102 =k , and 101 =ω  are 
given. Fig. 3 shows the simulation results for the 
moving string with the boundary controller (25)-(27), 
whereas Fig. 4 depicts those with the boundary 
controller (31)-(33) (or (35)-(37)). 
 
It is seen in Fig. 3, in the case of the moving string 
controlled by (25)-(27), the initial vibrations 
dissipate asymptotically despite the disturbance. 
However, as shown in Fig. 4, the string vibrations 



 

     

under the boundary control action with (31)-(33) (or 
(35)-(37)) do not dissipate to zero and diverge even 
though the mathematical analysis guaranteed the 
asymptotic stability despite the disturbance. 
 
The main reason of the unstability result of closed-
loop systems (S1) and (S2) is due to the time 
derivation method of the Lyapunov function 
candidate EulV  in (38). Since the time differentiation 
was performed in a not correct mathematical manner 
at the first step in control design, the following 
designed controller as well as the mathematical 
analysis all have lead to such unsuitable results.  
  
 

6. CONCLUSIONS 
 
In order to get the correct solution of the time 
derivation of the energy functional for axially 
moving continua, Eulerian description should be 
taken into account, but surely with a physical 
concept. As shown here, if a controller designed 
from only a purely mathematical standpoint is put 
into operation, an erroneous stability might be 
brought about in actual working, especially, axially 
translating continua systems. On the basis of the 
contents here, various controller design and system 
analysis for axially moving continua can be 
established in the correct mathematical manner. 
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Fig.1  Axially moving string with fixed boundaries. 
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Fig. 2  Axially moving string with a hydraulic 
actuator at the right boundary 

 

 
Fig. 3  Displacement of the moving string controlled 
by (25)-(27): 11 =k , 102 =k , 101 =ω , ttn 10cos)( = . 

 

 
Fig. 4  Displacement of the moving string  

controlled by (31)-(33) (or (35)-(37)): 
 11 =k , 102 =k , 101 =ω , ttn 10cos)( = . 


