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Abstract: This paper presents an efficient algorithm for evaluating the profit and revenue 
of generating units in a competitive electricity market based on the probabilistic 
production costing technique. The accurate evaluation of the profit and revenue of 
generating units for long-term perspectives is one of the most important issues in a 
competitive electricity market analysis. For efficient calculation of the profit and revenue 
of generating units under the equivalent load duration curve (ELDC), a new approach to 
figure out the marginal plants and the corresponding market clearing prices during a time 
period in a probabilistic manner is developed. The mathematical formulation and 
illustrative application of the suggested method is presented.  
Copyright © 2005 IFAC 
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1.INTRODUCTION 
 
The demise of the regulated electricity industry and the 
emergence of competitive markets is changing the way 
that electricity is and will be priced and is making 
increasingly difficult for market participants to appraise 
the prospects for the future electricity markets (Murray, 
1998; Hunt and Shuttleworth, 1996). Due to 
introduction of competition in the electricity industry, a 
new framework is required to measure the impact of 
generator investments in terms of a generation 
company or regulatory body (Park, et al., 2002; Chuang, 
et al., 2001). These economic studies include the 
evaluation of expected revenue, cost, and profit of 
generating units and reliability measures during a time 
period in a long-term perspective. 
The probabilistic production costing technique, first 
introduced by Baleriaux, et al. (1967) and Booth (1972) 
followed by several novel approaches (Stremel, et al., 
1980; Schenk, et al., 1984; Lakshmi, et al., 1992), 
basically employs the equivalent load duration curve 
(ELDC) framework to consider the probabilistic 
characteristic of demand expressed in load duration 
curve (LDC) and the random outage of generating units 
simultaneously, which is the same as the convolution 
process of random variables (Wang and McDonald, 
1994).  
The probabilistic production costing method has been 
widely applied to electric utility planning, maintenance 
scheduling, and power system operational problems 
since it can provide lots of useful information such as 
the expected generation and cost of each unit, the total 
operating expense of an alternative, and reliability 
measures, etc. However, some additional information is 
required for the application of the production costing 

technique to competitive market analysis such as 
market clearing price (MCP), expected revenue and 
profit of each unit during a time period, etc.  
In this paper, we propose an efficient profit evaluation 
algorithm for each generating unit directly applicable to 
competitive electricity markets. Also the explicit 
expression of expected generation of unit-i when unit-j 
is the marginal plant is obtained in a recursive form 
based on the modified probabilistic production costing 
technique, which can produce the same results from the 
chronological approach.  
The suggested method can dramatically reduce the 
computation time to obtain the required information 
such as expected revenue, cost, and profit of each unit 
when compared to the chronological simulation 
algorithm (Pereira, et al., 1992). Therefore, the method 
can usefully and efficiently be used in the economic 
studies of capacity investment and development of 
maintenance scheduling strategies in competitive 
electricity market environments. 
 

2. BASIC ASSUMTIONS 
 
2.1 Generator and Demand Model 
 
In this paper, the generators are modeled with 2-state 
representation (i.e., on-state with full capacity and off-
state with zero capacity) and a power system is only 
composed of thermal generating units without fuel 
limitations. Also, the operating costs of each generating 
unit are regarded as constant values whereas the values 
are varying with the output levels in a real-world 
problem. The demand elasticity for the market price 
and the stochastic characteristic of demand are 
neglected in this paper. 



2.2 Market Model 
 
Generally, the electricity market in short-term 
perspectives can be modeled as a series of auctions for 
the right to serve the demand among generating units. 
Also, each auction can be characterized as sealed-bid 
and uniform priced (Sheble, 1999). However since we 
are interested in the long-term analysis, the electricity 
market model should incorporate the random outage of 
generating units. Therefore, we have assumed that the 
market clearing features also have the stochastic 
characteristics reflecting the randomness of generating 
units.  
Also, the offer price of each generator is confined as the 
constant values with full capacity. The dispatch order 
among generating units in a LDC is determined by the 
increasing order of their offer prices, which is very 
similar to the dispatch situation in the conventional 
probabilistic production costing techniques.  
The market clearing price (MCP) of each auction is 
determined by the offer price of the marginal generator 
while the MCP is capped with the pre-determined 
constant value in the case of the power shortage. 
 

3. THE MATHEMATICAL MODEL 
 
In this chapter, we will describe how to evaluate the 
expected energy, cost, revenue, and profit of generating 
units under a LDC. Suppose the market has n 
generating units and the generating units are indexed by 
the ascending order of the offer prices. Let the unit-i 
have the capacity of Ci [MW], the forced outage rate of 
qi, the operating cost of oci [$/MWh], and the offer 
price of opi [$/MWh]. We denote the time period of a 
LDC and the cumulative capacity until unit-i by DT 
[hours] and xi [MW], respectively.  
Let Πi be the expected profit of unit-i, then we can 
decompose this value with respect to the market 
clearing prices. If we let Πi

j and Πi
cap be the unit-i’s 

expected profit when the market clearing prices 
correspond to the offer price of unit-j and the price cap, 
mcpcap, respectively, then Πi  can be represented by (1).  
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Let us define the expected generation of unit-i when 
unit-j is the marginal one and when the price cap 
becomes the market clearing price by Ei

j and Ei
cap 

respectively. Then Πi
j and Πi

cap are represented by (3) 
and (4) which are composed of the revenue component 
(i.e., opj·Ei

j and mcpcap·Ei
cap) and the cost component 

(i.e., oci·Ei
j and oci·Ei

cap).  
 

( j
iij

j
i Eocop −=Π )   (3) 

 
( ) cap

ii
capcap

i Eocmcp −=Π      (4) 
 
Therefore, the expected profit can be specified only if 
we obtain Ei

j and Ei
cap for all generating units. Based on 

the conventional convolution theory, we can consider 
the random outage characteristics of generating units 
using equivalent load duration curve (ELDC). 
Generally, the ELDC is expressed as follows: 
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where  
  Gi : random variable representing generating unit-i, 
  ⊕ : convolution operator, 
   : original load duration curve. )()0( xf
 
To develop Ei

j and Ei
cap with analytic expressions for all 

generating units, it is necessary to define a variant of 
ELDC reflecting the conditional probabilistic situations. 
To do this, we have defined  as the conditional 
ELDC under the conditions that unit-i is on-state with 
probability of  and that the generators until unit-j are 

convolved. Then,  can be defined as follows: 
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When j is smaller than i, unit-i is irrelevant to the 
convolution process until unit-j. Therefore, ( )( )xf j

i  

becomes ( )( )xfp j
i . When j is equal to i, the 

convolution process is repeated until unit-(i-1) and the 
on-state condition of unit-i is handled by multiplying 

i . Therefore, p ( )( )xf j
i  is expressed as ( )( )xfp i

i
1− . In 

case j is larger than i, the convolution process is 
performed by convolving generators until unit-j except 
unit-i resulting  as  ( )( )xf j

i
( )( ) ji
i

i GGxfp ⊕⊕⊕ +
− L1
1 . 

Based on the conditional ELDC defined in (6), we can 
acquire the analytic representations for the expected 
energy of each generating unit in a recursive form. Here, 
we should note that when Ei

j is assessed, there is no 
need to convolve unit j, j+1, … , and n since unit-j is 
the marginal unit and the randomness of unit-j is 
individually considered by the on-state condition. The 
Ei

j can be categorized into 3 cases; 1) the case of j < i, 
2) the case of j = i, and 3) the case of j > i.  In case of j 
< i, the value of Ei

j obviously becomes zero since the 
dispatch order of unit-i is preceded by unit-j. In case of 
j = i, the Ei

j (i.e., Ei
i) should be calculated based on fi

(i-1) 

(i.e., ( )( )xfp i
i

1− ) since unit-i itself becomes the 



marginal unit. The resulting expression for Ei
i is given 

in (7). The first term of the right-hand side in (7) (i.e., 
) is the total expected energy of 

unit-i, and the second term (i.e., 
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the expected energy of unit-i when unit-i is not the 
marginal unit. Therefore, by subtracting the second 
term from the first term, we can obtain Ei

i as (7). 
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The shaded triangle in Fig. 1 is the expected energy of 
unit-i when unit-i becomes the marginal one under the 
condition that unit-i is on-state. 
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On the other hand, we should impose one more 
condition when obtaining Ei

j, where j > i, that unit-j 
should also be on-state since otherwise, unit-j cannot be 
the marginal unit. This stochastic situation can be taken 
care of by pj·fi

(j-1). The probability with unit-j as the 
marginal unit under the on-state condition of unit-i can 

be expressed by ( )( ) ( )( )[ ]j
j

ij
j
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1 −
−

− −⋅ . 
Therefore, Ei

j can be calculated as (8). 
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Fig. 2 shows fi

(j-1) where j > i and the shaded rectangular 
corresponds to the expected energy of unit-i when unit-j 
becomes the marginal one under the on-state condition 
of unit-i which is defined by Ei

j. 
 

 Peak+ xi-1-Ci

unit-i  

fi
(j-1)(x) 

pi 

MW

Probabilty 

xi-1 xi 

Ei
j

unit-j  

xj-1 xj 

 Fig. 2. Conditional ELDC of fi
(j-1) for Ei

j

 
Finally, in order to evaluate Ei

cap, the random outages of 
all generating units except unit-i should be considered. 

For unit-i, only the on-state is our concern since the off-
state has no effect on Ei

cap. The fi
(n) can deal with this 

stochastic situation, and, therefore, Ei
cap can be obtained 

as (9). 
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Fig. 3 shows fi

(n) and the shaded rectangular is the 
expected energy of unit-i when the price cap becomes 
the market clearing price under unit-i’s on-state 
condition which is denoted by Ei

cap. 
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Therefore, the generic expression for Ei

j including the 
price capped situation is; 
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(10) 
 
Consequently, the expected profit of unit-i can be 
obtained by combining (3), (4), and (10). 
 

4. NUMERICAL TESTS 
 
4.1 Simple Test System with 3 Units 
 
Test System Description 
 
The developed algorithm for the evaluation of profit of 
each unit has been applied to a sample power system 
with 3 units whose data is described in Table 1. The 
dispatch order in an electricity market is determined by 
the offer price given in the 5th column of Table 1. 
 

Table 1. Generator data of test system 
 

Generator 
Name 

Capacity
(MW) FOR 

Operating 
Cost 

($/MWh) 
Offer Price
($/MWh)

Generator #1
Generator #2
Generator #3

200 
200 
150 

0.05 
0.05 
0.10 

0.024 
0.027 
0.030 

0.025 
0.028 
0.031 

 
The considered chronological demand during 3 hours is 
given in Fig. 4 with the base load of 100[MW], the 



medium of 300[MW], and the peak of 500[MW], 
respectively.  
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Fig. 4. Chronological demand of test system 
 
Numerical Tests  
 
In this section, we will compute the expected 
generation, cost, revenue, and profit of each generating 
unit for the test system using the proposed algorithm. 
Also, to show the validity of the suggested algorithm, 
the results of the proposed algorithm are compared with 
those of the conventional chronological approach 
(Pereira, et al., 1992).  
To evaluate the required information in a probabilistic 
manner using the chronological approach, it is 
necessary to identify all the possible outcomes as 
described in Table 2. Each outcome is defined as a state 
denoted by a row vector whose element (i.e., i-th 
element corresponds to i-th generator) has a binary 
value (here, we denote on-state by 1 and off-state by 0).  
Based on the results in Table 2, one can easily obtain 
the expected generation, cost, revenue, and profit of 
each generator in each hour. The results are 
summarized in Table 3.  
From now on, we will show the effectiveness and 
efficiency of the proposed algorithm with the same test 
system. As we have discussed earlier, all information of 
each generator in Table 3 can be obtained using (3), (4), 

and (10). We will only show the details of solution 
procedures focused on Generator #1. The conditional 
ELDCs for Generator #1 including the original LDC 
can be obtained from (6) and depicted in Fig. 5.  
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Fig. 5. Conditional ELDCs for Generator #1 
 
The expected generation of Generator #1 (i.e., E1) is 
composed of 4 components (i.e., ). 
Each component can be calculated as follows using (6) 
and (10). 
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Table 2.  State enumerations of the test system 
 

Hour-1 
(100MW) 

Hour-2 
(500MW) 

Hour-3 
(300MW) State Prob. 

Gener. MCP Gener. MCP Gener. MCP 
(1,1,1) 
(1,1,0) 
(1,0,1) 
(1,0,0) 
(0,1,1) 
(0,1,0) 
(0,0,1) 
(0,0,0) 

0.8123 
0.0903 
0.0428 
0.0048 
0.0428 
0.0048 
0.0023 
0.0003 

(100,0,0) 
(100,0,0) 
(100,0,0) 
(100,0,0) 
(0,100,0) 
(0,100,0) 
(0,0,100) 
(0,0,0) 

0.025 
0.025 
0.025 
0.025 
0.028 
0.028 
0.031 
0.1 

(200,200,100)
(200,200,0) 
(200,0,150) 
(200,0,0) 

(0,200,150) 
(0,200,0) 
(0,0,150) 
(0,0,0) 

0.031 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

(200,100,0) 
(200,100,0) 
(200,0,100) 
(200,0,0) 

(0,200,100) 
(0,200,0) 
(0,0,150) 
(0,0,0) 

0.028 
0.028 
0.031 
0.1 

0.031 
0.1 
0.1 
0.1 

Table 3.  Expected generation and profit from chronological analysis 
 

Generator #1 Generator #2 Generator #3  
H1 H2 H3 Tot. H1 H2 H3 Tot. H1 H2 H3 Tot.

Exp. Gen. (MWh) 95 190 190 475 4.75 190 99.75 294.5 0.23 94.39 8.89 103.5
Exp. Rev. ($) 2.38 7.79 5.41 15.58 0.13 7.79 2.89 10.81 0.01 3.83 0.30 4.14
Exp. Cost ($) 2.28 4.56 4.56 11.4 0.13 5.13 2.69 7.95 0.01 2.83 0.27 3.11
Exp. Prof. ($) 0.10 3.23 0.85 4.18 0.01 2.66 0.19 2.86 0.00 1.00 0.03 1.04



Table 4. Generator data of modified IEEE RTS
 

Generator
Name 

Capacity
(MW) FOR 

Operating 
Cost 

($/MWh) 

Offer Price
($/MWh)

Gen. #1 
Gen. #2 
Gen. #3 
Gen. #4 
Gen. #5 
Gen. #6 
Gen. #7 
Gen. #8 
Gen. #9 
Gen. #10
Gen. #11
Gen. #12
Gen. #13
Gen. #14
Gen. #15
Gen. #16
Gen. #17
Gen. #18
Gen. #19
Gen. #20

197 
350 
197 
197 
155 
100 
155 
100 
155 
100 
155 
76 
12 
76 
12 
76 
12 
76 
12 
12 

0.04 
0.08 
0.05 
0.06 
0.03 
0.03 
0.04 
0.04 
0.05 
0.05 
0.06 
0.02 
0.02 
0.03 
0.03 
0.04 
0.04 
0.05 
0.05 
0.06 

0.69 
0.70 
0.70 
0.71 
0.79 
0.79 
0.80 
0.80 
0.81 
0.81 
0.82 
0.90 
0.90 
0.91 
0.91 
0.92 
0.92 
0.93 
0.93 
0.94 

0.700 
0.708 
0.710 
0.720 
0.798 
0.800 
0.808 
0.810 
0.818 
0.820 
0.828 
0.908 
0.910 
0.918 
0.920 
0.928 
0.930 
0.938 
0.940 
0.950 

Therefore, E1 becomes 475[MWh] which exactly 
matches with the results of the chronological approach. 
Each profit component of Generator #1 (i.e., ) can 
be easily obtained by (3) and (4). That is, 
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Therefore, the total profit of Generator #1 becomes 
4.18[$] which also exactly matches with the result in 
Table 3. The profits of Generator #2 and #3 are 
computed as 2.86[$] and 1.04[$] by the same 
procedures, which are the same as the results in Table 3. 
Note that the suggested algorithm can dramatically 
reduce the number of enumerations for profit 
evaluation of each generator. For example, the total 
number of enumerations in this sample study becomes 
9 (i.e., 4+3+2) while the chronological approach 
requires 24 (i.e., 3×23). Therefore, one can use the 
suggested algorithm in the real-world power systems 
without the computational burden. 
 
4.2 Modified Reliability Test System 
 
Description of System 
 
The generator data of the modified IEEE 24-node 
Reliability Test System (RTS) (IEEE Committee 
Report, 1979) are presented in Table 4. The dispatch 
order among the generators in an electricity market is 
determined by the offer price presented in the 5th 
column of Table 4. Note that the price cap of market is 
2.0[$/MWh] in case of the power shortage. The 

chronological demand data has been used from data 
provided in IEEE 24-node RTS and the annual peak 
load of this system has been set to 2,000[MW]. 
 
Numerical Results 
 
 We will compute the expected generation and profit of 
each generating unit for the modified IEEE 24-node 
RTS using the proposed algorithm. Also, to show the 
efficiency and effectiveness of the suggested algorithm, 
the results of proposed algorithm are compared with 
those of Monte Carlo Simulation (MCS) (Billinton and 
Li, 1994) as well as chronological approach. The results 
are summarized in Table 5. 
In Table 5, the results of Monte Carlo Simulation are 
obtained based on the following procedure: 

Table 5. Comparison of simulation results of each method 
 

Chronological Approach MCS Proposed Algorithm Generator 
Name Exp. Gen. 

(GWh) 
Exp. Prof. 

(103$) 
Exp. Gen. 

(GWh) 
Exp. Prof. 

(103$) 
Exp. Gen. 

(GWh) 
Exp. Prof. 

(103$) 
Gen. #1 
Gen. #2 
Gen. #3 
Gen. #4 
Gen. #5 
Gen. #6 
Gen. #7 
Gen. #8 
Gen. #9 
Gen. #10 
Gen. #11 
Gen. #12 
Gen. #13 
Gen. #14 
Gen. #15 
Gen. #16 
Gen. #17 
Gen. #18 
Gen. #19 
Gen. #20 

1652.15 
2812.99 
1632.64 
1507.06 
1009.38 
544.19 
656.25 
310.12 
329.44 
126.08 
97.67 
25.00 
2.91 
13.39 
1.52 
6.81 
0.76 
3.28 
0.36 
0.31 

187.91 
278.82 
168.96 
149.50 
31.72 
19.77 
20.49 
12.52 
13.17 
8.07 
9.42 
2.58 
0.41 
2.27 
0.36 
2.08 
0.34 
1.97 
0.32 
0.32 

1649.14 
2820.61 
1636.56 
1507.34 
1008.56 
543.32 
653.40 
308.76 
329.36 
125.57 
96.57 
24.63 
2.85 
13.07 
1.48 
6.61 
0.73 
3.19 
0.35 
0.30 

187.06 
279.53 
169.13 
149.19 
31.47 
19.59 
20.14 
12.32 
13.02 
7.95 
9.22 
2.51 
0.39 
2.20 
0.35 
2.00 
0.33 
1.91 
0.31 
0.31 

1652.15 
2812.99 
1632.64 
1507.06 
1009.38 
544.19 
656.25 
310.12 
329.44 
126.08 
97.67 
25.00 
2.91 
13.39 
1.52 
6.81 
0.76 
3.28 
0.36 
0.31 

187.92 
278.83 
168.96 
149.50 
31.73 
19.77 
20.50 
12.52 
13.18 
8.07 
9.42 
2.58 
0.41 
2.27 
0.36 
2.08 
0.34 
1.97 
0.32 
0.32 



Step 1) Determine operating cycles of each generating 
unit. The operating cycle is in the form of 
chronological up-down-up. To obtain sampling 
values of the TTF (Time-to-Failure) and TTR (Time-
to-Repair), we have assumed that operating time is 
exponentially distributed and repair time is constant 
value evaluated by multiplying 168 hours (1 week) 
by FOR. 

Step 2) Compute the expected generation and profit of 
each unit during the sampling year. These values can 
be obtained by comparing the hourly available 
capacity model with the chronological load model. 

Step 3) Repeat step 1) and 2) until the iteration is 
approached to the prefixed number of sample year. 
Note that we have set the number of sample year as 
5,000. 

Step 4) Compute the average values of expected 
generation and profit of each unit. These values can 
be evaluated by dividing summation of expected 
generation or profit of each sampling year into that 
of the total number of sample year. 

 
The CPU time of each method is provided in Table 6. 
The CPU time of proposed method is remarkably low 
in comparison with those of MCS as well as 
chronological approach. 
 

Table 6. Comparison of CPU times of each method 
 

 Chronological 
Approach MCS Proposed

Algorithm
CPU time 

(min) 1641 1383 44 

 
As shown in Table 5 and Table 6, we can determine 
that the results of proposed algorithm are exactly 
identified with those of the chronological simulation 
algorithm and the computation time of proposed 
algorithm can be reduced when compared with those of 
chronological and MCS. 
 

5. CONCLUSIONS 
 
This paper presents an efficient algorithm for 
evaluating the profit and revenue of generating units in 
a competitive electricity market based on a variant of 
the probabilistic production costing technique. In the 
suggested algorithm, the expected profit of each unit 
can be acquired by identifying the marginal plant 
probabilistically in the viewpoint of the generator. 
Without any loss of accuracy of the probabilistic 
chronological method, the suggested method can 
dramatically reduce the computational complexity. 
Therefore, the proposed method is adequately 
applicable to long-term power system planning 
problems in the competitive electricity market 
environments. 
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