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1. INTRODUCTION

A standard problem in control theory is the sta-
bilization of non linear systems. The problem of
asymptotic controllability involving time varying
control is completely solved for general non au-
tonomous systems in Albertini and Sontag (1999)
and Albertini and Sontag (1997). It is shown
that asymptotic controllability is equivalent to
the existence of a nonsmooth control Lyapunov
function (CLF). The stabilization problem of non
autonomous systems involving continuous depen-
dent state control has not been addressed in Al-
bertini and Sontag (1999) and Albertini and Son-
tag (1997). A seminal result is Artstein’s theorem
which proves, for autonomous affine systems, the
existence of a smooth CLF is equivalent to the
existence of a continuous feedback control. This
result is a corollary of more general results in-
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volving relaxed control given in Artstein (1983).
For affine systems Sontag gives in Sontag (1989) a
general formula for the feedback law construction
using a CLF. Contrary to what one can assume,
the results on the stabilization of autonomous
systems are not all valid for non autonomous
ones. Hence, in this paper we extend the neces-
sary and sufficient conditions for stabilization of
Artstein’s theorem and the Sontag’s feedback to
time-varying affine systems. On the other hand,
there is no necessary and sufficient conditions for
almost stabilization and the Sontag formula is not
universal any more for non autonomous systems.
The paper is organized as follows. Section 2 gives
the formulation of the stabilization problem for
non autonomous systems. Then, section 3 gives a
necessary condition using the Kurzweil converse
theorem (see the article by Kurzweil Kurzweil
(1963) for the construction of the smooth CLF).
Then it focuses on non autonomous affine systems:
a sufficient condition is given and proved by using



theorem Mickael (1956) on continuous selections.
This two results leads to a necessary and sufficient
condition fir stabilization. In section 4, a general-
ization of Sontag’s formula is given. This formula
is very interesting because with an additional con-
dition related to the uniform property, it is an
explicit and systematic construction, even if it is
sometimes possible to find a more simple feedback
control. This construction is illustrated through a
system and its simulation.

2. PROBLEM FORMULATION

Through this paper Bn
ε denotes the open ball in

Rn centered at the origin of radius ε > 0, ‖.‖n

the euclidian norm in Rn and V a neighborhood
of the origin in Rn. The paper aims at deriving an
equivalent result to Artstein’s one for systems in
the following form

ẋ = f(t, x, u), t ∈ R, x ∈ Rn and u ∈ U, (1)

where U is a non empty open set of Rm containing
the origin and f ∈ C0(R × Rn × U,Rn). In
the following x(t, t0, x0) will denote a solution
starting from x0 at t0. First, let the origin be
an equilibrium point of the system (1) with zero
control. For example, assume that f(t, 0, 0) = 0
for all t ∈ R and that the solution to the Cauchy
Problem for initial condition near the origin has
a unique solution. The question is under which
conditions the stabilization problem for (1) may
be solved. Thus, to start with, let us recall the
meaning of this stabilization problem.

Definition 1. System (1) is almost stabilizable (re-
spectively almost Ck−stabilizable), if there exists
a feedback control law u : R× V → U continuous
(respectively Ck) on R× V \ {0} such that:

A1) u (t, 0) = 0 for all t ∈ R,
A2) the origin is a uniformly asymptotically sta-

ble equilibrium of the closed-loop system:

ẋ = f(t, x, u (t, x)), t ∈ R, x ∈ V. (2)

Moreover, if u is continuous (respectively Ck)
on R × V, then the system (1) is stabilizable
(respectively Ck−stabilizable). If the system (1) is
globally defined, it is globally stabilizable if there
exists a continuous feedback control law: u : R ×
Rn → U satisfying the two previous conditions
A1) and A2) for all t ∈ R and x ∈ Rn.

Let us recall that the origin of (2) is uniformly
asymptotically stable if:

B1) the origin is uniformly stable for the system
(2),

B2) the system is uniformly attractive: ∃δ >
0;∀ε > 0, ∃T (ε) > 0;

(x0 ∈ Bn
δ ) =⇒ (x(t, t0, x0) ∈ Bn

ε ) ∀t ≥ t0+T (ε).

A very important notion for stabilization is the
CLF introduced by Artstein in Artstein (1983).
In order to get rid of the time dependence of
the stability motion, one needs to guarantee the
uniform stability property. One adapts this notion
for non autonomous systems and introduces an
extension of the notion of decrescent Lyapunov
function.

Definition 2. A continuous function V : R×V →
R+, with continuous partial derivatives is said to
be a decrescent Lyapunov function in short DCLF
for the system (1) if:

C1) ∀t ∈ R, V (t, 0) = 0,
C2) V is positive definite and decrescent 2 ,
C3) ∀t ∈ R, ∂V

∂t (t, 0) = 0,
C4) there exists a positive definite function W ,

such that for all t ∈ R, and for all x ∈ V\ {0}:

inf
u∈U

[
∂V

∂t
+

〈
∂V

∂x
, f(t, x, u)

〉]
≤ −W (x) < 0.

Definition 3. A DCLF for the system (1) V : R×
V → R+ satisfies the small control property if for
each ε > 0 there exists a δ > 0, for all t ∈ R and
all x ∈ V\ {0} ∩ Bn

δ , there exists at least u ∈ U
with:

D1) u ∈ Bm
ε ,

D2) ∂V
∂t +

〈
∂V
∂x , f(t, x, u)

〉 ≤ −W (x) < 0.

3. THEORETICAL RESULTS ON THE
STABILIZATION PROBLEM

A necessary condition for stabilization is the fol-
lowing:

Proposition 4. If the system (1) is stabilizable,
then there exists a smooth DCLF for the system
(1) which satisfies the small control property.

Proof. Suppose that the system (1) is stabilizable
by a given feedback control u(t, x) which is defined
and continuous on R × V. Using the Kurzweil
converse theorem in Kurzweil (1963), one knows
that there exists a smooth decrescent Lyapunov
function V : R × V → R+ for the closed-loop
system (2). So, there exists a positive definite
function W such that for all t ∈ R, and for all
x ∈ V\ {0}:

∂V

∂t
+

〈
∂V

∂x
, f(t, x, u(t, x))

〉
≤ −W (x) < 0.

Moreover, as f(t, 0, 0) = 0 and

∂V

∂t
(t, 0) +

〈
∂V

∂x
(t, 0), f(t, 0, 0)

〉
= 0,

2 A function v : R×V → R is decrescent if lim
‖y‖→0

v(t, y) =

0 uniformly in t.



one deduces that ∂V
∂t (t, 0) = 0. Thus, V is a

smooth DCLF of (1). The continuity of u(t, x)
on Rn × {0} is equivalent to lim

‖x‖→0
u(t, x) = 0

uniformly in t, which gives the small control
property with u = u(t, x).

Remark 5. Contrary to the result of Artstein, if
the system (1) is almost stabilizable it is not
possible to extend the closed-loop system to a
continuous system in order to build a DCLF with
the Kurzweil converse theorem. The assumption
of stabilization under a continuous feedback at the
origin is compulsory.

This part deals with special classes of systems
described by Artstein (1983). These are non au-
tonomous affine systems of the form

ẋ = f0(t, x) +
m∑

i=1

fi(t, x)ui, t ∈ R, x ∈ Rn, u ∈ U

(3)
where fi : R × Rn → R are continuous. One

denotes by fu (t, x) = f0(t, x)+
m∑

i=1

fi(t, x)ui. With

no loss of generality, let us assume that f0(t, 0) =
0 for all t ∈ R. If the system (3) is stabilizable by
the control u(t, x) then the closed-loop system is
given by

ẋ = fu(t,x) (t, x) , t ∈ R, x ∈ Rn. (4)

Let V be a DCLF for the system (3). For all
(t, x) ∈ R× Rn, let us define the following terms:

a(t, x) =
∂V

∂t
(t, x) +

〈
∂V

∂x
(t, x), f0(t, x)

〉

bi (t, x) =
〈

∂V

∂x
(t, x), fi(t, x)

〉
for 1 ≤ i ≤ m

B (t, x) = (b1 (t, x) , ..., bm (t, x))

b (t, x) =
m∑

i=1

bi (t, x)2 = ‖B (t, x)‖2

The proposition (6) is a generalization of a result
due to Artstein in (Artstein, 1983, Theorem 5.1)
to non autonomous systems. Our proof is far from
different of the Artstein’s proof. We use an the
Mickael theorem on continuous selection which
allow to give a simple proof.

Proposition 6. If V is a DCLF for the system (3)
then the system (3) is almost stabilizable. If in
addition, V satisfies the small control property,
the system (3) is stabilizable. Moreover, if the
assumptions hold globally and if V is radially un-
bounded 3 , then the system (3) is almost globally
stabilizable.

3 A function v : R×Rn → R is radially unbounded if
lim

||y||→+∞
v(t, y) = +∞ uniformly in t.

To prove this result, we need some set valued map
concepts that can be found in Aubin and Cellina
(1984). A set valued function F on the vector
space X to the vector space Y is a function that
associates with any x ∈ X a subset F (x) of Y. F is
lower semi-continuous if {x ∈ X : F (x) ∩O 6= ∅}
is open in X for every open O ⊂ Y.

Proof. There exists a neighborhood V of the
origin and a positive function W such that for all
x ∈ V\ {0} and t ∈ R, one defines the set valued
function Φ : R × V\ {0} → 2U , (t, x) 7→ Φ(t, x)
where 2U will denote the family of non-empty
subsets of U and:

Φ(t, x) = {v ∈ U : a(t, x) + 〈B (t, x) , v〉 ≤ −W (x)} .

Φ(t, x) is a non-empty, closed, convex set for all
(t, x) ∈ R×V\ {0}. As a and B are continuous, W
can be chosen continuous with no loss of generality
and thus Φ is lower semi- continuous on R ×
V\ {0}. One may apply the Mickael theorem (see
Mickael (1956) or Aubin and Cellina (1984)) to
find a selection u : R × V\ {0} → U (that is a
continuous function u on R × V\ {0} such that
u(t, x) ∈ Φ(t, x), extended by u(t, 0) = 0 for all t ∈
R. Then, V is a Lyapunov function for the closed
loop system (4). As V is decrescent, the theorem
of Lyapunov (see Slotine and Weiping (1991)),
implies that the system (3) is almost stabilizable.
If V satisfies the small control property, one may
extend Φ on R×{0} by Φ(t, 0) = {0} for all t ∈ R.
Φ is now lower semi-continuous on R×V, so there
is a selection u : R × V → U which stabilizes the
system (3). Finally, the region of attraction of V
contains the set

{(t, x) ∈ R× Rn : V (t, x) < min
x∈∂V

V (t, x)}

where ∂V is the boundary of V. So, if V is
radially unbounded ∂V is infinite and the region
of attraction contains the whole space.

The two propositions 4 and 6 allows us to give
a necessary and sufficient condition for the stabi-
lization problem.

Corollary 7. The system (3) is stabilizable if and
only if there exists a DCLF for the system (1)
which satisfies the small control property.

It is important to notice that contrary to au-
tonomous systems, there is no necessary and suf-
ficient condition for the almost stabilization. This
is due to the fact that the proposition (4) does not
work for almost stabilization.

4. A CONSTRUCTIVE METHOD

Since, the proof of proposition 6 is not construc-
tive, one may extend the construction of Sontag



to obtain an explicit feedback. One needs for a
DCLF of (3) that there exists a positive definite
function W̃ : V → R with the property that for
all t ∈ R and all x ∈ V,

a(t, x)2 + b (t, x)2 ≥ W̃ (x). (5)

Under the existence of a DCLF satisfying the
property (5), one obtains an explicit feedback
control using the universal formula of Sontag in
Sontag (1989).

Proposition 8. Suppose that for 1 ≤ i ≤ m the
functions fi are Ck (with k ≥ 1). If there exists
a DCLF for the system (3) which is Ck and
satisfies the property (5), then the system (3)
is almost Ck−1−stabilizable. If in addition the
DCLF satisfies the small control property, then
the system (3) is Ck−1−stabilizable. Moreover, if
the assumptions hold globally and if the DCLF
is radially unbounded, then system (3) is almost
globally Ck−1−stabilizable.

Proof. Suppose there exists a Ck−DCLF V : R×
V → R+. Let

E =
{
(p, q) ∈ R2 : p < 0 or q > 0

}

and ϕ defined by

ϕ (p, q) =





p +
√

p2 + q2

q
if q 6= 0

0 if q = 0
.

Equation H (p, q, z) = qz2 − 2pz − q3 = 0 holds
with z = ϕ (p, q) for (p, q) ∈ E. Moreover,
∂H
∂z (p, q, z) = 2 (qz − p) and hence,

∂H

∂z
(p, q, ϕ (p, q)) =

{ √
p2 + q2 if q 6= 0

−2p if q = 0

is non zero for each (p, q) ∈ E. Thus, the implicit
function theorem ascertains that ϕ is smooth on
E. As V is a control Lyapunov function, then we
know that (a(t, x), b (t, x)) ∈ E for all (t, x) ∈ R×
V\ {0}. Thus, we define the feedback control by:

ui (t, x) =
{

wi (t, x) if (t, x) ∈ R× V\ {0}
0 if (t, x) ∈ R× {0} . (6)

where wi (t, x) = −bi (t, x)ϕ (a(t, x), b (t, x)). ui

is Ck−1 on R × V\ {0}. With this feedback, one
obtains for all (t, x) ∈ R× V\ {0}
∂V

∂t
+

〈
∂V

∂x
, fu(t,x) (t, x)

〉
= −

√
a(t, x)2 + b (t, x)2 < 0.

One knows that ∂V
∂t (t, 0) = 0 for all t ∈ R, so, V

is a Lyapunov function for the closed-loop system
(4)−(6), and using the Lyapunov theorem one
knows that the origin of the closed loop system
(4)−(6) is stable. Moreover, since V satisfies the
property (5), V is a Lyapunov function for the
closed-loop system (4)−(6) with a negative defi-
nite derivative. So, using the Lyapunov theorem,

the origin of the closed loop system (4)−(6) is
asymptotically stable. Moreover, V is decrescent
so the origin is uniformly asymptotically stable
for the closed loop system (4)−(6). Now, suppose
that V satisfies the small control property. One
wants to show that lim

‖x‖→0
u(t, x) = 0 uniformly in

t. For t ∈ R, one knows that ∂V
∂x (t, 0) = 0 and

x 7→ ‖B (t, x)‖ tends to zero uniformly in t. So
adding the small control property to the previous
remark, for each ε > 0 there exists δ > 0, for all
t ∈ R and all x ∈ V\ {0}∩Bn

δ , there exists u ∈ Rm

such that:

i) ‖u‖m < ε
ii) a(t, x) + 〈B (t, x) , u〉 < 0
iii) ‖B (t, x)‖m < ε.

The second point implies that:

|a(t, x)| < ‖B (t, x)‖m ‖u‖m < ‖B (t, x)‖m ε.

• First case: a(t, x) > 0 for 0 < ‖x‖n < δ. For
(p, q) ∈ E such that q > 0, we have:

ϕ (p, q) =
p +

√
p2 + q2

q
≤ 2 |p|+ |q|

q
= 2

|p|
q

+ 1.

Thus, in this case:

‖u(t, x)‖m = ‖B (t, x)‖m ϕ (a(t, x), b(t, x))

≤ ‖B (t, x)‖m

(
2

ε

‖B (t, x)‖m

+ 1
)
≤ 3ε.

• Second case: a(t, x) ≤ 0 for 0 < ‖x‖Rn < δ. We
have

a(t, x) +
√

a(t, x)2 + b(t, x)2 ≤ a(t, x) + |a(t, x)|+ |b(t, x)|
= b(t, x).

The previous inequality implies that:

ϕ (a(t, x), b(t, x)) =
a(t, x) +

√
a(t, x)2 + b(t, x)2

b(t, x)
≤ 1

This leads to:

‖u(t, x)‖m = ‖B (t, x)‖m ϕ (a(t, x), b(t, x))
≤ ‖B (t, x)‖m ≤ ε

Finally, noting that for all (t′, x′) ∈ R × V\ {0}
and t ∈ R:

‖u(t′, x′)− u(t, 0)‖m = ‖u(t′, x′)‖m ,

we conclude that u is continuous on R × V.
Concerning the proof of the global stabilization
one can just repeat the proof in proposition 6.

Remark 9. For autonomous systems ẋ = f0(x) +
m∑

i=1

fi(x)ui, the formula (6) is universal with

a(x) =
〈

∂V
∂x (x), f0(x)

〉
and bi (x) =

〈
∂V
∂x (x), fi(x)

〉
for 1 ≤ i ≤ m, this is not the case for non
autonomous systems in the proposition (8). We
have to add the property of uniformity (5).

To illustrate the proposition (8), let us consider a
two dimensional system.
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ẋ1 = −x1 − x2

1 + t2

ẋ2 = x1 − 1 + t + 2t2 + 2t3 + t4

1 + t2
x2 + u

(7)

with x ∈ R2, t ≥ 0 and the smooth positive
definite decrescent function V (t, x) = x2

1+ x2
2

1+t2 ≤
x2

1 + x2
2. One sees that a(t, x) = −2x2

1 − 2(t+1)2

1+t2 x2
2

and B(t, x) = 2x2
1+t2 for all t ≥ 0. For x 6= 0,

inf
u∈R

[a (t, x) + B (t, x)u] ≤ −2x2
1 − 2x2

2 < 0, so V

is a smooth DCLF for the system (7). Moreover,
a(t, x)2 + b(t, x)2 ≥ 4x4

1 + 4x4
2 = W̃ (x), so using

the proposition (8), one knows that the system
is smoothly stabilizable by the smooth feedback
control

u (t, x) =
θ (x1, x2)−

√
θ (x1, x2)

2 + 4x4
2

(1+t2)2

x2
(8)

where θ (x1, x2) = x2
1(1 + t2) + x2

2(t + 1)2. This
leads to the simulation on figure 1.

0 1 2 3 4 5 6
0   

0.1 

0.2 

0.3

0.35

Time

x1
x2

Fig. 1. Simulation of (7) with control (8)

5. CONCLUSION

A necessary and sufficient condition for the stabi-
lization problem is given for time-varying affine
systems together with an extension of Sontag’s
formula. These results shows the difference be-
tween autonomous and non autonomous affine
systems in the stabilization problem.
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