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Abstract: The requirements in pitch angle control of winged body are a very
fast response with as less oscillation as possible. The oscillation can damage the
equipments which are carried within the body. The main problem to cope with is
in relatively fast and oscillatory dynamics of the rocket and slow actuators and
sensors. We solve the problem by using predictive approach. The main idea of this
approach is in process output prediction based on decomposed process model. The
decomposition enables the extension of model-based approach to the processes with
integrative behavior such as the rocket pitch angle control. The proposed approach
gives a framework to design a control for a wide range of processes. In the paper
the predictive design methodology was compared to the classical approach. The
proposed approach gives a very fast response. Moreover, amplitude oscillation of
the winged body are kept low. Copyright c©2005 IFAC
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1. INTRODUCTION

The requirements in pitch angle control of winged
body are a very fast response with as less oscil-
lation as possible. This is difficult task because a
very fast and oscillatory dynamics of the body is
combined with relatively slow actuators. There is
another problem of not exactly known parameters
of the process. The aerodynamic parameters are
given in the range of ±40 percents. They depend
on actual weather conditions. The change of those
parameters causes a serious problem by the design
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of control which should be robust in the whole
range of parameter changes and should give an
appropriate control performance.

The winged body is actually the rocket to test
the rocket engines. The first approach to the pitch
angle control was done by using a classical com-
pensator. This lead to an appropriate response in
the case of nominal parameters but for the wide
range of parameter changes the responses are not
satisfactory, especially because of high frequency
oscillation.

The idea is to implement the model-based pre-
dictive control strategy similar to those presented
by Kaya (2004) and Tan et al. (2003) . The basic
idea which was proposed by Škrjanc and Matko
(2000) is in this paper extended to the processes
with integrative nature. In this case the model is



decomposed into two parallel models and included
into the design of control law. This modification
enables the prediction of the future model output.
The control algorithm is called a decomposed-
model predictive control (DMPC). The control
law is than obtained on the basic principles of
predictive control (Škrjanc and Matko, 2000). The
main advantage of our approach is the fact that
it offers the framework to design the control for a
wide range of different processes: integrative, un-
stable, phase non-minimal, with time-delay, pro-
cesses of higher order and multivariable processes.
The problem of time-delay is solved as it is shown
by Kaya (2004) and Lee (2000).

The paper is organized in the following way: in
Section 2 the modelling of the rocket dynamics is
given, in Section 3 the decomposed-model predic-
tive control algorithm is described and in Section
4 the simulation study is given, where also the
comparison with the classical compensator which
was used before is presented.

2. THE DYNAMICS OF THE ROCKET

The rocket is modelled as a winged rigid body. Its
shape and basic dimensions are given in Fig. 1. In
our case only the control of longitudinal motion
of the rocket will be treated, i.e. only the the
model Θ(s)

δ(s) will be investigated, where Θ is pitch
angle and δ is control surface deflection angle .
The diagram of the forces and torques is shown
in Fig. 2 where x and z represent the coordinates
of the system, V is the airspeed, u and w are the
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Fig. 1. The shape and basic dimension of the
rocket.
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Fig. 2. The diagram of forces and torques.

airspeed components in x and z coordinates, Θ
is the pitch angle, Q is the angular velocity, Fg

stands for the gravity force, FL is the lift force,
FD the drag force, Fx is the air pressure force in
the direction of x axis, Fz is the air pressure force
in the direction of z coordinate, M is the torque
caused by lift and drag, Fc stands for the control
force, cp is the center of pressure, cg is the center
of gravity, lcp is the handle of pressure center and
lc is the handle of control force.

The motion of rigid body in all three dimensions
can be represented by Euler equations of motion.
For 2D problem the motion can be described with
the following equations:

Fx −mg sinΘ = m (u̇ + Qw)
Fz + mg cos Θ = m (ẇ −Qu)

M = IyQ̇

Q = Θ̇ (1)

The airflow around the specific shape is difficult
to describe using mathematical formulas, there-
fore the aerodynamic forces and moments are
calculated using aerodynamic coefficients. For the
winged body the following can be written:

FL = qSCLαα

FD = qSCD

q =
ρV 2

2

α = arctan
w + Qlcp

u
(2)

where FL and FD are the lift and drag forces,
S is reference area, α stands for angle of attack,
and q is the dynamical pressure. Aerodynamic
coefficients CLα and CD denote the lift coefficient
and the drag coefficient, respectively. They are
usually measured and given as a look-up table.
Both coefficients varies in the range of about
±40 percent. This means that the implied control
should have a great robustness. The x and z
component of body force can be written for the
geometry of Fig. 2:

FXB = −FD cosα + FL sin α

FZB = −FL cosα− FD sin α (3)

The lift and drag forces cause also the torque. It
could be calculated by multiplying these forces
with the distance between the center of gravity
and the center of pressure. This distance depends
on the angle of attack α. To calculate the torque
of the body the following equation is used:

MB = qSlCMαα (4)

where l is the reference length and CMα is another
coefficient that stands for:



CMα = CLα
lcp

l
(5)

and is also usually given in the look-up table.
Deflection of the control surface for the angle δ
results in the control force FC :

FC = qSCLδδ (6)

The shape of the rocket is rather unusual. Four tail
fins are set in shape of letter X as shown in Fig. 1.
The aileron, elevator and rudder (roll, pitch and
yaw) effects are given with the combination of the
tail fins deflections. The control torque is obtained
multiplying the control force with the distance to
the axis of rotation (the center of gravity). When
the control surfaces work as an elevator the x and
z component of the control force (FXC and FZC )
and the control torque (MC ) are:

FXC = neFC sinα

FZC = neFC cosα

MC = FZC lc (7)

with ne = 2
√

2. The common forces and torques
of the body and control surfaces are:

FX = FXB + FXC

FZ = FY B + FZC

M = MB + MC (8)

The nonlinear model of the rocket dynamics is
described in Eq. (8). For the control purposes, this
model can be linearized to obtain simpler linear
model.

The model was linearized around the following
stationary state: u = 75 m s−1, w = 0, α = 0,
Q = 0 and Θ = 0. We get the following transfer
function:

Grb(s) =
Ω(s)
δa(s)

=
ne (b1s + b0)

(s2 + a1s + a0)
(9)

where Grb(s) stands for the rocket body transfer
function between the pitch angle velocity Ω and
the angle of the deflection fins δa and ne, a1, a0,
b1 and b0 stand for:

a1 =
qSCLα

mu
+

qSCMαllcp

Iyu

a0 = −qSCMαl

Iy

b1 =
qSCLαlc

Iy

b0 =
q2S2CLδ

muIy
(CLαlc + CMαl) (10)

with the following values of parameters at the
point of linearization: ne = 2

√
2, l = 3.386 m,

m = 260 kg, S = 0.12566 m2, Iy = 253.1 kg

m2, CMα = −0.6393, CLα = 23.5, CLδ = 3.0197,
lc = −0.8285 m, lcp = −0.0921 m.

Another problem is caused by the constraints
of the deflection fins in the range of −0.05 rad
≤ δa ≤ 0.05 rad and the dynamics of the angle
velocity sensor. The transfer functions of both are
given next:

Ga =
δa(s)
δ(s)

=
ω2

1

s2 + 2ζ1ω1s + ω2
1

τa1s + 1
τa2s + 1

Gs =
Ωs(s)
Ω(s)

=
ω2

2

s2 + 2ζ2ω2s + ω2
2

−τs + 1
τs + 1

(11)

where ω1 = 28π rad s−1, ζ1 = 0.5, 1
τa1

= 40π s−1,
1

τa2
= 5π s−1, and ω2 = 54π rad s−1, ζ2 = 0.5,

τ = 0.0085 s.

Taking into account the rocket dynamics, the
actuator and the sensor, the dynamics of the
whole process is the following:

Gr(s) =
Ωs(s)
δ(s)

= Ga(s)Grb(s)Gs(s)e−sTd (12)

where Td stands for the time-delay which is due to
the computational time and is equal to Td = 0.015
s.

The frequency response of the whole process is
shown in Fig. 3. The small resonance frequency
pick of the rocket system appears at frequency of
2.1 rad/s. In Fig. 4 the step response of the open-
loop system is given where the high-frequency
oscillations can be observed.

10
−2

10
−1

10
0

10
1

10
2

−200

−100

0

100

w [rad/s]

A
m

pl
itu

de
 [d

B
]

10
−2

10
−1

10
0

10
1

10
2

−400

−200

0

200

w [rad/s]

P
ha

se
 [d

eg
]

Fig. 3. The frequency response of the rocket
system.

3. DECOMPOSED-MODEL PREDICTIVE
CONTROL

Model-based predictive formulation for control of
open-loop unstable processes is frequently used as
an optimization control problem (Nagrath, 2002).
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Fig. 4. The step response of the rocket system.

In the case of fast and open-loop unstable pro-
cesses this approach can not be implemented. The
realization requirements demand a computation
algorithm which can be calculated very fast not to
enlarge the computation time delay. This means
that the control algorithm should be given in
analytical way.

In this section the main idea of decomposed model
predictive control will be given. And it is given in
discrete-time domain which is the most natural
for predictive techniques. Let the process model
be the following:

xm(k + 1) = Amxm(k) + Bmu(k)
ym(k) = Cmxm(k) (13)

where Am,Bm and Cm are the time-discrete
state-space matrices of the process model without
taking into account the process delay.

The main idea of predictive algorithm (Škrjanc
and Matko, 2000) is to determine the future
control action so that the predicted output value
coincide with the reference trajectory. The point
where the reference and output signal coincide
is called a coincidence horizon and denoted by
H. The prediction is calculated under assumption
of constant future manipulated variables (u(k) =
u(k + 1) = . . . = u(k + H − 1)), i.e. the mean
level control. Under those assumption the H-step
ahead prediction of the model output at time
instant k can be easily obtained as follows:

ym(k + H|k) = Cm

(
AH

mxm(k) + Ku(k)
)

(14)

with K =
(
AH

m − I
)
(Am − I)−1 Bm. When the

system matrix Am is Hurwitz, than the predictive
control law can be calculated using prediction in
Eq. (14). In the case of integrative behavior the
system matrix Am is not Hurwitz (Braatz, 1996)
and the proposed prediction cannot be applied.
In this case the process model transfer function
should be decomposed in the following way:

Gm(z) = Gmp(z) + Gmi(z) (15)

where Gmp
(z) and Gmi

(z) stand for proportional
and pure integrative part.

The state-space equivalent of the transfer function
Gmp

(z) is described by matrices Am1 ,Bm1 and
Cm1 and the state-space equivalent Am2 ,Bm2

and Cm2 for the transfer function Gmi
(z). The

prediction of process model output is calculated
as sum of both predictions

ym1(k + H) = Cm1

(
AH

m1
xm1(k) + Kmu(k)

)
ym2(k + H) = Cm2 (xm2(k) + HBm2)u(k)

with Km =
(
AH

m1
− I

)
(Am1 − I)−1 Bm1 and is

given as follows

ym(k + H) = ym1(k + H) + ym2(k + H) (16)

The behavior of the closed-loop system in the case
of proposed predictive control technique is defined
by the reference trajectory given by reference-
model transfer function. The reference-model tra-
jectory is given implicitly by exponential factor
which describes how the control error should be-
have in the future. Through this exponential fac-
tor, which is analog to the the time constant of the
reference model, we will predict the control error
for H-step ahead, at the so called coincidence
horizon as given next:

w(k + H)− yp(k + H) = aH
r · (w(k)− yp(k))

where w(k) and yp(k) stands for the current refer-
ence signal and output signal of the process and ar

denotes the pole of the reference model. Assuming
the equivalence of the predicted reference model
trajectory and the estimated process output at the
coincidence horizon and constant reference signal
in the future, the reference trajectory or desired
dynamics of the process output is given implicitly
as follows:

yp(k + H) = w(k)− aH
r · (w(k)− yp(k)) (17)

where ar implicitly describes the reference-model
trajectory.

The main goal of the proposed algorithm is to find
the control law which enables the reference tra-
jectory tracking of the controlled signal. In other
words, u(k) has to be found to fulfill Eq. (17). The
estimated value of the process output is given as

yp(k + H) = yp(k) + ym(k + H)− ym(k) (18)

It is obtained under assumption that the plant
output will change for the same amount as its
model in the same interval of time.



Combining Eq. (17), (18) and the prediction of
model output given in Eq. (16), the following is
obtained:

u(k) = g−1
0

((
1− aH

r

)
(w(k)− yp(k)) + Fxm1(k)

)

F = Cm1

(
I−AH

m1

)

where g0 stands for:

g0 = Cm1

(
AH

m1
− I

)
(Am1 − I)−1 Bm1+

+HCm2Bm2

The control law in Eq. 19 is valid for the process
without time-delay. When we are dealing with
time-delayed processes than the undelayed pro-
cess output should be estimated. The estimation
of process output ŷp(k) can be done based on
the current process output and the delayed and
undelayed model outputs as given next

ŷp(k) = yp(k)− yd
m(k) + ym(k) (19)

where yd
m(k) stands for time-delayed process

model and ym(k) for undelayed model.

The control law of DMPC in analytical form can
be on the other way presented as:

u(k) = Kd

(
w(k)− y0

p(k)
)

+ Kxm1
x0

m1
(k)

Kd = g−1
0

(
1− aH

r

)

Kxm1
= g−1

0 Cm1

(
I−AH

m1

)
(20)

Note that the DMPC control law is realizable if
the gain g0 is non-zero. This is true if H ≥ ρ,
where ρ is the relative order of the system.

3.1 The pitch angle control using DMPC

When we design the DMPC for pitch angle control
of the rocket only the body dynamics was taken
into account. The transfer function Θ(s)

δa(s) should
be decomposed into a parallel decomposition. In
general this means that the systems with transfer
function B(s)

sA(s) where A(s) 6= 0 for s = 0 should be
decomposed into

B(s)
sA(s)

=
Q(s)
A(s)

+
K

s
= Gmp(s) + Gmi(s) (21)

where A(s) = ansn + an−1s
n−1 + ... + a0 and

B(s) = bnsn + bn−1s
n−1 + ... + b0.

The solution of Diofantine equation in Eq. 21 is
the following:

Ka0 = b0

qi + Kai+1 = bi+1, i = 0, ..., n− 1 (22)

where Q(s) = qn−1s
n−1 + qn−2s

n−2 + ... + q0 .

After decomposition of the continuous transfer
function into the parallel form both transfer func-
tions Gmp

(s) and Gmi
(s) are transformed to the

discrete-time state-space presentation. This en-
ables the calculation of DMPC parameters. To
have a suitable performance and appropriate ro-
bustness of the control in this case, the DMPC
was tuned with the following parameters: Tr = 7
s and H = 5. The algorithm was implemented
using the sampling time of Ts = 0.01 s. The tun-
ing parameters result in the control parameters
Kd = −0.9297 and Kxm1

= [−0.3959, 0.3967].

4. SIMULATION STUDY

The proposed DMPC approach was tested by sim-
ulation and compared with simple compensator
which is designed using optimization. The goal of
the attitude control is to control the pitch angle Θ
by the manipulated variable δa to have the fastest
response with as less oscillation as possible which
can cause the serious problems.

In the case of compensator the following control
law is obtained:

δ(s) = Kp (Θr(s)−Θ(s))−Kr ·Gf (s)Ωs(s) (23)

where Θr(s) stands for Laplace transform of the
reference signal, Kp = −2.2383, Kr = −0.7967
and Gf (s) stands for the filter of the pitch angle
velocity

Gf (s) =
ω2

f

s2 + 2ζfωfs + ω2
s

(24)

where ωf = 20π rad s−1 and ζf = 0.8.

The control results and comparison of both con-
trol algorithms for the nominal values of system
parameters are shown in Fig. 5.
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Fig. 5. The comparison between simple compen-
sation control and DMPC control.

The compensator approach shows very oscillatory
response at the beginning and it is also slightly



0 10 20 30 40 50
−0.05

0

0.05

0.1

0.15

t

yp

0 10 20 30 40 50

−0.06

−0.04

−0.02

0

0.02

t

u

Fig. 6. The DMPC control for different values of
system parameters.

slower. The DMPC control law results in faster
response and smaller oscillation. Both control
algorithms do not reject the input disturbance,
but this is actually not necessary in the case of
attitude control.

The robustness in our case is of great importance
because the aerodynamic coefficients CLα and CLδ

vary in the range of about ±40 percent from
nominal value (CLα = Cn

Lα(1 ± 0.4), CLδ =
Cn

Lδ(1 ± 0.4)), where Cn
Lα and Cn

Lδ stand for the
nominal values. We have simulated the closed
loop behavior where the controller was designed
for the nominal values of parameters and the
process parameters have changed in the proposed
range. All three responses, for the nominal case
of process parameters, for the positive deviation
of parameters and for the negative deviation of
parameters have been investigated.

In Fig. 6 we have shown the influence of the
system parameter changes to the performance of
the DMPC control algorithm. It is shown that
the close-loop responses in the case of process pa-
rameter mismatch satisfy the normal performance
requirements.

The same robustness test was performed also for
the compensator case as shown in Fig. 7. The
obtained results show that the control is less
robust than in the case of DMPC in spite of the
fact that nominal response of DMPC is slightly
faster than in the compensator case.

5. CONCLUSION

In the paper the decomposed-model predictive
control was implemented to control the pitch an-
gle of the rocket. The proposed control approach
is not limited to this type of processes, but it
can be implemented to a wide range of different
processes. The main advantages of the proposed
approach is a very simple design which results in
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Fig. 7. The compansation control for different
values of system parameters.

better performance as proposed before. To show
the potential use of the proposed approach, we
made the comparison with classical compensator
control which is known approach to control the
pitch angle of the rocket. The robust performance
of the proposed approach was also examined by
simulation and it has been shown that the pro-
posed approach offers higher robustness and bet-
ter performance than the classical approach.
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