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Abstract: Although structural constraints such as model order and time delay have
been incorporated in the continuous time system identification since its origin,
the constraints on the estimated model parameters were rarely enforced. This
paper proposes a continuous time system identification approach with constraints.
It shows that by incorporating physical parameter information known a priori
as hard constraints, the traditional parameter estimation schemes are modified
to minimize a quadratic cost function with linear inequality constraints. Using
the structure of Frequency Sampling Filters as the vehicle, the paper shows that
the constraints can be readily imposed on continuous time frequency response
estimation and step response estimation. In particular, a priori knowledge in both
time-domain and frequency domain is utilized simultaneously as the constraints for
the optimal parameter solution. A Monte-Carlo simulation study with 100 noise
realization is used to demonstrate the improvement of the estimation results in
terms of continuous time frequency response and continuous time step response.
Copyright c©2005 IFAC
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1. INTRODUCTION

Although structural constraints such as model or-
der and time delay have been incorporated in con-
tinuous time system identification since its origin,
the constraints on the estimated parameters were

rarely enforced. In order to pre-specify a set of
constraints in the estimation, a priori knowledge
about the continuous time system parameters is
required. This a priori knowledge may come from
a system that is partially known or from exper-
iments that have been performed independently.



Typical examples include the situation where the
gain and time delay of the system are known from
a step response test, the critical frequency infor-
mation is known from individual sinusoid test.
Another kind of constraints may be associated
with the general requirement of the estimation
algorithm, such as the case where the stability of
the estimated model in an iterative procedure is
required to facilitate the convergence of the algo-
rithm. The necessary condition to guarantee this
is then translated into the constraints that enforce
all estimated coefficients in the denominator to
be positive. The initial results obtained by the
authors have shown the potential for wide ap-
plications in the estimation of partially unknown
systems. This paper will be restricted to a non-
parametric approach but a subsequent paper will
deal with both.

This paper is to examine the cases where introduc-
ing hard constraints on the estimated parameters
may improve the quality of an estimated contin-
uous time model. The primary objectives are to
take advantage of a priori knowledge of a given
physical system and to translate this knowledge
into hard constraints that are embedded into the
estimation algorithms. More specifically, the pa-
per examines estimation of continuous time non-
parametric model with pre-specified constraints
on certain model parameters. In the estimation
of nonparametric models, the frequency sampling
filters structure (Bitmead and Anderson, 1981,
Wang and Cluett, 2000) is used as the vehicle
to obtain estimation of continuous time frequency
response for ω ≤ π

∆t (∆t is the sampling interval)
as well as the estimation of continuous time step
response. In this framework, a priori knowledge
about time delay, steady state gain and critical
frequency response is combined together as a set
of equality (we know the parameters for sure) and
inequality (we know the intervals of the param-
eters) constraints for the parameter estimation.
The solutions for optimal parameters become a
quadratic programming problem which can be
solved readily by using an existing software pack-
age or by using a simplified algorithm as discussed
in (Luenberger,1969). We also show that by using
the frequency sampling filters structure, discrete
noise model can be used effectively as part of the
scheme without any compromising.

The contributions of this paper include

• Derive an algorithm for estimation of con-
tinuous time frequency response and step re-
sponse with constraints. A priori knowledge
of frequency response and step response in-
formation is simultaneously utilized as either
linear equality or inequality constraints. This
algorithm also includes discrete noise models
in the estimation scheme.

• Monte-Carlo simulation studies on how the
constraints affect the variance and bias of
the continuous time parameter estimation
schemes.

2. ESTIMATION OF NON-PARAMETRIC
MODELS WITH CONSTRAINTS

The popular non-parametric representation in
system identification consists of frequency re-
sponse, step response and impulse response. It is
called non-parametric (in contrast to parametric)
in the sense that the process dynamics is cap-
tured by a set of response coefficients, instead
of description of process poles and zeros. It is
known that step response representation is in-
variant between system descriptions in continuous
time and discrete time at the sampling instant,
and continuous time frequency response represen-
tation can be closely approximated by the dis-
crete frequency representation up to its Nyquist
frequency. Therefore, unlike the parametric rep-
resentation, the continuous time non-parametric
presentations can be readily approximately by its
discrete counter-parts, leading to the estimation
from discrete data.

2.1 The Estimation Problem

In the sequel, we will show the unified framework
of estimating continuous time non-parametric rep-
resentations using discrete time systems approach.
Assume that the continuous time system is stable
with transfer function Gc(s). The system is sam-
pled uniformly with an interval ∆t, and the sys-
tem has a settling time Ts such that when t ≥ Ts,
the impulse response h(t) ≈ 0. The corresponding
discrete parameter to Ts is N = Ts

∆t . The discrete
transfer function of the system can be represented
in terms of the frequency response coefficients via
the frequency sampling filters expression (Wang
and Cluett, 2000):

G(z) =

n−1
2∑

l=−n−1
2

G(ejlΩ)H l(z) (1)

where n is an odd number to represent the number
of frequencies included in the frequency sampling
filters model; Ω is the fundamental sampling fre-
quency defined by Ω = 2π

N . The lth frequency
sampling filter is given as

H l(z) =
1
N

1− z−N
1− ejlΩz−1

=
1
N

(1 + ejlΩz−1 + ...+ ej(N−1)lΩz−(N−1))



At z = ejlΩ, H l(z) = 1. Equation (1) can also
be written in terms of real and imaginary parts of
the discrete frequency response G(ejlΩ) (Bitmead
and Anderson, 1981) as

G(z) =
1
N

1− z−N
1− z−1

G(ej0)

+

n−1
2∑

l=1

[Re(G(ejlΩ)F lR(z)

+ Im(G(ejlΩ)F lI(z)] (2)

where F lR(z) and F lI(z) are the lth second order
filters given by

F lR(z) =
1
N

2(1− cos(lΩ)z−1)(1− z−N )
1− 2cos(lΩ)z−1 + z−2

F lI(z) =
1
N

2sin(lΩ)z−1(1− z−N )
1− 2cos(lΩ)z−1 + z−2

• The frequency sampling filters model can be
regarded as a hybrid structure between a
continuous time system and a discrete time
system when the sampling interval ∆t is
sufficiently small. For the continuous time
frequency ω ≤ π

∆t , the continuous time fre-
quency response Gc(jω) ≈ G(ejω∆t). There-
fore, the coefficients of the discrete model are
corresponding to continuous time frequency
response at ω = 0, 2π

Ts
, 4π
Ts
, . . . , π∆t .

Suppose that u(k) is the process input, y(k) is
the process output and v(k) is the disturbance
signal. The output y(k) can be expressed in a
linear regression form by defining the parameter
vector and the regressor vector as

θ =




G(ej0)
Re(G(ejΩ))
Im(G(e−jΩ))

...
Re(G(ejΩ

n−1
2 ))

Im(G(ejΩ
n−1

2 ))




φ(k) =




f(k)0

f(k)1
R

f(k)1
I

...

f(k)
n−1

2
R

f(k)
n−1

2
I




where

f(k)0 =
1
N

1− z−N
1− z−1

u(k)

f(k)lR = F lR(z)u(k); f(k)lI = F lI(z)u(k)

for l = 1, 2, . . . , n−1
2 . This allows us to write the

linear regression with correlated residuals as

y(k) = φ(k)T θ + v(k)

v(k) =
ε(k)
D(z)

(3)

where ε(k) is a white noise sequence with zero
means and standard deviation σ. Given a set of
sampled finite amount of data

{y(1), y(2), y(3), . . . , y(M)}
{u(1), u(2), u(3), . . . , u(M)}

we can obtain an estimate of the frequency sam-
pling filter model and an estimate of the noise
model 1

D(z) using the generalized Least Squares
method (Clarke, 1967, Soderstrom, 1974). More
specifically, in the core estimation algorithm, we
let

yD(k) = D̂(z)y(k);φD(k) = D̂(z)φ(k)

The estimation of θ̂ is obtained by minimizing the
quadratic performance index

J =
M∑

k=1

[yD(k)− φD(k)θ]2

= θT
M∑

k=1

[φD(k)φD(k)T ]θ

− 2θT
M∑

k=1

[φD(k)yD(k)] + cons (4)

D̂(z) is estimated from the error sequence e(k) =
y(k)−φ(k)T θ̂, k = 1, 2, 3, . . . ,M . The generalized
Least Squares method is based on an iterative pro-
cedure and the iteration stops after the estimated
parameters converge.

In order to obtain the estimated step response
from the estimated frequency parameter vector
θ, it can be easily verified (Wang and Cluett,
2000) that the step response of the system at the
sample m is in a linear relation to the frequency
parameter vector θ via

ĝm = Q(m)T θ̂ (5)

where

Q(m) =




m+ 1
N

2Re(S(1,m))
2Im(S(1,m))

...

2Re(S(
n− 1

2
,m))

2Im(S(
n− 1

2
,m))




S(l,m) = 1
N

1−ejlΩ(m+1)

1−ejlΩ , l = 1, 2, . . . , n−1
2 .

3. ESTIMATION WITH CONSTRAINTS

3.1 Imposing Constraints

Constraints on Frequency Parameters
Suppose that the continuous time system is known



at frequency γ(< π
∆t ). By converting it to the

discrete frequency γ∆t, from Equation (2) the
frequency information can be expressed as

G(ejγ∆t) = L(ejγ∆t)T θ (6)

where

L(ejγ∆t) =




F (ejγ∆t)0

F (ejγ∆t)1
R

F (ejγ∆t)1
I

. . .

F (ejγ∆t)
n−1

2
R

F (ejγ∆t)
n−1

2
I




This equation is then split into real and imaginary
parts

Re(G(ejγ∆t)) =Re(L(ejγ∆t))T θ (7)

Im(G(ejγ∆t)) = Im(L(ejγ∆t))T θ (8)

If the frequency information is known quite accu-
rately, then equality constraints based on equa-
tions (7) and (8) can be imposed in the solu-
tions. This is particularly useful when the system
has strong resonance, and the critical frequency
information is used in the constraints to ensure
good fitting. If the frequency information is known
within certain bounds, then the inequality con-
straints can be imposed as

Re(G(ejγ∆t))min ≤ real(L(ejγ∆t)θ

≤Re(G(ejγ∆t))max
Im(G(ejγ∆t))min ≤ Im(L(ejγ∆t)θ

≤ Im(G(ejγ∆t))max (9)

Constraints on Step Response Parameters
Constraints on step response parameters will be
based on equation (5). Given the a priori in-
formation about some step response coefficients
gm, 0 ≤ m ≤ N − 1, the equality constraint is
formulated as

gm = Q(m)T θ (10)

where Q(m) is defined by Equation (5). For in-
equality constraints, with specification of mini-
mum and maximum of step responses, say g

m
≤

gm ≤ gm, then the inequality constraint on a step
response coefficient gm is formulated as

g
m
≤ Q(m)T θ ≤ gm (11)

3.2 Solution of the Estimation Problem with
Constraints

The estimation problem with constraints is essen-
tially to minimize the quadratic cost function

J = θT
M∑

k=1

[φD(k)φD(k)T ]θ

− 2θT
M∑

k=1

[φD(k)yD(k)] + cons (12)

subject to equality constraints

M1θ = γ1

and inequality constraints

M2θ ≤ γ2

By defining E =
∑M
k=1[φD(k)φD(k)T ] and F =

−2
∑M
k=1[φD(k)yD(k)], M = [MT

1 MT
2 ]T , γ =

[γT1 γT2 ]T the necessary conditions for this op-
timization problem (Kuhn-Tucker condition) are
(Luenberger,1984)

E∆U + F +MTλ= 0

M∆U − γ ≤ 0

λT (M∆U − γ) = 0

λ≥ 0 (13)

where the vector λ contains the Lagrange multipli-
ers. These conditions can be expressed in a simpler
form in terms of the set of active constraints. Let
Sact denote the index set of active constraints.
Then the necessary conditions become

E∆U + F +
∑

i⊂Sact
λiM

T
i = 0

Mi∆U − γi = 0 i ⊂ Sact
Mi∆U − γi < 0 i 6⊂ Sact

λi ≥ 0 i ⊂ Sact
λi = 0 i 6⊂ Sact

where Mi is the ith row of the M matrix. It is
clear that if the active set were known, the original
problem could be replaced by the corresponding
problem having equality constraints only. Alterna-
tively, suppose an active set is guessed and the cor-
responding equality constrained problem is solved.
Then if the other constraints are satisfied and the
Lagrange multipliers turn out to be nonnegative,
that solution would be correct. In the case that
only equality constraints are involved, the optimal
solution has a closed-form as

[
E MT

1

M1 0

] [
θ
λ1

]
=
[−F
γ1

]
(14)

Explicitly:

λ1 =−(M1E
−1MT

1 )−1(γ1 +M1E
−1F ) (15)

θ̂=−E−1(F +MT
1 λ1) (16)



When inequality constraints are required, an iter-
ative algorithm is needed to solve the quadratic
programming problem (Luenberger1984).

4. MONTE-CARLO SIMULATION STUDY

This section is to illustrate the strength of the
proposed approach in the estimation of non-
parametric models through a Monte-Carlo simu-
lation study. The relay experiment proposed by
Astrom and Hagglund (Astrom and Hagglund,
1984) is particularly suitable for continuous time
identification as the sampling interval in the ex-
periment can be chosen as small as desired. Wang
et al. (1999) extended this experiment to in-
clude identification of more general class of models
other than simple frequency response points. The
same set of design parameters as in Wang and
Gawthrop (2000) is used here to generate the
input excitation signal. In the Monte-Carlo simu-
lation study, a white noise sequence with standard
deviation of 0.8 is used to generate e(k) and the
disturbance ξ(k) = 0.1

1−0.9z−1 . 100 realizations of
the white noise sequence are generated by chang-
ing the seed of the generator from 1 to 100.

The system used for simulation is given by the
transfer function

G(s) =
e−3s

(s2 + 0.4s+ 1)(s+ 1)3
(17)

The sampling interval for this system is ∆t = 0.1
second. The settling time Ts is estimated as 40
seconds, hence the number of samples to steady
state N = Ts

∆t = 400. By using frequency sampling
filters to parametrize this system, the number of
frequency required is 63, yielding the number of
parameters in the FSF model as n = 125. Fig-
ures 1- 3 show the magnitude and phase of the
frequency responses when estimated without con-
straints. From the distribution of the responses, it
is seen that the estimation of the non-parametric
models is unbiased. However, the variances are
large both for the frequency response and step
response. To introduce equality constraints on the
estimation, a priori knowledge about the system is
required. The a priori knowledge for this system
is assumed as time delay being approximately 1
seconds, the gain being 1, and the first pair of
frequency response Gc( 2π

Ts
) = 0.5305 − j0.8317.

The a priori knowledge about the steady state
gain of the system is translated into the constraint
on the first parameter of the FSF model while
the a priori knowledge about the frequency re-
sponse information is translated into two equality
constraints on the second and third parameters of
the FSF model. Note that a frequency information
at an arbitrary frequency can be translated into
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Fig. 1. Monte-Carlo simulation results without
constraints: estimated frequency amplitude
plot.

10
−2

10
−1

10
0

10
1

−10

−8

−6

−4

−2

0

2

Frequency (rad/sec)

Fig. 2. Monte-Carlo simulation results without
constraints: estimated frequency phase plot.
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Fig. 3. Monte-Carlo simulation results without
constraints: estimated step response plot.

constraints in a linear combination of the param-
eters of the FSF model. Similarly the a priori
information about time delay is translated into
a set of linear equality constraints in terms of the
parameters of the FSF model. Four constraints
have been put on the time delay at the sampling
instant k = 0, 3, 6, 9. The reason for not using
every sampling instant is because the solution
is ill-conditioned when constraint is imposed on
every sampling instant. As it is seen from the
Monte-Carlo simulation study, this approach is
adequate for this purpose. With the equality con-
straints imposed on the estimated parameters, the
Generalized Least Squares method is modified to
have the constraints on the system parameters,
but not on the noise model parameters. Figures 4-
6 show the magnitude and phase of the frequency
responses when estimated with constraints. In
comparison with the estimation results obtained
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Fig. 4. Monte-Carlo simulation results with con-
straints: estimated frequency amplitude plot
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Fig. 5. Monte-Carlo simulation results with con-
straints: estimated frequency phase plot
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Fig. 6. Monte-Carlo simulation results with con-
straints: estimated step response plot.

without constraints, it is seen that the results are
improved.

5. CONCLUSIONS

This paper discussed estimation of continuous
time nonparametric models with constraints, where
a priori knowledge is incorporated to improve
the estimation results. A Monte-Carlo simulation
study is used to demonstrate show the improve-
ment of the estimation in a noise environment.
The authors are currently working on analysis
of the bias and variances when constraints are
introduced in the estimation algorithm and the
extension of this estimation to continuous time
transfer function models. With recent work in un-
stable systems using FSF model (Gawthrop and
Wang, 2004), the authors envisage the extension
of this work to unstable systems.
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