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Abstract: In this paper, a new class of hybrid impulsive and switching models
are introduced. Using switched Lyapunov functions, some new general criteria for
exponential stability and asymptotic stability of hybrid impulsive and switched
nonlinear systems are established. Further more, a new hybrid impulsive and
switching control strategy for the nonlinear systems is developed to improve the
system performance. A typical example, the Chua’s chaotic circuit, is provided for
illustrating and visualizing the analytical results. Copyright c© 2005 IFAC
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1. INTRODUCTION

Hybrid systems consisting of interacting contin-
uous and discrete dynamics under certain logic
rules, have gained considerable attention in sci-
ence and engineering (Aubin et al., 2001; Bran-
icky, 1998; Decarlo et al., 2000; Ge et al., 2001;
Hespanha and Morse, 1999; Li et al., 2001; Liber-
zon and Morse, 1999; Mancilla-Aguilar, 2003),
since they provide a natural and convenient uni-
fied framework for mathematical modeling of
many complex physical phenomena and practi-
cal applications. Examples include robotics, in-
tegrated circuit design, multi-media, manufac-
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turing, power electronics, switched-capacitor net-
works, chaos generators, automated highway sys-
tems and air traffic management systems. So
far, most research work on hybrid systems has
been devoted to stability analysis and stabiliza-
tion, (Decarlo et al., 2000; Liberzon and Morse,
1999; Liberzon, 2003; Michel, 1999). Most re-
cently, on the basis of Lyapunov functions and
other analysis tools, the stability and stabilization
for linear or nonlinear switched systems have been
further investigated and many valuable results
have been obtained (Daafouz et al., 2002; Ge et
al., 2001; Ishii and Francis, 2002; Leonessa et
al., 2001; Li et al., 2001; Mancilla-Aguilar, 2003),
etc..

In general, switching systems can be classified
into two groups: continuous and discrete transi-
tion switching systems (Liberzon, 2003). However,



there are still many switching systems existing
in the real world, which display a certain kind
of dynamics with impulse effect at the switch-
ing points. Examples of these systems include
many evolutionary processes, particularly some
biological systems such as biological neural net-
works and bursting rhythm models in pathology.
Other examples include optimal control models in
economics, frequency-modulated signal process-
ing systems, and flying object motions. More-
over, impulsive and switching phenomena can
also be found in the fields of information sci-
ence, electronics, automatic control systems, com-
puter networking, artificial intelligence, robotics,
and telecommunications. All these systems are
characterized by switches of states and abrupt
changes at the switching instants, that is, the
systems switch with impulse effect (Bainov and
Simeonov, 1989; Lakshmikantham et al., 1999; Liu
and Guan, 1996). Many sudden and sharp changes
occur instantaneously, in the form of impulses and
switches, which cannot be well described by using
pure continuous or pure discrete models. There-
fore, it is very important and necessary to study
impulsive and switching systems. This motivates
the present investigation of hybrid impulsive and
switching nonlinear systems.

In this paper, the exponential and asymptotic
stabilities of hybrid impulsive and switching non-
linear systems are investigated by using switched
Lyapunov functions, and some new general stabil-
ity criteria are established. The rest of the paper
is organized as follows. In section 2, an analyti-
cal model is formulated for the hybrid nonlinear
impulsive and switching systems. Based on the
model, the exponential and asymptotic stabilities
are investigated. Numerical example is given in
section 4 to verify the analytical results, followed
by the conclusions in section 5.

2. PROBLEM FORMULATION

Let R+ = [0,+∞), J = [t0,+∞) (t0 ≥ 0),
Rn denote the n-dimensional Euclidean space.
For x = (x1, . . . , xn)> ∈ Rn, the norm of x is

‖x‖:=
( n∑

i=1

x2
i

)1/2

. For A = (aij)n×n ∈ Rn×n,

λmax(A) and λmin(A) are the maximal and the
minimum eigenvalue of A, respectively. The iden-
tity matrix of order m is denoted as Im (or simply
I if no confusion arises).

Consider the hybrid impulsive and switching sys-
tem with the following form:





ẋ = Aik
x + Fik

(t, x), t ∈ (tk−1, tk]
4x = Bkx, t = tk
x(t+0 ) = x0, k = 1, 2, · · · ,

(1)

where t ∈ J, x ∈ Rn is the state variable, Aik
and

Bk are n × n matrices, ik ∈ {1, 2, · · · ,m} is the
switching index, the time sequence {tk} satisfies

t1 < t2 < · · · < tk < · · · , lim
k→∞

tk = ∞
where t1 > t0, 4x|t=tk

= x(t+k ) − x(tk), and
Fik

(t, x) : J×Rn 7−→ Rn are piecewise continuous
vector-value functions with Fik

(t, 0) ≡ 0, t ∈ J .

It is obvious that, system (1) has m different
modes, that is,

ẋ = Aix + Fi(t, x), i = 1, 2, · · · ,m, (2)

switching in the interval J . For any t ∈ J , let
Ti(t0, t) be the union of the small switching inter-
vals included in [t0, t], on which, the correspond-
ing ith subsystem (2) is activated. Then the first
equation of system (1) can be rewritten as

ẋ = Aix + Fi(s, x), s ∈ Ti(t0, t), t ∈ J, (3)

where i = 1, 2, · · · ,m,
m⋃

i=1

Ti(t0, t) = [t0, t].

System (1), in some sense, is a general framework
for nonlinear hybrid models, which includes some
well-known models as its special cases. For in-
stance, in system (1), if Bk ≡ 0, then it turns
into

ẋ = Aik
x + Fik

(t, x), t ∈ (tk−1, tk], (4)

with ik ∈ {1, 2, · · · ,m}, which is a typical non-
linear switching system. Stability of the sys-
tems, similar to system (4), has been investigated
(Decarlo et al., 2000; Liberzon and Morse, 1999;
Liberzon, 2003; Michel, 1999).

Similarly, if m = 1, the system (1) becomes




ẋ = Ax + F (t, x), t ∈ (tk−1, tk]
4x = Bkx, t = tk
x(t+0 ) = x0, k = 1, 2, · · · ,

(5)

which is a typical nonlinear impulsive system.
Stability of system (5) has been extensively stud-
ied (e.g., (Bainov and Simeonov, 1989; Guan et
al., 2000; Khadra et al., 2003; Lakshmikantham
et al., 1999; Liu and Guan, 1996) and some refer-
ences therein) .

Also, if Bk ≡ 0 and m = 1, the system (1) reduces
to a general nonlinear system

ẋ = Ax + F (t, x).

A typical characteristic of the nonlinear hybrid
system (1) that differs from most existing models
(see, surveys (Decarlo et al., 2000; Liberzon and
Morse, 1999; Liberzon, 2003; Michel, 1999) and
the references therein) is its discontinuity in the
form of impulses and switches. Therefore, to en-
sure that it can be successfully used to describe
and to deal with various impulsive and switching
phenomena, especially some evolution processes
involving impulses and switches in the real world
(Bainov and Simeonov, 1989; Lakshmikantham et



al., 1999), a detailed investigation of this new
model is essential.

In what follows, the globally asymptotic and expo-
nential stability of the hybrid model (1) is studied.

3. STABILITY ANALYSIS

Lemma 3.1. If P ∈ Rn×n is a positive definite
matrix, Q ∈ Rn×n is a symmetric matrix, then

λmin(P−1Q)x>Px ≤ x>Qx ≤ λmax(P−1Q)x>Px

for any x ∈ Rn.

Lemma 3.2. If P ∈ Rn×n is a positive definite
matrix, F (t, x) ∈ Rn and ‖F (t, x)‖ ≤ L(t)‖x‖,
where x ∈ Rn, t ∈ J , and L(t) ≥ 0, then

F>(t, x)Px ≤ [λmax(P )/λmin(P )]
1
2 L(t)x>Px.

For the asymptotic properties of the hybrid sys-
tem (1), assume that, for t ∈ J, x ∈ Rn, there
exist continuous functions ϕi(t) ≥ 0 and positive
definite matrices Pi, such that

F>i (t, x)Pi x ≤ ϕi(t)x>Pix, i = 1, 2, · · · ,m. (6)

Furthermore, for convenience, define the follow-
ing functions λi(t) and parameters βk and ρ by
inequalities and equalities:

λmax

[
P−1

i (A>i Pi + Pi Ai)
]

+ 2ϕi(t) ≤ λi(t), (7)

λmax

[
(I + Bk)>(I + Bk)

]
≤ βk, (8)

ρ = max
1≤i≤m

{ ρ2
i }, ρi = [λmax(P )/λmin(P )]

1
2 (9)

where i = 1, 2, · · · ,m, k = 1, 2, · · · .

Remark 3.1. In general, for nonlinear functions
Fi(t, x), one has the Lipschitz assumption, that is,
for x ∈ Rn, t ∈ J , there exist continuous functions
Li(t) ≥ 0 satisfying

‖Fi(t, x)‖ ≤ Li(t)‖x‖, i = 1, 2, · · · ,m.

This immediately implies from Lemma 3.2 that
the Lipschitz assumption is a special case of (6).

Theorem 3.1. (i) If λi(t) ≤ −λi < 0, λi > 0 are
constants, i = 1, 2, · · · ,m, and there exists a
constant 0 < α < λi, i = 1, 2, · · · ,m, such
that

ln(ρ βk)− α(tk − tk−1) ≤ 0, k = 1, 2, · · ·(10)

then the trivial solution of system (1) is glob-
ally exponential stable, where λi(t), βk, and
ρ are given by (7), (8), and (9), respectively.

(ii) If 0 ≤ λi(t) ≤ λ(t), i = 1, 2, · · · ,m, and there
exists a constant α ≥ 1 such that

ln(αρ βk) +

tk+1∫

tk

λ(s)ds ≤ 0, k = 1, 2, · · · (11)

then α = 1 implies that the trivial solution
of system (1) is stable and α > 1 implies that
the trivial solution of system (1) is globally
asymptotical stable, where λi(t), βk, and ρ
are given by (7), (8), and (9), respectively.

Proof. Construct the switched Lyapunov func-
tion in the form of

Vik
(x) = x> Pik

x, ik ∈ {1, 2, · · · ,m}, (12)

where Pik
is a positive definite matrix given by

(6), and let Vik
(t) =: Vik

(x(t)). Since Eqs. (6) and
(7) hold, from Lemma 3.1, the total derivative of
Vik

(x), with respect to (1), is

V̇ik
(x(t))

∣∣∣
(1)

=
[
Aik

x + Fik
(t, x)

]>
Pik

x + x>Pik

[
Aik

x

+Fik
(t, x)

]

= x>
[
A>ik

Pik
+ Pik

Aik

]
x + 2F>ik

(t, x)Pik
x

≤
{

λmax

[
P−1

ik
(A>ik

Pik
+ Pik

Aik
)
]

+ 2ϕi(t)
}
·

x>Pik
x

≤ λik
(t)Vik

(t), t ∈ (tk−1, tk],

which implies that, for t ∈ (tk−1, tk],

Vik
(t) ≤ Vik

(t+k−1) exp
[ t∫

tk−1

λik
(s)ds

]
, (13)

where k = 1, 2, · · ·, λik
(t) is given by Eq. (7). It

immediately follows from (13) that,

x>(t)Pik
x(t)≤ x>(t+k−1)Pik

x(t+k−1)

× exp
[ t∫

tk−1

λik
(s)ds

]
, t ∈ (tk−1, tk],

which leads to

λmin(Pik
)x>(t)x(t)

≤ λmax(Pik
)x>(t+k−1)x(t+k−1) exp

[ t∫

tk−1

λik
(s)ds

]
,

or,

w(t) ≤ ρw(t+k−1) exp
[ t∫

tk−1

λik
(s)ds

]
, (14)

where t ∈ (tk−1, tk], ρ is defined in (9), and

w(t) = x>(t)x(t). (15)

On the other hand, it follows from (1) that



w(t+k ) =
[
(I + Bk)x(tk)

]>
(I + Bk)x(tk)

≤ λmax

[
(I + Bk)>(I + Bk)

]
x>(tk)x(tk)

≤ βkw(tk), k = 1, 2, · · · , (16)

where βk ≥ 0 is given by Eq. (8).

By Eqs. (14) and (16), it is easy to get that, for
t ∈ (tk, tk+1],

w(t)≤w(t+0 )ρk+1 β1 · · ·βk exp
[ t1∫

t0

λi1(s)ds

+

t2∫

t1

λi2(s)ds + · · ·+
t∫

tk

λik+1(s)ds
]
. (17)

(i) When λi(t) ≤ −λi < 0, i = 1, 2, · · · ,m, let
λ = min

1≤i≤m
{λi}, it follows from (16) and (17) that

w(t)≤w(t+0 )ρk+1 β1 · · ·βk ×
e−λi1 (t1−t0)−λi2 (t2−t1)−···−λik

(tk−tk−1)−λik+1 (t−tk)

≤w(t+0 )ρk+1 β1 · · ·βke−λ(t−t0)

= w(t+0 )ρk+1 β1 · · ·βke−α(t−t0)e−(λ−α)(t−t0)

≤w(t+0 )ρk+1 β1 · · ·βke−α(tk−t0)e−(λ−α)(t−t0)

= w(t+0 )ρ β1e
−α(t1−t0) · · ·

× ρ βke−α(tk−tk−1)ρ e−(λ−α)(t−t0)

≤w(t+0 )ρ e−(λ−α)(t−t0), t ∈ (tk, tk+1],

namely,

w(t) ≤ w(t+0 )ρ e−(λ−α)(t−t0), t ≥ t0,

which implies that the trivial solution of system
(1) is globally exponential stable.

(ii) When 0 ≤ λi(t) ≤ λ(t), i = 1, 2, · · · ,m, it
follows from (11) and (17) that, for t ∈ (tk, tk+1],

w(t)≤w(t+0 )ρk+1 β1 · · ·βk exp
[ t1∫

t0

λi1(s)ds

+

t2∫

t1

λi2(s)ds + · · ·+
tk+1∫

tk

λik+1(s)ds
]

= w(t+0 )
ρ

αk
exp

[ t1∫

t0

λ(s)ds
]
αρβ1

× exp
[ t2∫

t1

λ(s)ds
]
· · ·αρβk exp

[ tk+1∫

tk

λ(s)ds
]

≤w(t+0 )
ρ

αk
exp

[ t1∫

t0

λ(s)ds
]
,

which implies that the conclusion (ii) of Theorem
3.1 holds. This completes the proof. ♦

Remark 3.2. In the case of (ii) in Theorem 3.1,
the condition λi(t) ≥ 0 implies that the stability
for switching subsystem (2) is not necessary, that
is, each switching subsystem ẋ = Aix + Fi(t, x)
may be unstable, but the corresponding hybrid
impulsive and switching system (1) is asymptoti-
cally stable.

It is observed that, the λ1(t), λ2(t), · · · , λm(t) may
not be all positive or negative in small switching
intervals. To cover this situation, the asymptotic
properties of the hybrid system (1) are further
considered.

Theorem 3.2. Assume that the impulsive switch-
ing of system (1) satisfies βk ≤ β, k = 1, 2, · · ·,
and

m∑

i=1

∫

Ti(t0,t)

λi(s)ds ≤ ψ(t0, t), t ≥ t0, (18)

where Ti(t0, t) is defined in (3), ψ(t0, t) is a func-
tion on J , λi(t) and βk are given by (7) and (8),
respectively, then the following conclusions hold.

(i) If ρβ ≤ 1, ρ is defined by (8), then

lim
t→+∞

ψ(t0, t) = −∞ (19)

implies that the trivial solution of system (1)
is globally asymptotical stable, and

ψ(t0, t) ≤ −c(t− t0), t ≥ t0 (20)

with c > 0 being constant, implies that
the trivial solution of system (1) is globally
exponential stable.

(ii) If ρβ > 1, ρ is defined by (8), tk− tk−1 ≥ δ >
0, k = 1, 2, · · ·, then

lim
t→+∞

[ ln(ρβ)
δ

(t− t0) + ψ(t0, t)
]

= −∞ (21)

implies that the trivial solution of system (1)
is globally asymptotically stable, and

ln(ρβ)
δ

(t− t0) + ψ(t0, t) ≤ −c(t− t0), (22)

with t ≥ t0, c > 0 being constant, implies
that the trivial solution of system (1) is
globally exponentially stable.

Remark 3.3. In Theorems 3.1-3.2, if we choose all
the switching intervals to be equivalent, that is,
tk − tk−1 = τ = constant, k = 1, 2, · · ·, then the
corresponding conditions are easier to verify.

For system (1), if {i1, i2, · · · , im} = {1, 2, · · · ,m}
and Aik+m

= Aik
, Fik+m

(t, x) = Fik
(t, x), k =
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Fig. 1. Chaotic behavior of Chua’s circuit

1, 2, · · ·, then it is called a hybrid impulsive and
periodic switching system, or system (1) has a
periodic switching law. In this case, we have the
further results.

Corollary 3.1. Assume that system (1) is a hybrid
impulsive and periodic switching system with tk−
tk−1 = τk, τk+m = τk, βk ≤ β, k = 1, 2, · · ·,
and λi(t) ≤ λi, i = 1, 2, · · · ,m, τk, β, and λi are
constants. Then

m ln(ρβ) + λ1τ1 + · · ·+ λmτm < 0

implies that the trivial solution of system (1) is
globally asymptotical stable, where βk, λi(t), and
ρ are given by (7), (8), and (9), respectively.

4. APPLICATION TO CHAOTIC CONTROL

Consider Chua’s circuit (Chua et al., 1986):



ẋ1 = p(x2 − x1 − g(x1))
ẋ2 = x1 − x2 + x3

ẋ3 = −qx2,
(23)

where p > 0, q > 0, g(x1) is a piecewise linear
function given by

g(x1) = ax1 +
1
2
(b− a)(|x1 + 1| − |x1 − 1|),

with b < a < 0. The Chua’s circuit is a typical
chaotic system. Let p = 10, q = 14.87, a = −0.68,
and b = −1.27, for instance, the system has a
double scroll chaos attractor (Fig.1).

Rewrite system (23) as
ẋ = Ax + f(x), (24)

where x = (x1, x2, x3)>, f(x) = (−pg(x1), 0, 0)>,
and

A =



−p p 0
1 −1 1
0 −q 0


 .

The controlled system can be described as
ẋ = Ax + f(x) + u(t, x) (25)

where u(t, x) is the controlled input. We construct
a hybrid impulsive and switching controller u =
u1 + u2 for system (25) as follows:

u1(t) =
∞∑

k=1

Bik
x(t) lk(t),

u2(t) =
∞∑

k=1

B2kx(t)δ(t− tk),

where Bik
and B2k are 3 × 3 constant matrices,

Bik
∈ {B1, B2, · · · , Bm}, δ(·) is the Dirac impulse,

lk(t) = 1 as tk−1 < t ≤ tk, and otherwise,
lk(t) = 0 with discontinuity points

t1 < t2 < · · · < tk < · · · , lim
k→∞

tk = ∞,

t1 > t0, t0 ≥ 0 is the initial time.

Moreover, it can be seen that, the hybrid impul-
sive and switching controlled system (25) has the
following form:





ẋ = (A + Bik
)x + f(x), t ∈ (tk−1, tk]

4x = B2kx, t = tk
x(t+0 ) = x0, k = 1, 2, · · · ,

(26)

with 4x(tk) = x(t+k )− x(tk).

For system (26), if Pi ≡ I, then f>(x)x ≤
p|b|x>x, that is, in (6), ϕi(t) = p|b|, i =
1, 2, · · · ,m. Let τ = tk − tk−1

λmax{(A + Bi)> + (A + Bi)}+ 2p|b| ≤ λi, (27)

λmax{(I + B2k)>(I + B2k)} ≤ βk, (28)

where i = 1, 2, · · · ,m, k = 1, 2, · · · .
The corresponding results of Theorem 3.1, 3.2,
and Corollary 3.1 easily follow.

For Chua’s controlled system (26) with p = 10,
q = 14.87, a = −0.68, and b = −1.27, if one
chooses m = 2,B2k = diag{−0.86,−0.98,−0.78},

B1 =




9 −16 0
−22 −30 0
0 0 0


 , B2 =




0 10 0
−38 0 0
0 0 0


 ,

then it is easy to calculate and obtain

λ1 = 36.4824, λ2 = 42.4678, β = 0.0484.

If one takes τ = 0.05, then

2 ln(β) + (λ1 + λ2)τ = −2.1090 < 0,

which implies, from Corollary 3.1, that the trivial
solution of the controlled system (26), with the
parameters p = 10, q = 14.87, a = −0.68, and
b = −1.27, is asymptotically stable, that is, the
Chua’s circuit (23) is stabilized. The simulation
result shown in Fig.2, indicates that the new hy-
brid impulsive and switching control strategy has
many advantages, such as less time, less energy,
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Fig. 2. The trajectories of the controlled system

and more flexible design, to achieve stabilization
than the individual single continuous control, dis-
crete control, impulsive control, or switching con-
trol in (Li et al., 2001).

5. CONCLUSIONS

In this paper, some new criteria for exponential
stability and asymptotic stability of a class nonlin-
ear hybrid impulsive and switching systems have
been derived. Further more, a new hybrid impul-
sive and switching control strategy for nonlinear
systems is developed. The research work should
help to better understand the stability behavior
of the nonlinear hybrid impulsive and switching
systems.
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