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Abstract: It is known that if state spaces of control systems are not contractible, the
systems are not globally asymptotically stabilizable by using C1 feedback laws. We
set multiple singular points of a flow to solve the topological obstruction. Given
Morse functions satisfying conditions of the control Lyapunov function except
for the singular points, this paper propose a globally asymptotically stabilizing
feedback laws of systems on manifolds. Copyright c⃝2005 IFAC
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1. INTRODUCTION

This paper study the global asymptotic stabiliza-
tion of nonlinear control systems on manifolds by
using the idea of the control Lyapunov function
and assigning multiple singular points.

For nonlinear control systems, the control Lya-
punov function (CLF) is useful for establishing
that controlled systems are asymptotically stable
(Sontag, 1989; Malisoff and Sontag, 2000). A sta-
bilizing feedback law that is nonsmooth at only
the origin can be derived from the CLF for control
affine systems.

However, it is known that if flows on a smooth
manifolds have only one asymptotically stable
point, the manifolds are diffeomorphic to Rn

(Milnor, 1964), and if state spaces of control sys-
tems are not contractible, then the systems are not
globally asymptotically stabilizable by using C1

feedback law (Sontag, 1998). Hence the systems
with noncontractible state spaces have no CLF.

The design method for gradient-like Morse-Smale
controlled systems deals with the almost every-
where global asymptotic satbilization problem

of control systems on manifolds(Enomoto and
Shima, 1998a). The systems are said almost ev-
erywhere globally asymptotically stable to the
origin, if all trajectories but a reduced set of
zero Lebesgue measure converge asymptotically to
the origin. In this design method, the topological
obstructions are solved by the assignment of mul-
tiple singular points of gradient-like Morse-Smale
flows to a global compact attractor. The gradient-
like Morse-Smale flow is the flow such that the
chain recurrent sets consist of finite number of
hyperbolic singular points and each pair of stable
and unstable manifolds of the singular points is
transverse (Clark, 1999).

The assignment of singular points is determined
by using the theory of the configuration space
(Enomoto and Shima, 2003c; Enomoto and Shima,
2003d), the Poincaré-Hopf index formula (Enomoto
and Shima, 2003a; Enomoto and Shima, 2003b)
and the topological structures of flow that al-
low global asymptotic stability (Enomoto and
Shima, 1998b; Enomoto et al., 2004).

In this paper, given a singular point assignment,
an extended CLF admitting the multiple singular



points is defined. We show that the extended CLF
can derive a globally asymptotically stabilizing
feedback law.

2. PRELIMINARIES

2.1 Description of the system

Throughout this paper, control systems are de-
scribed by the following equation:

ẋ = f(x, u) = f0(x) + g(x)u, (1)

where x ∈ X denotes the state and u ∈ U the
scalar input. It is assumed that the vector fields
f0 and g are smooth, X is an n dimensional
smooth manifold, U is a 1 dimensional manifold
and U = R, where R represents the real numbers.

The state feedback law is considered as

u = k(x). (2)

This feedback law is discontinuous on the union
of the submanifolds:

S := S1 ∪ S2 ∪ · · · ∪ Sm, (3)
Si := {x ∈ X|φi(x) = 0}, (4)

where φi(x) is a smooth function, ∇φi(x) ̸= 0 for
any x ∈ Si and Si intersects transversely with Sj

for each i, j. The subset S is called the switching
surface. The switching surface divides X into two
subsets:

G+ := {x ∈ X|φ(x) > 0},
G− := {x ∈ X|φ(x) < 0},

(5)

where φ(x) := φ1(x) · · ·φm(x). The feedback law
(2) is smooth in each subset G+ or G−.

In this paper, cl(A) denotes the closure of a set
A, int(A) the interior of a set A, co(A) the convex
hull of a set A, ∂A the boundary of a manifold A,
and A\B the complement set of B with respect
to A.

2.2 Definition of the solution

The controlled system with a discontinuous feed-
back law k is an ordinary differential equation
with discontinuous right hand side:

ẋ = f(x, k(x)). (6)

Filippov defined solutions of Eq. (6) as trajectories
x(t) satisfying the differential inclusion (Filippov,
1988) :

ẋ ∈ F (x) := {f(x, u)|u ∈ K(x)} (7)

for almost every t, where K is the set-valued
mapping

K(x) :=
⋂

ε>0

⋂

µ(N)=0

cl(co(k(Bε(x)\N))). (8)

Here Bε(x) is open ball of radius ε > 0 centered
at x, N any subset, and µ(N) a measure of N .

Because Eq. (1) is linear with respect to the scalar
input, F (x) is nonempty, convex, bounded and
closed set for all x ∈ X. It is obvious also that F
is upper semi-continuous because of the definition
of K(x). Then, solutions for Eq. (7) exist, though
their uniqueness do not always hold.

For x̄ ∈ Si, x
+ ∈ {x|φi(x) > 0}, x− ∈ {x|φi(x) <

0}, the limits of the vector fields at x̄ are

f+
i (x̄) := lim

x+→x̄
∇φi(x+) · f(x+, k(x+)), (9)

f−
i (x̄) := lim

x−→x̄
∇φi(x−) · f(x−, k(x−)). (10)

If f+
i (x̄) < 0 and f−

i (x̄) > 0, the solutions con-
verge to Si in a neighborhood of x̄. The solutions
are called the sliding mode on Si at x̄. If f+

i (x̄) > 0
and f−

i (x̄) < 0, they are called the repelling mode
on Si at x̄. The solutions starting going off Si at
x̄ exist in the repelling mode on Si.

Filippov’s definition is inconvenient for our pur-
pose, because it can contain stationary solutions
in the repelling mode. In this paper, we propose
a new definition of the solutions of Eq. (6) for the
interval [0,∞).

Definition 1. If the repelling mode on Si at x̄ ∈ Si

occurs, the solutions starting from x̄ of Eq. (6)
for small positive time are defined by Filippov’s
except for solutions remaining in Si. In the other
cases, we use the Filippov’s solutions.

If there exists no repelling mode at any x̄ ∈ S, the
above definition is equal to Filippov’s definition.

We define singular points including stationary
points of flows.

Definition 2. We call a point x∗ the singular point
of the controlled system (6), if 0 ∈ F (x∗).

Let x∗ ∈ ∩m̄
j=1Sij be a singular point for m̄ ≤ m.

If the sliding mode on all Sij at x∗ occurs, at least
one solution starting from x∗ is stationary. If the
repelling mode on Sij for j happens, there is no
stationary solution in x∗.

We adopt the following definition of asymptotic
stability of the singular point: If for a singu-
lar point any solution having any initial state
in a neighborhood of the singular point is at-
tracted to the singular point without excursion,
the singular point is locally strongly asymptoti-
cally stable(Clarke, 1998).



3. INTRODUCTION OF THE SINGULAR
POINT ASSIGNMENT

In this section, we study the problem of singular
point assignment. The singular point assignment
is useful in constituting Lyapunov functions on X
in order to deal with the stabilization problem of
the systems on manifolds.

Gradient-like Morse-Smale flows on C∞ com-
pact manifolds have Lyapunov-Morse functions
(Smale, 1961; Franks, 1979). The Lyapunov-
Morse function for the flow ψ : X × R → X is
defined by Morse functions V satisfying

• for any x ∈ X except all singular points, t
and s > 0,

V (ψ(x, t)) > V (ψ(x, t + s)), (11)

• the critical points of V coincide with the
singular points of the flow.

Morse functions are the smooth functions with
non-degenerate critical points(Milnor, 1963). Then,
we consider the gradient-like Morse-Smale flows
that are suitable for the control systems from two
viewpoints.

The first is global topological structures of flows
on X. Assume that a gradient-like Morse-Smale
flow on X has one stable point, the number of the
singular points with the ν-dimensional unstable
manifold is represented by lν , and M is a compact
attractor that contains all singular points and
is homotopy equivalent to X. Then, the relative
Poincaré-Hopf index formula holds (Pugh, 1968):

χ(M,∂M) = l0 − l1 + l2 − · · · + (−1)nln, (12)

where χ(M,∂M) is the Euler characteristic of the
pair of compact manifolds (M, ∂M), χ(M, ∂M) =
χ(M)−χ(∂M), and χ(◦) denotes the Euler char-
acteristic of a compact manifold ◦.

The second is the existence of smooth feedback
laws in a neighborhood of the singular point of the
gradient-like Morse-Smale flow. For any singular
point of the flow, there must exist feedback laws
such that the point is a hyperbolic singular point
with corresponding unstable manifold for the con-
trolled system.

For gradient-like Morse-Smale flows with one sta-
ble singular point p(0) ∈ X and the pair of singular
points satisfying Eq. (12), the pair is called the
specification of singular point assignment of the
control system for the flows:

L = {l0, l1, . . . , ln; p(0)}. (13)

There are Lyapunov-Morse functions for a gradient-
like Morse-Smale flow such that all critical points
correspond to the singular points of the flow. In
the next section, we use the function to extend
the definition of CLF.

4. GLOBAL ASYMPTOTIC STABILIZATION

Assume that a specification of singular point as-
signment and locations of the singular points of
the flows are given for a gradient-like Morse-Smale
flow. The points are called the desired singular
points.

This section discusses the global asymptotic stabi-
lization of the system by using an extended control
Lyapunov function.

4.1 Definition of control Lyapunov-Morse function

The original CLF is applicable to global asymp-
totic stabilization, only if the controlled system
has a single stable singular point. We extend
CLF to global stabilization to the origin of the
controlled system with multiple singular points
by using a Lyapunov-Morse function the critical
points of which are equal to the desired singular
points.

Definition 3. Let a specification of singular point
assignment and the locations of the singular
points be determined. The control Lyapunov-
Morse function (CLMF) is defined by the Morse
function V satisfying the following:

• The function V is smooth, positive definite
and proper. V is said to be proper, if the
subsets

{x ∈ X|V (x) ≤ α} (14)

are bounded for every α ≥ 0 .
• Except the desired singular points,

LgV (x) = 0 ⇒ Lf0V (x) < 0. (15)

• Any desired singular point p is identical with
a critical point of V :

∂V

∂x
(p) = 0. (16)

• For each critical point p on V , the number of
the eigenvalues with negative real part of the
Hessian of V at p is equal to the dimension of
the unstable manifold of the desired singular
point p.

Because of the definition of CLMF, the critical
points are equal to the desired singular points.

The CLMF is identified as the original CLF, if
the controlled system has a single stable singular
point.

4.2 Designing a stabilizing feedback law

Given a CLMF V such that the set S :=
{x|LgV (x) = 0} is regarded as the union of



submanifolds Si defined by Eq. (4), the following
feedback law is defined:

k(x) := kS(x) + V (x)kD(x), (17)

where for a constant α > 0, kS and kD is described
below:

kS :=





−
Lf0V +

√
(Lf0V )2 + (LgV )4

LgV
,

if LgV ̸= 0
0, if LgV = 0,

(18)
kD := −αsign(LgV ), (19)

sign(LgV ) :=

{
1, LgV > 0
−1, LgV < 0

. (20)

The first term kS is a stabilizing formula (Sontag,
1989) and may be discontinuous at x satisfying
LgV (x) = 0. The second term kD has discon-
tinuity on the switching surface. Therefore, k is
smooth on X\S.

Theorem 4. Assume that for any critical point p
of V , f0(p) = 0 and g(p) ̸= 0. Then, the controlled
system with k has the following properties:

(1) The critical points of V are equivalent to the
singular points of the controlled system.

(2) V strictly decreases along the trajectories
of the controlled system except the critical
points.

(3) The origin is locally strongly asymptotically
stable.

Before proving the theorem, we remark that the
next lemma holds.

Lemma 5. Let V be a CLMF. If for any critical
point p of V , f0(p) = 0 and g(p) ̸= 0. Then, V sat-
isfies the small control property in a neighborhood
of p.

PROOF. At first, the equivalence of the critical
points and singular points is proven. If p is a
critical point, then Lf0V (p) = LgV (p) = 0. The
controlled system is

f(p, k(p)) = g(p){kS(p) + V (p)kD(p)}. (21)

Because of the small control property, kS is con-
tinuous on X and equals zero on S. Then the right
hand side of Eq. (7) includes zero:

{f(p, u)|u ∈ [−αV (p), αV (p)]} ∋ 0. (22)

By the definition, p is a singular point.

Let q be a singular point of the controlled system:

F (q) ={f(q, u)|u ∈ cl(co(k(q)))} ∋ 0. (23)

Then, the following equation holds:{
∂V

∂x
(q) · v

∣∣∣∣ v ∈ F (q)
}

∋ 0. (24)

For any point x such that LgV (x) ̸= 0, F is a
single valued function and

∂V

∂x
(x) · F (x) < 0. (25)

Hence, there is no singular point on X\S. For
x ∈ S,

∂V

∂x
(x) · F (x) = −

√
(Lf0V (x))2. (26)

Because for any singular point q Eq. (24) holds,
Lf0V (q) = LgV (q) = 0 must be satisfied. It
is clear that if q is a singular point, then q is
the critical point by the definition of the CLMF.
Therefore, the critical points are equivalent to the
singular points.

It is obvious that for any x ∈ X

max
v∈F (x)

(
∂V

∂x
· v

)
≤ 0. (27)

Because the equation equals zero, only if Lf0V (x′) =
LgV (x′) = 0, V strictly decreases along the tra-
jectories except the singular points.

The origin is locally strongly asymptotically sta-
ble, since V is a local Lyapunov function on the
controlled system in a neighborhood of the origin.
¤

4.3 Conditions for global asymptotic stability

If a CLMF satisfies the next condition, the re-
pelling mode on S occurs at any singular point
except the origin for Eq. (6), i.e. the origin is
globally asymptotically stable.

Theorem 6. Let the assumption of theorem 4
hold. If gT (p)∂2V

∂x2 (p)g(p) is negative for any sin-
gular point p except the origin, then the origin is
globally asymptotically stable.

PROOF. That the controlled system has the
strict Lyapunov function V decreasing along the
trajectory except the singular points has been
proven.

We study the dynamics on S, because all singular
points are on S. We regard LgV as a new coordi-
nate. The dynamics of LgV is the following:

d

dt
(LgV (x)) = Lf0LgV (x) + L2

gV (x)u. (28)

The equivalent control ueq represents the input
such that Eq. (28) is equal to zero when L2

gV ̸= 0
(Utkin, 1977):

ueq(x) := −Lf0LgV (x)
L2

gV (x)
. (29)

Substituting the feedback law(17) into Eq. (28),



d

dt
(LgV ) = Lf0LgV + L2

gV {kS + V kD}

= −L2
gV {ueq − kS + αV sign(LgV )}.

(30)
The equation implies that the stability of LgV
depends on αV − |ueq − kS | and L2

gV . Let αV −
|ueq − kS | be positive. If L2

gV is positive, the
dynamics of LgV is asymptotically stable. If L2

gV
is negative, it is unstable.

The limits of vector field are

f+
i (x̄) = −L2

gV (x̄){ueq(x̄) − kS(x̄) + αV (x̄)},
(31)

f−
i (x̄) = −L2

gV (x̄){ueq(x̄) − kS(x̄) − αV (x̄)},
(32)

at x̄ ∈ Si satisfying L2
gV (x̄) ̸= 0.

For any singular point p

L2
gV (p) = gT (p)

∂2V

∂x2
(p)g(p). (33)

The inequality gT (p)∂2V
∂x2 (p)g(p) < 0 is suffi-

cient to happen the repelling mode at any sin-
gular point p except the origin, because ueq(p) =
kS(p) = 0 and αV (p) > 0. Then, no existence of
the solutions remaining in S follows from the def-
inition of solutions. The origin is globally asymp-
totically stable. ¤

5. EXAMPLE

In this section, we study the problem of the global
stabilization to the origin of the system;

θ̇ = ω,

ω̇ = g sin θ − ζω + u,
(34)

where g = 10, ζ = 0.1.

If the number of rotations of θ is available, θ is
an element of R and the exact linearization of
Eq. (34) is solvable. However, if the number is
not available, the state space is homeomorphic to
S1 × R. Then, the system can not be linearized,
and no original CLF exists.

The controlled system must satisfy the following
properties from the solution of the problem of
singular point assignment:

• For any singular point, ω = 0.
• Because χ(M, ∂M) = 0, the relative Poincaré-

Hopf index formula derives

l0 − l1 + l2 = 0. (35)

From the above, L = {1, 1, 0, p1} can be chosen
as the specification of singular point assignment.
The stable singular point p1 is assigned to the
origin and the saddle singular point p2 is assigned
to (π, 0).

Fig. 1. V on X

Fig. 2. Levelset of V on X

5.1 Stabilization by using a CLMF

The following function V is a candidate of CLMF:

V (x) = 1−cos θ+
1
4
(ω2−1)2(1−cos θ)+

1
2
(ω+sin θ)2.

(36)
Figure 1 illustrates V on X, and Fig.2 shows the
levelset of V . V is smooth, positive definite and
proper.

LgV is expressed by

LgV (x) = ω(ω2 − 1)(1 − cos θ) + ω + sin θ. (37)

Figure 3 illustrates Lf0V on S. The solutions of
Lf0V = 0 are only (0, 0) and (π, 0). It follows from
Fig.3 that except for the desired singular points,
the following holds:

LgV (x) = 0 ⇒ Lf0V (x) < 0. (38)

Because the critical points of V are (0, 0) and
(π, 0), the desired singular points are identical
with the critical points.

The eigenvalues of the Hessian of V at p1

are {2.80425, 0.445752} and those at p2 are
{−1.693, 0.443}. The dimension of the unstable
manifold of each desired singular point is equiva-
lent to the number of the eigenvalues with nega-
tive real part.

V satisfies the conditions of the CLMF.
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Fig. 3. LfV on S
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Fig. 4. Phase space of the controlled system with
u = k(x) for V (x) and S

The repelling mode on S occurs at p2 and
the sliding mode on S occurs at p1, because
gT (p1)∂2V

∂x2 (p1)g(p1) = 1, gT (p2)∂2V
∂x2 (p2)g(p2) =

−1. Therefore, the origin of the controlled system
with the feedback law (17) is globally asymptoti-
cally stable.

Figure 4 indicates the simulation result for the
feedback law (17) for α = 1. The repelling mode
on S happens at p2, and the sliding mode at p1.

6. CONCLUSIONS

We have defined the control Lyapunov-Morse
function for a specification of singular point as-
signment and the location of the singular points.

Given the control Lyapunov-Morse function, a
feedback law (17) was defined. We have shown
that if for each singular point except the origin
gT ∂2V

∂x2 g is negative, the controlled system with
the feedback law is globally asymptotically stable
to the origin.
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