
EMPIRICAL RESULTS ON CONVERGENCE
AND EXPLORATION IN APPROXIMATE

POLICY ITERATION

Niket S. Kaisare ∗ Jong Min Lee ∗ Jay H. Lee ∗,1

∗ School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract: In this paper, we empirically investigate the convergence properties of
policy iteration applied to the optimal control of systems with continuous state and
action spaces. We demonstrate that policy iteration requires lesser iterations than
value iteration to converge, but requires more function evaluations to generate
cost-to-go approximations in the policy evaluation step. Two different alternatives
to policy evaluation, based on iteration over simulated states and simulation of
improved policies are presented. We then demonstrate that the λ-policy iteration
method, with λ ∈ [0, 1], is a tradeoff between value and policy iteration. Finally,
the issue of exploration to expand the coverage of the state space during offline
iteration is also considered. Copyright c©2005 IFAC

1. INTRODUCTION

Dynamic Programming (DP), introduced by Bell-
man (1957), generated a lot of interest as it pro-
vides a theoretically sound framework for solving
multi-stage dynamic optimization problems. Such
stagewise optimization is encountered in opti-
mal control problems, Markov Decision Processes,
planning and scheduling, etc. DP aims to charac-
terize the optimal solution to the dynamic opti-
mization in the form of “cost-to-go” or “value”
function, which expresses the desirability of any
state x in the state space with respect to the long-
term performance that can be achieved.

While DP is an elegant method, its suffers
from the curse of dimensionality, a term used
to indicate that the method is computationally
intractable for even moderate-sized real prob-
lems. Researchers working in artificial intelligence
and operations research areas developed various
methods to alleviate the curse of dimensional-
ity. These are collectively referred to as Rein-

1 Corresponding author: jay.lee@chbe.gatech.edu

forcement Learning (Sutton and Bartow, 1998)
and Neuro-Dynamic Programming (Bertsekas and
Tsitsiklis, 1996). According to Sutton and Bartow
(1998), the main idea of these methods is that
they aim to obtain good suboptimal solutions to
the DP problem, starting with suboptimal policies
and suboptimal cost-to-go function, iteratively us-
ing each to improve the other.

Of particular interest in this paper is simulation-
based approximate policy iteration. Policy itera-
tion, often attributed to Howard (1960), gener-
ates an improving sequence of policies from the
corresponding cost-to-go functions, followed by
updating the cost-to-go function by evaluating
the generated policy. An alternative to the policy
iteration is the value iteration, also referred to as
the method of successive approximation, which
amounts to iterative substitution of the value
function based on Bellman’s optimality equation.
We previously reported some successes in apply-
ing approximate value iteration algorithm to sev-
eral interesting process control problems (Kaisare
et al., 2003; Lee, 2004; Lee et al., 2004). Our
aim is to compare these two approaches. Recently,

Santos and Rust (2004) proved that under cer-
tain regularity conditions, policy iteration shows
superlinear or quadratic rate of convergence. In
contrast, value iteration has only a linear rate
of convergence. De Farias and Van Roy (2000)
argued that approximate value iteration need not
converge under some cases. Based on their studies
of temporal difference learning (which, like policy
iteration, iterates in the policy space), they sug-
gested a variation of approximate value iteration
that is guaranteed to converge.

In this paper, we aim to compare the convergence
properties of policy iteration. We show that policy
iteration converges faster than value iteration; but
we demonstrate a case in which policy evaluation
fails to converge in a reasonable amount of time.
Various alternatives that exist for policy evalua-
tion are considered. These are:

• Computing cost-to-go iteratively over the
data points determined by the initial subop-
timal control simulations (iter-PI)

• Through simulation of the improved policies
generated during the policy iteration. Cost-
to-go values are directly calculated as the
sum of individual costs until steady state
(sim-PI)

• Using temporal difference based λ-policy it-
eration (λ-PI of Bertsekas and Ioffe (1996))

Finally, we allude to the issue of state space cov-
erage. As the cost-to-go approximators are built
with data occupying a limited subset of the state
space, we need to avoid extreme extrapolations
during online control. Additionally, policy itera-
tion can be extended to provide exploration of the
unvisited regions of the state space during offline
learning phase, through input dithering.

2. BACKGROUND

The main aim of Dynamic Programming (DP) is
to obtain an optimal value or cost-to-go function,
which is shown to satisfy the following Bellman
equation (Bellman, 1957):

J∗(x) = min
u
{φ(x, u) + J∗(fh(x, u))} (1)

where x ∈ X is the system state, u ∈ U is
the control action, fh(x, u) represents the state
transition according to a discrete-time model

xk+1 = fh(xk, uk), (2)

φ(x, u) is the single stage cost, and J(x) is the
cost-to-go. The superscript ·∗ indicates the opti-
mal conditions. We represent the Bellman equa-
tion above in the form of DP operator T as

J∗ = TJ∗ (3)

Blackwell (1965) was amongst the first authors
to rigorously prove that the DP operator T is a
contraction mapping. This is an important result
as it guarantees convergence to a unique solution
J∗ through the use of iterative algorithms.

Once obtained, the optimal cost-to-go function
J∗(x) can be used to compute control actions uk

at any state xk by solving the following optimiza-
tion problem

uk
∆= µ∗(xk)
= arg min

uk

{φ(xk, uk) + J∗(fh(xk, uk))} (4)

In the above equation, φ(xk, uk) represents the
current stage cost incurred in implementing con-
trol action uk at state xk, while J(·) represents
the projected sum of future stage costs, hence the
name ‘cost-to-go.’

2.1 Dynamic Programming algorithms

Policy iteration, which was first proposed by
Howard (1960), is a useful algorithm that com-
putes the optimal cost-to-go function J∗(x) by al-
ternating the sequence of policy improvement and
policy evaluation steps. First, policy improvement
is used to find an improving policy µi+1(x) using
cost-to-go function J i(x) according to:

µi+1(x)=arg min
u

{
φ(x, u) + J i (fh(x, u))

}
(5)

The second step involves following the policy to
compute an updated cost-to-go function, which is
given by the following implicit equation

J i+1(x)=φ(x, µi+1(x)) + J i+1
(
fh(x, µi+1(x))

)
(6)

In contrast, value iteration does not generate an
improving policy. Instead, it uses the Bellman
equation (1) as an update rule to sequentially
improve the cost-to-go function starting from a
suboptimal cost-to-go J0. For every x ∈ X , value
iteration is written as:

J i+1(x) = min
u

{
φ(x, u) + J i (fh(x, u))

}
(7)

Puterman and Brumelle (1979) showed the equiv-
alence between policy iteration and Newton’s
method. They proved that policy iteration has su-
per linear or quadratic rate of convergence, while
value iteration has only a linear rate of conver-
gence. Thus, policy iteration converges faster, and
an exact solution (as opposed to an asymptotic
solution) can be obtained.

2.2 Approximate Dynamic Programming (ADP)

The DP algorithms are elegant and have proven
convergence properties. However, they suffer from

the curse of dimensionality, which arises because
the cost-to-go values need to be computed and
stored for all possible points in the state space. As
a result, the memory and computational require-
ments grow exponentially with an increase in state
dimension, making conventional DP infeasible for
most practically sized problems.

An alternative is to obtain approximate solution
for cost-to-go by solving the DP in a smaller
subset of the state space defined through simula-
tions of suboptimal policies. In addition to this,
a function approximator is used for interpolat-
ing the cost-to-go values within this simulation-
defined subset. Thus, the curse of dimensionality
is avoided through synergistic use of simulations
and function approximation.

The steps in Approximate Policy Iteration are as
follows:

(1) Perform closed loop simulations with chosen
suboptimal policies to obtain state xk vs.
cost-to-go J i(xk) data; where counter i = 0

(2) Use a function approximator to express cost-
to-go as a function J̃0(x) of state x

(3) Perform policy improvement for each visited
state xk according to Eq. (5)

(4) Perform the policy evaluation:
• Initialize the cost-to-go approximator for

policy evaluation J̃ i+1,0 = J̃ i; let j =0
• Calculate the new cost-to-go value for

each state according to

J i+1,j+1 = φ(x, µi+1(x)) (8)

+ J i+1,j
(
fh(x, µi+1(x))

)

• Increment j; iterate until convergence
We represent this cost-to-go as J̃ i+1.

(5) Increment i and iterate steps 3 to 4 until µi

converges

Value iteration, on the other hand, is more
straightforward. A separate policy evaluation is
not required. The result of minimization (step 3)
is used to update cost-to-go values directly, using
Eq. (7), and the iterations are performed until
convergence.

Simulation-based evaluation In the policy iter-
ation algorithm mentioned above, we performed
the iterations over all the data points in the
memory using one-step ahead simulation of the
improved policy. The policy evaluation is then
iteratively performed using Eq. (8). We call this
method “PI based on iterative evaluation” or iter-
PI. An alternative method is to start with some
selected initial points and perform simulations us-
ing the updated policy µi+1(x) until steady state.
The policy evaluation for the simulated policy is
simply the sum of single stage costs until steady
state:

J i+1(xsim,i+1
k) =

∞∑

l=1

φ(xsim,i+1
k+l , uk+l) (9)

Here, the superscript sim is used to identify that
the states visited during the simulations. We call
this method sim-PI.

λ-Policy Iteration The λ-policy iteration was
proposed by Bertsekas and Ioffe (1996) as a
method to accelerate the policy evaluation step
by introducing a “discount factor” λ ∈ [0, 1] that
does not alter the cost-to-go. In λ-policy iteration,
we use the temporal difference δ(xk) for the state
transition xk → xk+1, defined as:

δ(xk) ∆= φ(xk, uk) + J(xk+1)− J(xk), (10)

to modify policy evaluation according to

J i+1(xk) = J i(xk) +
∞∑

m=0

λmδ(xk+m) (11)

This method reduces to pure value iteration for
λ = 0 and policy iteration for λ = 1. Thus, one can
view this as some form of “interpolation” between
value and policy iteration.

3. LINEAR QUADRATIC CONTROL

Before moving on ADP examples, we compare the
value and policy iteration algorithms for an un-
constrained linear system. Consider the problem
of regulating a linear unconstrained system

xk+1 = Axk + Buk (12)

to the origin. The single stage cost for this system
is φ(x, u) = xT Qx+uT Ru. An analytical solution
of Bellman equation exists and it leads to the
famous Linear Quadratic Regulator (LQR) result.

The optimal cost-to-go function is a quadratic
function of the system state (Bertsekas, 2000) and
is denoted as J(x) = xT Sx. We are interested in
solving the ∞-horizon problem:

min
uk

{[
xT

k Qxk + uT
k Ruk

]
+ xT

k+1S
∞xk+1

}
(13)

3.1 Analytical Solutions

We can show that the input

uk = µ(xk)
∆=−L · xk (14)

=− (
BT S∞B + R

)−1
BT S∞A · xk

minimizes the above objective (13).

Value iteration involves updating the cost func-
tion J = xT Sx with the minimizer function ob-
tained by solving Eq. (13) above. Thus,

xT
k S∞xk = min

uk

xT
k Qxk + uT

k Ruk + xT
k+1S

∞xk+1

Substituting uk from Eq. (14), the solution of
above equation is given by Ricatti Equation as
in the famous LQR problem:

S∞= AT S∞A + Q−
AT S∞B[BT S∞B + R]−1BT S∞A

(15)

Iterative solution of this Ricatti Difference Equa-
tion is the value iteration.

Policy iteration is a two-step procedure. First,
the improved policy is computed according to
Eq. (14) as µi+1(xk) = −Li+1 · xk given current
estimate of cost-to-go function J i(x) = xT Six.
Next, policy evaluation (Eq. 6) is used to compute
the updated cost-to-go function as:

xT
k Si+1xk = xT

k [Q + L(i+1)T RLi+1]xk+
xT

k+1S
i+1xk+1

(16)

Thus, policy evaluation is equivalent to solving a
discrete Lyapunov equation:

Y Si+1Y T − Si+1 + Z = 0 (17)

where Y = [A−BLi+1]T

and Z = [Q + L(i+1)T RLi+1].

sim-PI provides an alternative method that gen-
erates new cost-to-go function through simula-
tions of the policy µi+1(x). The policy improve-
ment step remains the same (Eq. 14). Using
Eq. (9) for the linear system, we can show in
a straightforward manner that simulation-based
policy evaluation also reduces to the same Lya-
punov equation (17) as before.

In λ-Policy Iteration, policy improvement step
is performed as before (Eq. 14). However, policy
evaluation is modified using a discount factor λ,
which does not alter the cost-to-go structure for a
given policy. Policy evaluation reduces to solving
a different Lyapunov equation

Ỹ Si+1Ỹ T − Si+1 + Z = 0 (18)

where Ỹ = λ0.5[A−BLi+1]T

Z̃ = λ[Q + L(i+1)T RLi+1] + (1− λ)Si,rd,

and Si,rd is obtained as the solution of one step of
RDE given by Eq. (15). Proof skipped for brevity.

λ-policy iteration is a balance between value iter-
ation and policy iteration:

• When λ = 0, Ỹ = 0. Thus, Eq. (18) reduces
to −Si+1 + Si,rd = 0; ie. 0-policy iteration is
nothing but value iteration.

• When λ = 1, Ỹ = Y and Z̃ = Z; ie. 1-policy
iteration is the standard policy iteration.

Comparing Eq. (18) with Eq. (17), we can see that
λ-policy iteration involves the following modified
policy evaluation step:

J i+1(xk) = (1− λ)
[
φ(xk, uk) + J i(xk+1)

]

+ λ
[
φ(xk, uk) + J i+1(xk+1)

]
(19)

3.2 Numerical comparison

The weighting matrices for one-stage cost were
chosen as Q = I2 and R = 0.01. The matrix
S0 used to initialize value and policy iteration
and the optimal S∗ matrix, obtained using dlqr
function in MATLAB, are shown in Table 1.
The algorithms were said to be converged when
‖Si+1 − Si‖ ≤ 0.001. Consider the following
numerical example for the system in (12):

A =
[

1 0
0.1 1

]
B =

[
1
0

]

Value and policy iteration converged in 43 and
7 iterations respectively. The converged S43 and
S7 matrices shown in Table 1 indicate that the
convergence of value iteration is asymptotic, while
that of policy iteration is exact. However, policy
evaluation itself is an iterative step. We did not
use dlyap function in Matlab but iterated using

Si+1,j+1 = Y Si+1,jY T + Z (20)

to perform policy evaluation; it took 346 evalua-
tions for just the first policy iteration to converge.
This indicates a potential problem with policy
iteration—policy evaluation can be very slow in
converging.

Table 2 demonstrates that the λ-policy iteration
is a balance between value iteration and policy
iteration. As the λ value decreased to 0, more
iterations are needed for cost-to-go function to
converge, while the number of policy evaluations
required for single policy iteration is reduced.

4. EXAMPLES

We apply the policy iteration algorithm to two
numerical examples in this section to demonstrate
its convergence properties. A Gaussian kernel-
based local averager (Lee, 2004) is used as a cost-
to-go function approximator. The cost-to-go value
at a query point xq is given by

Table 1. Si values for unconstrained linear system

Value Iteration Policy Iteration
S0 S∗ S1 S43 S1 S7[

1 0.1
0.1 1

] [
1.117 1.062
1.062 11.522

] [
1.02 0.1
0.1 1.99

] [
1.117 1.061
1.061 11.518

] [
1.528 5.126
5.126 55.76

] [
1.117 1.062
1.062 11.522

]

Table 2. λ-policy iteration schemes for linear system, for various values of λ.
PolEval1: Number of policy evaluations required in the first policy iteration.

λ λ = 0 λ = 0.05 λ = 0.25 λ = 0.5 λ = 0.75 λ = 0.95 λ = 1

Iterations 43 41 34 25 16 8 7
PolEval1 – 4 6 11 24 99 346

J̃(xq) =

N∑
i=1

Kλ(xq, x̂i)J(x̂i)

N∑
i=1

Kλ(xq, x̂i)
if N > Nmin

Jmax otherwise

(21)

where N are the number of data points (x̂i) lying
in a pre-defined hyper sphere of radius ρ around
xq. If N is less than a threshold number Nmin, a
very high cost Jmax is assigned to xq to avoid
extrapolation beyond the data covered region.
The Gaussian kernel is given by

Kλ = exp
[
− (xq − x̂i)T (xq − x̂i)

λ2

]
(22)

After convergence of the offline iteration method,
the resulting cost-to-go function is then used for
online control.

4.1 Linear system with “soft” constraints

In this example, we consider the problem of dis-
turbance rejection for a linear system

y(s) =
9.62u(s) + [−19s− 57.3]d(s)

s2 + 2.4s + 5.05
(23)

with sampling time of 0.2 sec, and constraints
|y| ≤ 5; |u| ≤ 5. We consider the case where
disturbance is d = 0.8, for which no sequence of
inputs uk can be found to satisfy state constraints.
Hence, constraint softening is required.

Two different PI 2 controllers (Kc = 0.25, Ki =
0.15; Kc = 0.5, Ki = 0.08) were used as initial
suboptimal policy, with the input moves trun-
cated to satisfy the constraint |u| ≤ 5. A total of
1200 data points were obtained for various values
of d and x0. Initial cost-to-go approximation was
calculated from this data. The weighting matrices
for one-stage cost were chosen to be Q = 1 and
R = 0.04. For the points where constraints are
violated, one-stage cost were weighed 100 times
higher (Lee et al., 2004).

2 To avoid ambiguity, PI is used for Proportional-Integral.
Policy iteration is represented as iter-PI, sim-PI or λ-PI.

Table 3. Convergence properties during
offline learning: linear system

VI iter-PI sim-PI

Iterations 17 5 6
Pol. Evaluations — 53 —
Computation time (s) 6641 2012 986

0 2 4 6 8 10
−8

−6

−4

−2

0

Constraint Softening Example

y k

0 2 4 6 8 10
0

1

2

3

4

5

time

u k

PI control
Value Iteration
∞−horizon MPC

State Constraint

Fig. 1. Online performance of original PI con-
troller, value iteration, and ∞-horizon MPC.

We performed VI and iter-PI for this example.
The algorithms were said to be converged when
the error between two consecutive iterations was

eabs
∆= max

k;k=1,...,1200
|J i+1

k − J i
k| < 0.001

Table 3 shows the comparison between VI and
iter-PI. The five policy iterations required a total
of 53 policy evaluations. The policy evaluation
step requires computation of cost-to-go values for
all visited states under the new policy. However,
it does not require solving of a minimization
problem. Hence, the computational requirement
for policy iteration was lower than value iteration.

Figure 1 compares the online performance of ADP
with ∞-horizon MPC that is optimal for this ex-
ample. The online performance of policy iteration
without exploration signal is the same as that of
value iteration. The ADP method shows signif-
icant improvement as compared to the starting
suboptimal PI controllers, but is not as good as
the optimal∞-horizon MPC. The MPC controller
visits regions of the state space not previously vis-

Table 4. Convergence properties during
offline learning for bioreactor example

VI iter-PI λ-PI (0.5)

Iterations 33 3 14
Policy Evaluations — ∗ 58
Computation time (hr) 22.9 > 60∗ 11.0
∗ Truncated after 40,000 evaluations

ited by the suboptimal schemes; as no information
is available in this region, ADP controller avoids
this region during online control.

4.2 Nonlinear bioreactor

We now consider a continuous bioreactor contain-
ing bacterium Klebsiella oxytoca growing on two
substitutable substrates, glucose and arabinose.
Based on the preferential utilization of the two
substrates, two distinct steady states with vastly
different biomass concentrations are obtained.
The control objective is to drive the system from
an undesirable low biomass to the desirable high
biomass yield steady state, under step distur-
bances in the arabinose feed (s2f). The relevant
model and process conditions can be obtained
from our previous paper (Kaisare et al., 2003).
In Kaisare et al. (2003), we used value iteration
with neural network as cost approximator for this
system. Here, we compare the offline convergence
of approximate policy and value policy iteration
schemes using Gaussian kernel-based averager.

MPC employing successive linearizations of the
nonlinear model (slMPC) was used as the initial
suboptimal control law, yielding a total of 1200
data points. The offline convergence of the ADP
algorithms using the Gaussian averager is com-
pared in Table 4. Value iteration required 33 iter-
ations and 23 hours of computational time to con-
verge. On the other hand, policy evaluation for the
first iteration of iter-PI did not converge even after
2 days of simulation and 40,000 iterations. At this
stage, we truncated policy evaluation and used
the available cost-to-go approximator to continue
policy iterations. We found that only two more it-
erations (with 18 more policy evaluations) were re-
quired for convergence. We therefore applied λ-PI
for this system since it provides a tradeoff between
iter-PI and VI. As seen in Table 4, λ-PI (λ = 0.5)
showed better offline convergence behavior than
VI. We then used the converged solution for on-
line control: all the three ADP controllers gave
optimal performance, significantly better than the
original slMPC in terms of optimality as well as
the computational cost (Kaisare et al., 2003).

5. CONCLUSION AND FUTURE WORK

A comparison between convergence properties of
value and policy iteration in ADP was presented

in this paper. An LQR example was used to facil-
itate the understanding of convergence behavior.
The ADP schemes using Gaussian kernel-based
averager were applied to two different examples.
The Gaussian averager guards against extrapola-
tion of the ADP controller in the unvisited subset
of the state space. An alternative is to perform
guarded exploration to increase the data coverage.
In Kaisare et al. (2003), we used “policy update”
strategy for judiciously increasing the data cov-
erage, using single sweeps of sim-PI within value
iteration. Therefore, a comparison of exploration
properties of VI and iter-PI is being investigated.

REFERENCES

Bellman, R. E. (1957). Dynamic Programming.
Princeton Univ. Press. New Jersey.

Bertsekas, D. P. (2000). Dynamic Programming
and Optimal Control. Vol. 2. Athena Scien-
tific. Belmont, MA.

Bertsekas, D. P. and J. N. Tsitsiklis (1996).
Neuro-Dynamic Programming. Athena Scien-
tific. Belmont, MA.

Bertsekas, D. P. and S. Ioffe (1996). Temporal
difference based policy iteration and applica-
tions in neuro-dynamic programming. Report
LIDS-P-2349. Lab. for Info. and Decision Sys-
tems. MIT, Cambridge, MA.

Blackwell, D. (1965). Discounted dynamic pro-
gramming. Annals Math. Stats. 36, 226–235.

De Farias, D. P. and B. Van Roy (2000). On
the existence of fixed points for approximate
value iteration and temporal-difference learn-
ing. J. Optim. Theory Appl. 105, 589–608.

Howard, R. (1960). Dynamic Programming and
Markov Proc. MIT Press. Cambridge MA.

Kaisare, N. S., J. M. Lee and J. H. Lee (2003).
Simulation based strategy for nonlinear op-
timal control: application to a microbial cell
reactor. Int. J. Robust and Nonlinear Control
13, 347–363.

Lee, J. M. (2004). A study on architecture, algo-
rithms and applications of approximate Dy-
namic Programming. PhD thesis. Georgia
Tech. Atlanta, GA.

Lee, J. M., N. S. Kaisare and J. H. Lee (2004).
Choice of approximator and design of penalty
function for an approximate dynamic pro-
gramming based control approach. J. Proc.
Control. submitted.

Puterman, M. L. and S. L. Brumelle (1979).
On the convergence of policy iteration in
stationary DP. Math. Oper. Res. 4, 60–69.

Santos, M. S. and J. Rust (2004). Convergence
properties of policy iteration. SIAM J. Con-
trol Optim. 42, 2094–2115.

Sutton, R. S. and A. G. Bartow (1998). Reinforce-
ment Learning: An Introduction. MIT Press.
Cambridge MA.

