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Abstract: The control problem of an industrial distillation column is studied. Just the top 
control loop is discussed in this paper. By means of data collected from the distributed 
control system (DCS), two soft sensors are first developed. Based on this work, an 
inferential control project was proposed, and an optimization framework  added on it, to 
improve control performance further. This advanced process control system has been 
used successfully in practice and produced a satisfying result.  Copyright © 2005 IFAC 
 
Keywords: Process Control, Industrial Control, Distillation Column, Soft Sensing, 
Regression Analysis, Model-based Control  

 

                                                 
1 This work is supported by Yangzi Branch of SINOPEC, contract number: 01JSNJYZ101015 

1. INTRODUCTION 
 
The study background of this paper is an industrial 
butadiene plant in Yangzi Branch of SINOPEC. The 
distillation section addressed here includes two 
columns. The process flow is shown in Fig. 1. 
Prior to the improvements described here, this process 
had several problems. The operating load had 
increased far beyond the design capacity, and its 
existing control system was not capable of adequately 
controlling it. This resulted in the yield per unit of C4 
being low, the energy cost being large and in the 
process not running smoothly. The fundamental 
improvement made was that the former normal 
analog control instrumentation was changed to a 
distributed control system (DCS). This made possible 
a more sophisticated control method. Only the control 
changes to column DA107 are discussed in this paper. 
The advanced process control system designed for 
column DA107 is composed of two loops 
respectively located at the column bottom and column 
top. The study about the bottom loop has been 
previously published (Zhang et al., 2002). Analysis 

and changes to the top loop are the subject of this 
article. 
 

2. ANALYSIS OF THE CONTROL PROBLEM 
 

2.1 Survey of DA107 process flow and former 
control project 

 
There are 85 tower trays in this distillation column. 
The feeding comes into from the 30th tray, which is 
composed of butadiene-1.3 (the wanted product) and 
impurity including butadiene-1,2, maleic, ethylic 
acetylene and C5. The column DA107 is a product 
column, and its control performance directly affects 
the quality and yield of product. The product quality 
indexes of the column are: the composition of 
butadiene-1.3 should be more than 99.3% (weight 
ratio, the same followed), the ethylic acetylene should 
be less than 50ppm. The control target of this column 
is that the product indexes must be satisfied, and the 
composition of butadiene of the high-boiled drainage 
in the column bottom should be limited less than 5%, 
for higher 
yield. The 
former 
process 
controls are 
shown in Fig. 
2. 
It can be seen 
clearly from 
Fig. 2 that the 
control 
project is 
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entirely composed of simple PID loops, and has not 
any closed loop control for product quality. 
 
2.2 The basic analysis of the control problem 
 
Being without closed loop control of product quality, 
compounded by operation at far over designed 
capacity had caused a large degradation in control 
quality. Lacking on-line sensing instrumentation, the 
operators were forced to rely on an off-line lab 
analysis performed once every 8 hours. This resulted 
in the operators used of a fixed over-reflux set point 
to attempt to maintain product quality. The fixed 
over-reflux set point control method cannot adapt to 
variable operating condition; the phenomenon of the 
operating state being erratic therefore cannot be 
avoided. Furthermore, the over-reflux operation 
method requires more heat from the reboiler and 
cooling water from the condensator. This not only 
consumes much more energy, raising producing costs, 
but also causes a shortage of cooling water for the 
entire plant, especially in the summer. As far as this 
distillation column as concerned, the shortage of 
cooling water makes the pressure of tower top go 
beyond the high limit in summer. In order to 
guarantee the product quality under the high tower 
pressure, the operators have had no choice but to 
increase the content of light component in bottom. 
The content of butadiene1,3 in the high-boiled 
drainage of the tower bottom is commonly above 
15%. This greatly exceeds the 5% limit set and thus 
substantially reduces yield from that expected. 
Based on this analysis, the conclusion may be drawn 
that on-line sensing of the distillate quality in the top 
end of tower DA107 could provide timely knowledge 
of the production state. With on-line sensing, the 
operators will be able to know the performance of 
product quality promptly. Closed loop control can 
also becomes possible, by means of advanced control 
strategies based on on-line sensing of product quality. 
Yangzi Branch realized the importance of product 
component on-line sensing and a substantial 
investment was made in on-line industrial gas 
chromatographic instrument for sensing the 
composition in the tower top product. For several 
reasons, this set instrumentation has not proven to be 
either completely reliable or sufficiently accurate. It 
has proven to be unsuitable for using in closed loop 
control directly and barely serves as an operating 
reference by operators. 
As a result, the “soft sensing” technique was next 
considered as a viable method. A soft sensor can be 
used not only as operating guidance, but also in 
closed-loop control of some components of the 
column in some future process control improvement 
(Sungyong Park and Han, 2000). 
In recent years, reports about soft sensing technique 
applied in components estimation have been 
frequently published (Yu et al., 2000). Many 
commercial software packages of soft sensing have 
been developed by some companies over the world, 
and have been used in practical process. However, the 

initial high cost of these S/W packages has limited 
their application. 
After some discussion, our client requested a 
complete solution for control of the distillation towers 
instead of just procurement of soft sensors. Thus, our 
activity shifted to developing a soft sensor system for 
measuring and as a basis of controlling the 
composition of the tower products. 
 

3. SOFT SENSING MODELS 
 
The core of a soft sensor is soft sensing model. There 
are mainly two modeling methods, mechanism 
modeling and empirical modeling. But in the actual 
industrial application, the empirical method 
constructing the control model is consistently chosen 
(A. A. Linningger et al, 2000). We developed soft 
sensing models with the empirical modeling 
technique based on field data collected from DCS. 
To solve the control problem, the components that 
need to be estimate on-line are Butadiene-1,3 and 
alkyne (mostly ethylic acetylene, marked with EA). 
So there are two soft sensing models needing to be 
built. Certainly, one multiple output model to 
evaluate the two component can also be used to reach 
same target, but it is more convenient for actual 
engineering application to separate them. 
 
3.1 The choosing of primary and secondary variables 

and the processing of data 
 
It is easy to confirm primary variables of this study, 
which are the two components of the top product. 
They are identified as S136-BD and S136-EA 
respectively. The real values of the primary variables 
are the sampling analysis values taken every 8 hours. 
The secondary variables can be chosen from all 
available on-line measurements from the industrial 
DCS. 
All the measurements related to column DA107 
include: 4 temperature values (the temperatures of the 
tower trays of the stripping section, TW11, TW22, 
the temperature of the tower top T500-30 and the 
temperature of the tower bottom T300-6), two flow 
values (the outflow from tower bottom F138 and the 
reflux F139), and two pressure values (the pressure of 
tower top P118 and the pressure of tower bottom 
P119). Besides, the feeding flow of DA106, F122, is 
available, though there is no feeding of DA107. 
After being processed with empirical filtration and 
stepwise regression to those candidate secondary 
variables, finally F122, F139, F138, TW11, TW12, 
T500-30, T300-6, and P120 are chosen as the 
secondary variables. 
Because empirical models are based on the data, their 
success depends totally on the quality of the field data 
collected. Some data preprocessing techniques are 
frequently used, for example, noise reduction, data 
transformation, and filtering. This paper will just 
focus on building of the soft sensors and designing of 
control system, so data processing will not be 
discussed here. 
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3.2 The building and validation of the soft sensing 
models 

 
The most commonly used approaches in soft sensing 
modeling are statistics and artificial neural network 
(Yu et al., 2000). Limited by the programming 
function of the DCS, we choose a regression analysis 
to build the models. 
All the data from the DCS (430 sets) are divided into 
two sets: 380 data sets as the modeling set for 
building the models, 70 data sets as the validation set 
for examining the models. By using multiple linear 
regression approach, two models of the following 
form have been built up: 
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In the formula(1): 
y(t): It shows the estimated values of S136-BD and 
S136-EA by the models; 
xi:  i = 1, 2,…,8, the values of 8 secondary variables 
declared above; 
ai: i = 0, 1,…,8, coefficients obtained from regression, 
and will not been given in detail in the article. 
The validation result of the soft sensing model of 
S136-BD is shown in Fig. 3. The effect of S136-EA’s 
is similarly to S136-BD, and is omitted. 
It can be seen from Fig. 3 that both evaluation 
accuracy and the extrapolate capability of the two 
models are not completely satisfactory. 
In the controlled process with the component as the 
output, some nonlinearity exists. Hence, to the models 
built above which don’t have satisfying linear 
regression effect, its nonlinearity should be 
considered. In this paper, a simplified nonlinear 
relationship is defined as follows: 
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Where: m:  counts of the secondary variables; 
 bh:  h = 1, 2,…, m2, regression coefficients 

of nonlinearity items. 
Other symbols are defined as in Formula 1. 
Illustrated in Formula 2, this kind of nonlinear 
regression relationship is merely accounted for by 
adding some quadratics items of secondary variables 
to the base of multiple linear regression. Using all of 
these quadratics items and the original secondary 
variables as regression variables, multiple linear 
regression is used to model once again, and nonlinear 
regression models then are obtained. 
Moreover, it can be noticed that those soft sensing 
models are all steady-state models. Industry 
production processes cannot always be in a steady 
state. Therefore, the dynamic characteristic of the 
process should be considered, and dynamic models 

could simulate actual process better. 
It is difficult to build an adequate dynamic model of 
the process in the rigorous sense. In order to build a 
dynamic model, the input/output data of the process 
must first be collected. The basic condition of 
collecting data is that the sampling theorem should be 
satisfied. However, for building models of chemical 
industry processes, this sampling theorem can rarely 
be observed. Generally, the product quality (for 
instance the components of distillation column) can 
only be obtained by means of lab analysis methods, 
and the interval between samplings in this case is 
several hours. Hence, it is impossible for those data to 
meet the sampling theorem. It has been suggested that 
most methods of building dynamic models are no 
longer applicable in this kind of situation (Wang and 
Shao, 1997). 
In this paper, a particular dynamic compensation 
method is proposed. By following this course, not 
only is the effect of dynamic characteristic taken into 
account in the regression models, but also the 
difficulty of establishing a dynamic model is avoided. 
The regression model that has dynamic compensation 
is defined as follows: 
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Where: 
l: step length of the dynamic compensation; 
p: the limiting order of the dynamic compensation; 
cq: q = 1, 2,…, m×p, regression coefficients of 
dynamic items. 
The other symbols are as in Formula 1. 
Therein, the step length and limiting order of the 
dynamic compensating should be decided on the basis 
of the actual situation. In this paper, set l as 5 minutes, 
p as 2. 
Of course, it might cause problems to directly use 
Formula 2 and 3, for regression variables might 
expand greatly. In this paper, stepwise regression, 
principal component analysis and partial least squares 
regression are used to certify the independence of 
regression variables. 
By this means, two satisfying, nonlinear regression 
models with dynamic compensation are obtained. The 
regression variable set is made up with: 
{F122, F139, F138, T500-30, T300-6, Tw11, Tw12, 
P120, (x4)2, x4×x8, x4(t-l), x4(t-2l), x8(t-l), x8(t-2l)} 
Where, x4 expresses the temperature of the tower top 
(T500-30), x8 expresses the pressure of the tower top 
(P120). The regression coefficients are omitted in this 
paper. 
It can be seen from the collection of regression 
variables that those two regression models result from 
combining Formula 1(multiple linear regression), 
Formula 2 (nonlinear regression), and Formula 3 

 

0.99

0.992

0.994

0.996

0.998

1

0 50 100 150 200 250 300 350 400 450

S136-BD

Actual value
Calculated  Value

Fig. 3 The effect of the multiple linear regression model of  S136-BD 

Modeling set(380) Validation set(70) 

 

0.99

0.992

0.994

0.996

0.998

1

0 50 100 150 200 250 300 350 400 450

S136-BD

Actual value

Calculated value

Fig. 4 The effect of the nonlinear regression model of S136-BD with dynamic compensation

Modeling set(380) Validation set(70)



 

     

(4)

(regression with dynamic compensation). 
The effect of the nonlinear regression model of S136-
BD with dynamic compensation is given in Fig. 4. 
Compared with Fig 3, it can be clearly seen that the 
models built by this hybrid regression method are 
much better at predicting actual performance than the 
one depicted by Fig 3, regardless of the effects of 
regressing accuracy or extrapolating accuracy. The 
effect of S136-EA is similar, and omitted. 
 
3.3 Revision of the soft sensing models 
 
Because of the fact that the production process is 
often affected by many factors, such as time-
variability, nonlinearity, imperfection of process 
information and so on, the models built only based on 
field data can never be perfect. So, the soft sensing 
models must be revised for practical use. In this paper, 
the job of revision is divided into two parts. One is 
executed off-line over an extended period, and 
another is performed on-line in a short period. For the 
first, the process is run for a period of time and the 
models are rebuilt based on the new collection of data. 
The second is executed on-line automatically and 
periodically. Only the latter is discussed in this paper. 
The short-term revision functions in two ways, which 
are based on the gas chromatographic instrumentation 
or lab analysis respectively. Having mentioned that 
the industrial chromatographic instrumentation was 
not found to be reliable, however, the fact cannot be 
excluded that in some times, or in certain situations, 
industrial chromatography does have some value as a 
reference. On the basis of operating experience, some 
operators could be sure whether the industrial 
chromatographic instrumentation can be relied on or 
not. Under this situation, those values taken from 
industrial chromatographic instrumentation should be 
used as much as possible to revise the soft sensor 
models. For the delay of industrial chromatographic 
instrument response (which is about 15 minutes) is 
obviously shorter than that of the lab analysis (It is 
about 90 minutes. Moreover, the sampling period for 
lab analysis is as long as 8 hours). 
The basic idea of revision by analysis values of 
sampling is like this: when the analysis values are 
sent to the operation room from the lab every 8 hours, 
the operators should input them into DCS as soon as 
possible, and then, the revising program of the DCS 
takes these analysis value as the standardized signal 
to revise the parameters of the soft sensors. 
The revising algorithm is as following: 

)]()([)()( δδα −−−+= tytytyty anycalcalout  
Where: 
yout(t): Output value of soft sensor at time t having 

been revised; 
ycal(t): Output value of soft sensor at time t having not 

yet been revised; 
α: Revision coefficient being suitably chosen; 
δ: Delay of analysis value; 
yany(t-δ): Analysis values of primary variable at 

sampling time of t-δ; 
ycal(t-δ): The average value of soft sensors’ output 

during a period of time of the sampling time. 

Similarly, the industrial chromatographic instrument 
also introduces delay, and the revision should be 
executed in same way when the measured values of 
the chromatographic instrument are taken as 
standardized data. 
 
3.4 Actual application of the soft sensing models 
 
After realized by programming in the DCS, the two 
models have been put into practical running. Based 
on the field data collected from the DCS, Fig. 5a and 
Fig. 5b respectively reflect the actual effect of models 
S136-BD and S136-EA. It is obvious that the soft 
sensing models can function quite well to sense 
product quality of the distillation column. 
 
4. THE ADVANCED CONTROL PROJECT AND 

ITS APPLICATION 
 
The most successful advanced control strategies 
applied in industrial distillation columns are model 
predictive controls (Foss and Cong, 1999), inferential 
controls (Luo et al., 1995) and some orthers. 
When a model predictive control strategy is used, on-
line identification of the model is necessary. This 
process of identification not only takes a long period 
of time, but also excites the process to fluctuate 
because of application of step or pulse input signals, 
which is often unacceptable by industry. The idea of 
inferential control has existed for a long time, and 
there are numerous successful industrial applications 
(Parrish and Brosilow, 1985). 
We choose inference control strategy based on soft 
sensing to constitute the advanced control system of 
this distillation system. 
As for the column DA107, two inference control 
loops are designed. One is designed to control the 
compositions of butadiene (BD) and ethylic acetylene 
(EA) located on the top of the tower, and the other is 
to control the discharge composition of butadiene at 
the 
bottom. 
The 
whole 
basic 
control 
project is 
illustrate
d as the 
followin
g Fig. 6. 

 

Fig. 5b The application effect of soft sensor S136-EA running at DCS 
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Generally speaking, the control system is prone to 
arouse a coupling influence between the two quality 
control loops when product quality control strategy is 
used both on top and bottom of a distillation column 
(Jiang and Yu, 1988). But as to this tower, the 
coupling between the two loops of quality control is 
not very serious. It can be simply analyzed as 
followings: First, as seen in Fig. 6, the manipulated 
variable of the control loop at the top is reflux flow, 
so it is an energy-balanced control and the 
manipulated variable at the bottom of the tower is  
discharging flow so as to constitute a material-
balanced control. This design idea can alleviate the 
coupling action (Shinsky, 1984). Second, paying 
attention to tuning of the PID parameters of the two 
controllers can also ease any remaining coupling 
influence. If the parameters of two controllers are so 
tuned that the adjusting periods of two controllers are 
very different, the coupling can be weakened still 
more. So, decoupling control does not need to be 
designed. 
Since the study about the control loop at the bottom 
of DA107 has been previously published, just the 
control at the top of DA107 is discussed in this paper. 
 
4.1 Basic control project 
 
As shown in Fig. 7, the top control loop is a special 
inference control project based on the soft sensors, 
which has two controlled variables and only one 
manipulated variable. 
In this project, the output of the flow process is reflux, 
and the output of the BD process are the contents of 
butadiene-1,3 and ethylic acetylene in the distillate. 
The two soft sensors illustrated in Figure 7 are the 
very soft sensing models of S136-BD and S136-EA, 
which have been introduced in the last section. 
With the multi-output, single-input controlled process, 
in which there are two main control targets: that 
content of butadiene-1,3 in the product of tower top 
should be higher than 99.3%, and EA be lower than 
50ppm. There is only one manipulated variable: the 
reflux flow. An integrating function has been 
designed to complete the design. It has been 
illustrated in Fig. 7. 
 
4.2 The design and realization of the integrating 

function 
 

The basic design idea for the integrating function is to 
incorporate the benefits of the operators’ experience. 
Through extensive conversations with the operators, 

the operating experience can be summarized as 
follows: 
(1) There is a kind of relationship between S136-BD 
and S136-EA, , which is not clearly understood: when 
the control quality is high, S136-BD is certainly 
higher than 0.993 and in the same time S136-EA 
lower than 50. IF the control quality is poor, either 
S136-BD is lower than 0.993 or S136-EA higher than 
50. But this does not mean that the higher S136-BD 
corresponds with the lower S136-EA, vice versa. 
(2) If S136-BD is close or lower than 0.993, the 
controller should function with the performance 
S136-BD. 
(3) If S136-EA is close or higher than 50, the 
controller should run according to the performance 
S136-EA. 
(4) Commonly, S136-EA is much less than 50, s so 
control target is commonly based solely on the 
performance of S136-BD. 
Therefore, generally, only the criterion of butadiene-
1,3 needs to be considered, unless EA is beyond its 
criterion. The main idea is to design this integrating 
function so that the share of EA beyond the EA max 
is converted into the amount of butadiene-1,3 under 
the controller performance. Based on this idea the 
function of the compounding establishment is defined 
as follows: 
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In the formula, BD, EA, is the soft sensing values of 
S136-BD and S136-EA respectively. 
y: the output value of the compounding 

establishment; 
yBD, yEA: the output value of the soft sensors 

respectively; 
BDmin: the safe min limitation of BD, defined as a 

constant (a little bigger than 0.993); 
EAmax the safe max limitation of EA, a constant (a 

little smaller than 50ppm); 
k the converting constant. 
The function of converting constant k is to convert the 
amount of EA beyond the safety max limitation into 
the reducing amount of BD from the safe min 
limitation of BD. 
It is relatively easy to implement the integrating 
function on the DCS. It should, however, be noticed 
that a discontinuity could occur when the third in the 
formula's 5 switches with the other two formulas. 
Thus, a slope module needs be set to perform the 
transition process smoothly. This module can be 
easily added with the configuration software of the 
DCS. 
 
4.3 The actual application of the control system 
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After implementation and formal delivery, the control 
system has been used for regular production. The 
actual result is depicted in Fig. 8. 
It is obvious in the figure that this control system can 
satisfy the requirement of quality. But an over-
purified phenomenon still exists. Commonly, S136 is 
well over 0.995. The main reason is that the operator 
habitually puts the set point of controller S136-BD 
much higher than the required value. 
To solve this problem, an optimization module was 
designed, with the function of optimizing and 
adjusting the set point of the BD controller. 

 

4.4 The optimization and adjustment of the set point 
of product quality 

 
The final control system formed by adding the 
framework of optimization to the system shown in 
Fig. 7 is figured out in Fig. 9. 
Based on operational experience that in the normal 
working condition, when the ratio of the reflux flow 
F139 and the feeding flow F122 is about 4.5, the 
control quality of the whole column is much better, 
and the composition of both top and bottom can meet 
the control indexes in the same time. Utilizing this 
operation idea and the methods of reference literature 
(Luo et al., 2002), the calculated relationship of the 
optimization is defined as: 

spspsp ∆+= 0  
Where, sp expresses the output value of optimization 
framework (namely, the set point of BD controller), 
sp0 expresses the set point in the last step, its 
increment (∆sp) is confirmed by the following 
formula: 
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In the formula, spmax and spmin are the max limitation 
and the min limitation of the set point respectively, 
chosen with experience. The r is real measured value 
of the ratio of F139 and F122, and r* is the ratio 
expected, set to 4.5. The a and b are adjustable 
parameters. The adjustable exponent n (n >= 1), 
decides the shape of optimization curve. 
The cycle of optimization adjustment is decided by 
time switch k, commonly, which needs to be set much 
longer than the work cycles of both two controllers. 

This control project represents much better control 
quality than that shown in Fig. 7. Limited by the 
length, the record curve of actual field data is omitted 
from the paper. 
 

5. CONCLUSION 

 
The control system proposed in this paper has been 
running successfully and smoothly for more than a 
year. In addition to the product index being 
guaranteed, the energy consumption has decreased 
markedly, and product waste from the tower bottom 
is also reduced. The plant benefits not only from 
earning’s increase but also from the production 
situation’s improvement, since the problems of 
shortage of cooling water becomes lighter and the hot 
solvent heating reboilers of all distillation columns 
can be balanced better. This control system works so 
well that the company has requested that the same 
work be done for its second butadiene plant. We have 
signed a contract with the company, including 
optimizing control of two butadiene distillation 
columns, load control system and fault diagnosis 
system of whole butadiene plant. 
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