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Abstract: Considering the diversified requirements of modern manufacturing, the paper 
studies a group of scheduling problems where jobs and machine have independent 
performance objectives.  Based on noncooperative game, it is modeled as a two-layer 
optimization problem.  In job-layer, the jobs’ strategies resulted from competition for 
machine resource achieve Nash Equilibrium (NE), while in machine-layer, machine 
induces the NE to some global optimum by indirectly influencing jobs’ selfish behaviors.  
Referring to Lagrangian relaxation, an iterative algorithm is developed to solve the 
problem.  Numerical example is also given for illustration.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Production scheduling is an important issue in 
modern manufacture.  Traditionally, the optimization 
objective of scheduling problem only reflects the 
production cost of manufacturing enterprise.  In line 
with current trends towards competitive market, 
where both supplier and demanders of production 
have the diversified requirements, the manufacturers 
should not only consider their own costs, but also 
satisfy the independent requirements of individual 
demanders.  It implies that the scheduling concept is 
changed from enterprise-based to demander-based, 
and more attention should be paid on demanders’ 
independent objectives in optimization.  For this 
reason, the scheduling problem here is formulated as 
a multiperson multiobjective problem where both 
jobs and machine have their own objectives.  
Conventional scheduling research only considers the 
global objective combined by the jobs’ homogeneous 
objectives.  The diversity among jobs’ production 
requirements can be roughly handled by the 
methodology of weighted combination where 
weighted values reflect the priorities of the orders.  
However, this simple weighted combination is 
imprecise and fails to exactly accommodate the 

flexibility and variety of different demanders’ 
requirements. 
 
Recently, some researchers follow a new way where 
scheduling problem is regarded as jobs’ competition 
for machine resource, and the individuality of jobs is 
emphasized.  Lin and Solberg (1992) organized a 
schedule by the negotiatory behaviors of jobs and 
machines in a market-like environment.  Price of 
resource is introduced in negotiation to reflect the 
collision, and then, the problem of bottleneck is 
preferably solved.  However, necessary mathematical 
description and performance analysis are lacking in 
this work.  Auction was adopted in Walsh, et al. (1998) 
and Erhan and Wu (1999) to investigate single and 
multi-machine scheduling problem respectively.  The 
scheduling problem is viewed as the economic 
problem where jobs bid for machine resource.  
Especially, Erhan and Wu (1999) introduced the 
general equilibrium to build the auction model, 
discussed the relationship between the model and 
Lagrangian relaxation, and gave the solving algorithm.  
The above work assumes the job has independent 
decision ability, thus the difficulty of global decision 
is decentralized to individual problem and the 
calculation is simplified.  However, the heterogeneous 
objectives of different demanders are not considered. 



 

     

Teredesai and Ramesh (1998) as well as David 
Ben-Arieh and Manoj Chopra (1998) investigated the 
above multiperson multiobjective problem from the 
viewpoint of game theory which provides a good 
mathematic tool for individual competition.  The 
former refers to the idea of “coopetition” to study 
multi-machine scheduling problem, and establishes a 
theoretic game model, in which each job and machine 
has its own objective.  While, the latter is based on 
evolutionary game theory and Nash Equilibrium (NE) 
concept, where operations of jobs are modeled as 
decision makers and the machines as strategies.  NE 
schedule can be found through searching in payoff 
matrix.  However, with the increasing of problem 
scale, the construction of payoff matrix becomes 
much more difficult, which results in the complexity 
in theoretic analysis and solving.  Although the above 
works follow the new research idea, it is still lacked in 
strict mathematical description, necessary theoretic 
analysis and efficient algorithm.  
 
In our previous work Wang and Xi (2004), 
Noncooperative Game (NG) model for single 
machine scheduling problem was given, where the 
jobs’ heterogeneous objectives were considered.  The 
existence of NE schedule is proved in general case 
and the performance bound of NE schedules 
measured by the global objective of minimizing total 
completion time is given.  In this paper, a key issue 
how to choose the NE schedule by the guidance of 
some global performance will be further studied.  The 
scheduling problem is modeled as the resource 
competition among individual jobs with independent 
objectives.  A two-layer optimization model which 
reflects the objectives of jobs and machine 
respectively is established.  An algorithm to generate 
the NE schedule which satisfies the individual 
objectives of both jobs and the machine is developed.  
Simulation is given to illustrate the effectiveness of 
the new scheduling method. 
 
 

2. PROBLEM FORMULATION 
 
2.1 Variables and Model 
 
For a single machine scheduling instance with n jobs, 
H is the length of the scheduling horizon.  Job Ji 
arrives at ri, then needs wi time slots to wait and pi 
time slots to process, and is completed at Ci with due 
date di.  All these variables are integer.  Without 
preemption, we have ri+wi+pi=Ci, see Fig. 1. 
 
For given ri, pi, choose wi as the job’s decision 
variable.  Then, the feasible strategy of Ji is: 

wi
valid={wi|0≤wi≤H−ri−pi , wi∈Z}, i=1, …, n      (1) 

The feasible strategies of n jobs form a n dimensional 
space: 

W=w1
valid×w2

valid×…×wn
valid                          (2) 

Given each job’s strategy wi, a schedule is formed by: 
w=(w1,w2,…,wn), w∈W                          (3) 

An arbitrary Ji has its own objective to minimize fi(wi) 
by choosing appropriate waiting time wi: 

)(min ii
Ww

wf
valid

ii∈
, i=1,…,n                           (4) 
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Fig.1. Illustration of job’s basic variables 
 
However, constrained by scarce machine capacity, 
jobs’ choices may conflict.  In Wang and Xi (2004), 
variable ∆wij=|(wj+rj+pj/2)–(wi+ri+pi/2)| was 
introduced to describe the collision between Ji and Jj.  
When ∆wij<(pj+pi)/2, Ji overlaps with Jj; otherwise, no 
collision.  For investigating detailed jobs’ competition 
degree on each machine time slot, 0-1 variable δik is 
introduced as Erhan and Wu (1999) and Luh P.B., et 
al. (1990) to describe the jobs process on each time 
slot.  If job Ji is active at time slot k, δik equals 1; 
otherwise, 0.  For example, in Fig. 1, δi4=δi5=1. 
Obviously, δik is decided by wi, i.e.: 
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Formula (5) implies the constraints of release date and 
nonpreemption.  Further, the capacity constraint of 
machine can be described by: 

1)(
1

≤∑
=

i

n

i
ik wδ , k=1,…,H                          (6) 

 
Formula (4-6) forms the job-layer model P which is a 
multiperson multiobjective optimization problem 
essentially.  The job’s individual objective (4) reflects 
the demander’s own production requirement.  
However, the schedule generated from P may be poor 
efficient and even irrational from the viewpoint of 
manufacturer.  For the schedule’s global efficiency, 
machine’s objective M(w1, w2,…,wn) which reflects 
enterprise’s interior requirement should be 
introduced: 

∑
=

=
n

i
ii wfwM

1
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Denote the schedule optimizing M as wopt with value 
M*.  The function of machine-layer is to choose the 
NE schedules from P which have better global 
performance.  Similar to conventional research, the 
global objective in M is combined by the jobs’ 
homogenous objectives )(wfi .  Further, 
machine-layer model is also subject to constraints (5) 
and (6). 
 
Due to the complex constraints and jobs’ 
heterogeneous property, it’s difficult to handle the 
jobs’ and machine’s requirements simultaneously.  
Hence, complicating constraint is relaxed firstly.  
Variable Pik(w) is introduced to describe Ji’s payment 
of using time slot k.  Integrating it into the job’s 
objective, relaxation version of job-layer model is as 
follows:  
Ri: ∑
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Fig.2. Pinedo type objective  
 
Constrained by (5) and (6), the jobs’ strategic choices 
influence mutually in original problem P.  While in 
relaxation model, mutual restrictions among jobs are 
included in penalty term Pik(w).  For the multiperson 
multiobjective optimization model R combined by Ri, 
NE solution concept in NG is used to define the 
solution of relaxed model R.  Find a set of strategies 
w*=( w1*,w2*,…,wn*), so that the following holds for 
each Ji and wi*∈wi

valid: 
Ki( w1*,…,wi–1*, wi*, wi+1*,…,wn*) 
≤Ki( w1*,…,wi–1*, wi, wi+1*,…,wn*)               (9) 

 
w* is called the NE schedule of R.  Wang and Xi 
(2004) proved the existence of NE schedule, and 
indicated that the NE schedules usually were not 
unique.  Denote the set of all w* by W*. 
 
Since constraint (5) and (6) have been included in 
job-layer, the function of machine-layer is only to 
choose the appropriate NE schedule from the 
job-layer.  Hence, the problem in machine-layer can 
be redefined as: 
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 s.t. (9)                                            (10) 
Denote the optimal schedule of (10) by wopt with value 
M(wopt). 
 
 
2.2  Performance Objective 
 
Pinedo (1995) showed that job in practical production 
usually had the penalty function as in Fig. 2.  If job is 
completed before its due date, its penalty equals zero.  
Then, its penalty increases over the completion time 
at a given rate.  While the job reaches a point, penalty 
increases at a much slower rate.  Furthermore, 
completion time, lateness and their square are also 
common used objectives to describe the job’s 
performance.  These objectives are all nondecreasing 
with the waiting time of the job.  This paper mainly 
focuses on such job’s objective.  Obviously, it is 
difficult for simple weighted combination of 
conventional scheduling to accurately consider the 
jobs’ heterogeneous objectives. 
 
Formula (10) gives machine-layer’s objective which 
is combined by homogeneous jobs’ objective *)(wfi .  
For example, machine-layer optimization problem 
can be 1|rj|∑ωjCj or 1|rj|∑ωjLj when *)(wfi  is taken 
as Ci or Li (=max{0,Ci–di}) respectively. 

 
 

3. ALGORITHM DESIGN 
 
In the above section, the complicating constraint is 
relaxed by the adding of penalty term which reflects 
the job’s extra payment for violating capacity 
constraint.  Here, the detailed form of penalty term 
will be further discussed, then an algorithm to solve 
NE schedule through iterative coordination between 
job-layer and machine-layer is presented. 
 
Pik is used to relax constraints and reduces resource 
collision.  Hard penalty was used in Wang and Xi 
(2004), i.e. if a job conflicted with other jobs, its 
penalty was +∞; otherwise, 0.  This type of penalty 
guarantees the feasibility of the result, but fails to 
quantitatively reflect the competition degree and 
mutual influence among jobs.  Instead, formula (5) is 
adopted here to model collision and the soft penalty is 
given as below: 
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(11) can be intuitively explained that job Ji must pay 
the fee Pik for the using of machine time slot k 
according to resource price πk.  This kind of penalty 
was widely used in conventional scheduling research 
such as Erhan and Wu (1999) and Luh P.B., et al. 
(1990).  Jobs would compete for appropriate 
continuous machine resource interval to accomplish 
its process according to their relaxed objectives (8) 
where π is fixed by machine-layer according to its 
own performance objective (10). 
 
Thus, an iterative algorithm to solve the two-layer 
relaxation model is given.  Given the price πk of each 
time slot, the task of job-layer is to choose the best 
combination of resource slots according to job’s own 
objective.  Jobs’ strategies will feedback to the 
machine-layer.  The machine-layer then updates the 
resource price as the foundation of next iteration.  The 
process is repeated until a solution which balances the 
interests of each participator in production is obtained.  
Obviously, jobs choose strategies according to (8) in 
job-layer, which achieves a NE solution of R.  While, 
the updating of π in machine-layer not only reduces 
the collision, but also induces the jobs’ selfish 
behaviors to some global objective.  In the whole 
procedure, the incentive mechanism, i.e. the 
mechanism of adjusting π plays a key role. 
 
Here gives Lagrangian relaxation model of the 
machine-layer model by referring Erhan and Wu 
(1999) and Luh P.B., et al. (1990) at first: 
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The lower bound of M(wopt) can be achieved by 
solving (12) to optimality.  In order to get closer lower 
bound, construct its dual problem: 
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s.t. (5), πk≥0, k=1, …, H                        (13) 
 



 

     

In order to solve (13), subgradient algorithm is used in 
adjusting π: 
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The step size is given by: 
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where, M  is an estimate of the optimal global 
solution, Dr

M is the value of (13) at the rth iteration.  
Here, machine-layer adjusts π according to (14) and 
(15) in order to induce jobs’ strategic behaviors, 
consequently make DM  close to M . 
 
Since R is the relaxed model of original problem, the 
NE schedule generated from R perhaps is infeasible.  
Refer to “List scheduling” algorithm used in Luh P.B., 
et al. (1990), the feasible NE schedule can be formed 
as follows: find the processing sequence of NE 
schedule of R at first, then schedule the jobs according 
to this sequence as machine becomes available.  Since 
job’s objective is nondecreasing with its waiting time, 
this feasible schedule must be the NE solution of P. 
 
Thus, the procedure of solving the original 
constrained, multi-person multi-objective, two-layer 
optimization problem can be obtained.  H is assigned 
as total processing time plus the maximum of all the 
jobs’ arrive times, so that there is enough resource to 
process all the jobs.  If there is no change in jobs’ 
strategies and resource price, satisfactory NE 
schedule is achieved and the procedure terminates.  
The entire algorithm is given as follows: 
 
Step0   r=0, λ=1, H=max j{rj}+∑j(pj).  Initialize πk

r=0. 
Step1   Given πk

r of each time slot, each job chooses 
its optimal waiting time wr according to (8). 

Step2   Calculate Dr
M  according to (10).  Construct 

the feasible schedule, then calculate the global 
objective M  of feasible schedule. 

Step3 Update πk
r according to (14) and (15).  Stop 

calculation when wr and πk
r remain unchanged 

in last three iterations or the upper bound of 
iterative time (3000 times) reaches. 

Step4    r=r+1, goto Step 1. 
 
Because the global objective and jobs’ objectives are 
not compatible, i.e. the global objective isn’t 
combined by the jobs’ objectives, the competitive 
results of individual jobs don’t always compose the 
optimal schedule of relaxed problem (12).  In other 
words, theory of lower bound in conventional 
Lagrangian relaxation algorithm doesn’t always hold 
and DM in iterative procedure isn’t the lower bound of 
M(wopt).  The experiments in the following Section 
will validate it. 
 
There is large space for the choice of optimization 
objective: global objective can be arbitrary and jobs’ 
objectives are nondecreasing.  The coming simulation 

focuses on the global objective as total completion 
time with some popular job’s objectives. 
 
 

4. EXAMPLE 
 
In the experiments here, jobs with independent 
objectives cited in Section 2.2 is considered.  As 
showed in Fig. 3, type Ⅰ and Ⅱ objective correspond 
to completion time and lateness.  Kethleya R. B. and 
Bahram Alidaeeb (2002) defined type  objectiveⅢ  as: 
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where, DLi is a constant larger than di.  Here, further 
modify it to get type  objective which is very similar Ⅳ
to Pinedo type objective: 
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Moreover, two quadratic objectives, square of 
completion time (see Townsend, 1978; Cheng, and 
Liu, 2004) and lateness (see Sun et al., 1999), are 
considered.  Obviously, the above objectives are all 
nondecreasing with the job’s waiting time.  
 
A single machine scheduling problem with 
parameters in Tab. 1 is studied.  Each job has its own 
objective: f1(w1)=minC1. f2(w2)=min(max{0,C2-d2}).  
f3(w3) is type Ⅲ as (16) where DL3=25, ω3=1.  f4(w4) is 
type Ⅳ as (17) where DL4=25, ω41=1, ω42=0.5.  
f5(w5)=minC5

2.  f6(w6) equals to 0 if C6 is smaller than 
d6; otherwise, (C6-d6)2.  Furthermore, the objective of 
machine is to minimize the total completion time, i.e. 
min∑Ci.  Tab. 2 gives the optimal schedule only 
minimizing the machine’s objective, where the value 
of machine’s objective is 137; the value of total jobs’ 
independent objective is 399. 
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Fig.3. Job’s Performance Objective 



 

     

Tab.1 Single machine example 
 

Job J1 J2 J3 J4 J5 J6 

ri 0 3 2 5 4 10

pi 10 4 8 6 3 12

di +∞ 15 15 20 +∞ 30

fi(wi) Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

 
Tab.2. The global optimal schedule 

 

Job J1 J2 J3 J4 J5 J6  

Sequence 5 1 4 3 2 6  

Ci 34 7 24 16 10 46 ∑Ci=137

fi(wi) 34 0 9 0 100 256 ∑fi=399
 

Tab.3. The schedule of our method 
 

Job J1 J2 J3 J4 J5 J6  

Sequence 1 3 6 4 2 5  

Ci 10 17 43 23 13 35 ∑Ci=141

fi(wi) 10 2 10 3 169 25 ∑fi =219 
 

Using the algorithm presented above, 16 iterations are 
required to solve the problem.  Tab. 3 gives the result 
of our method where the values of machine’s 
objective and total jobs’ independent objectives are 
141 and 219 respectively.  It has been shown that the 
jobs’ heterogeneous objectives can be greatly 
satisfied by giving up a little portion of machine’s 
performance in our method. 

 
 

5. CONCLUSION 
 
In this paper, the new scheduling idea of serving 
demanders is introduced.  Production scheduling 
problem is modeled as a constrained, multi-person 
multi-objective, two-layer optimization problem.  In 
the job-layer, each job optimizes its own objective by 
selfish competition, which composes the NE schedule 
of the model.  While in the machine-layer, machine 
induces the NE schedule to satisfy some global 
objective.  A relaxed and iterative algorithm is 
designed to solve the NE schedule by referring to 
Lagrangian relaxation.  Heterogeneous jobs’ 
objectives can be considered in calculation and 
computational experiment indicates that the new 
method satisfies diversified objectives in production. 

 
 

ACKNOWLEDGEMENTS 
 

This work is supported by the National Nature 

Science Foundation of China under Grants 60274013, 
60474002. 

 
 

REFERENCES 
 

Cheng T.C.E. and Zhaohui Liu (2004). Parallel 
machine scheduling to minimize the sum of 
quadratic completion times. IIE Transactions, 
36(1), 11-17. 

Dr. David Ben-Arieh and Manoj Chopra (1998). 
Evolutionary game-theoretic approach for shop 
floor control. Proceedings of the IEEE System, 
Man and Cybernetics Conference, San Diego, 
USA, 463-468. 

Erhan Kutanoglu and S.D. Wu (1999). On 
combinatorial auction and lagrangean relaxation 
for distributed resource scheduling. IIE 
Transactions, 31, 813-826. 

Kethleya, R. B. and Bahram Alidaeeb (2002). Single 
machine scheduling to minimize total weighted 
late work: a comparison of scheduling rules and 
search algorithms. Computers & Industrial 
Engineering, 43(3), 509–528. 

Lin G.Y. and Solberg James J (1992). Integrated shop 
floor control using autonomous agents. IIE 
Transactions, 24(3), 57-71. 

Luh, P.B., D.J. Hoitomt, E. Max and K.R. Pattipati 
(1990). Schedule generation and reconfiguration 
for parallel machines. IEEE Transactions on 
Robotics and Automation, 6(6), 687-696. 

Pinedo, M (1995). Scheduling: theory, algorithms and 
systems. New Jersey, USA: Prentice Hall.  

Sun X., J.S. Noble and C.M. Klein (1999). 
Single-machine scheduling with sequence 
dependent setup to minimize total weighted 
squared tardiness, IIE Transactions, 31,113–124. 

Townsend, W (1978). The single machine scheduling 
problem with quadratic penalty function of 
completion times: a branch and bound solution. 
Management Science, 24, 530-534. 

Teredesai T. and VC Ramesh (1998). A multi-agent 
mixed initiative system for real-time scheduling. 
Proceedings of the IEEE System, Man and 
Cybernetics Conference, San Diego, USA, 
439-444. 

Walsh, W.E., Wellman, M.P. and J. K. MacKieMason 
(1998). Some economics of market-based 
distributed scheduling. Proceedings of the 18th 
International Conference on Distributed 
Computing Systems, IEEE, Amsterdam, The 
Netherlands, 612-621. 

Wang Changjun and Yugeng Xi. (2004). 
Noncooperative game theory as a unified 
framework for single machine scheduling. Asian 
Control Conference, Melbourne, Australia, 
1895-1898. 

 


