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Abstract: A method based on disturbance estimation and bounded controls is
proposed to reduce congestion in highways where on-ramp metering can be
implemented. An existing model is first extended to account for friction and
other interactions between the mainstream and the on-ramp flows. A local
variable structure observer is then proposed to estimate the lumped upstream and
downstream flows that affect one section of the highway. Using the estimates of the
disturbances, a local nonlinear controller stabilizes the system while maintaining
the control effort bounded. The boundedness of the control effort is necessary to
guarantee the feasibility of the control law. The controller is robust in the sense
that the estimator accounts also for modeling errors and parameter variations.
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1. INTRODUCTION

Ramp-metering control is by far the most effective
way to maximize the use of traffic capacity in
highways. Recognizing the importance of such
a technique, several researchers have proposed
different centralized and decentralized solutions
based on different approaches. However, most of
these proposals fail to consider at least one of
the following important properties of the on-ramp
metering control problem:

a) The available control input (the on-ramp
flow) is positive, bounded, and limited by the
main-stream flow.

b) The state of the system is bounded and
positive.

1 This work has been supported by the Natural Sciences

and Engineering Research Council of Canada under grant
RGPIN-262127-03.

c) On-ramp metering produces friction and af-
fects both the conservation and the momen-
tum equations of the plant.

This work analytically takes these facts into ac-
count by modifying an accurate model for highway
pipelines (Karaaslan et al., 1991). The resultant
modified model includes the effect of metering on
the momentum equation–Subsection 2.1–as well
as the effect of the mainstream density on the flow
entering from the on-ramp–Subsection 2.2. As an
original contribution, a continuous approximation
of the anticipation term in the momentum equa-
tion smooths out the model–Subsection 2.3–in or-
der to simplify the control design. Subsection 2.4
introduces a change of coordinates and prepares
the model for the estimation of the disturbances
through variable structure methods–Section 3.
Based on the estimates of the disturbances, an
almost smooth control law stabilizes the system
while enforcing boundedness of the control effort–
Section 4. The theoretical results are supported by



Table 1. Typical model parameters.
λ 1 ρjam 110(veh/Km) δ 200(Km/h2)

l 1.86 qrM 1800(veh/h) L 0.5(Km)
α 0.95 χ 40(veh/Km) τ 0.0057(h)
µf 0.001 vf 93.1(Km/h) µ1 12(Km2/h)

ζ 120(veh/Km) µ2 6(Km2/h)
σ 35(veh/Km) χ′ 4(Km/h)

a set of simulations presented in Section 5. Finally,
a brief discussion in Section 6 summarizes and
evaluates the results. Because of space limitations,
some details have not been included but can be
found in (Becerril-Arreola and Aghdam, 2005).

2. AN IMPROVED TRAFFIC FLOW MODEL

The macroscopic traffic flow model presented next
is one of the most accurate ones for highway
pipelines (Karaaslan et al., 1991). Let the sub-
scripts “us” and “ds” denote that the variables
they accompany correspond to the upstream and
downstream neighboring sections, respectively.
The state of the model is denoted by: ρ(t), the
average traffic density (veh/Km); v(t), the mean
speed of traffic (Km/h); and q(t), the traffic flow
(veh/h). The space-discretized equations will then
be:

q(t) =αρ(t)v(t) + (1 − α)ρds(t)vds(t) (1a)

qus(t) =αρus(t)vus(t) + (1 − α)ρ(t)v(t) (1b)

ρ̇(t) =
1

L

[

qus(t) − q(t) +
r(t)

λ
−

p(t)

λ

]

(1c)

v̇(t) =
ve(ρ(t)) − v(t)

τ
−

µ(t)

τL

ρds(t) − ρ(t)

ρ(t) + χ

+
ρus(t)vus(t)

ρ(t) + χ′

√

vus(t)v(t) − v(t)

L
+ δ,

(1d)

where δ is the modeling error,

µ(t) :=







µ1

ζ

ρjam − ρds(t) + σ
if ρds(t) ≥ ρ(t)

µ2 otherwise,

and
ve(ρ) = vf

[

1 − (ρ/ρjam)
l
]

(2)

is one of the existing models for the equilibrium
speed-density relationship (Castillo and Benitez,
1995). The variables r(t) and p(t) represent the
flows transferring from the on-ramp into the main-
stream and from the mainstream into the off-
ramp, respectively. The constant parameters of
the model are defined as follows: λ is the number
of lanes in the mainstream section, τ is the relax-
ation time, vf is the free speed, ρjam is the jam
density, and L is the length of the section. The
constants χ, χ′, ζ, σ, µ1, and µ2 are measured pa-
rameters whose typical values appear in Table 1.

Certain modifications can further improve the
accuracy of the model (1) by accounting for the
additional phenomena addressed next.

2.1 Friction due to merge

One can take the friction effect (Liu et al., 1996)
into account by adding to the right side of the
momentum equation (1d ) the term:

G(t) = −µf |gt(t)|ρ(t)v(t),

where µf is a constant friction coefficient and gt(t)
is the so called generation term, which in the par-
ticular case analyzed here, equals the difference
between the on-ramp and off-ramp flows. The first
derivative of G(t) with respect to gt(t) is not con-
tinuous due to the presence of the absolute value
operator. However, this limitation can be removed
by assuming that the sensors measuring the speed
and density are located before and after the on-
ramp such that no off-ramp is present between
them. As a result, the generation term gt(t) will
be equal to the on-ramp flow r(t). Since this flow
is always positive, G(t) will then be:

G(t) = −µfr(t)ρ(t)v(t). (3)

2.2 Bounds to the on-ramp flow

The present development considers the following
model for the unsignalized merging of two traffic
flows because it is given in terms of macroscopic
variables (Liu et al., 1996):

r(t) = (1 − ρ/ρjam) qr(t), (4)

where qr(t) is the metered on-ramp flow.

2.3 Discontinuity smoothing

For most values of µ1, ζ, σ, and µ2, the antic-
ipation term in (1d) introduces a discontinu-
ity into the vector field of the system dynam-
ics. The solution to differential equations with
a discontinuous vector field might not exist or
might not be unique. Furthermore, some of the
multiple solutions might lead to attractors other
than the equilibria, such as accumulation points.
Although collected data suggests that disconti-
nuities are present in the traffic flow dynamics
(Hall, 2002), no observation has yet detected the
presence of attractors other than the equilibrium
points described by (2) and the alternative speed-
density relationships. The unnatural solutions to
(1) can be avoided by means of the following C∞

(smooth) approximation to µ:

µ̂ =
µ1ζ

ρjam − ρds + σ

(

µ̃ +
1

2

)

+ µ2

(

1

2
− µ̃

)

µ̃ :=
arctan [ǫ (ρds − ρ)]

π
,

(5)

where ǫ is a design parameter that specifies how
well µ̂ approximates µ. Fig. 1 presents a graphical
comparison between µ–the mesh–and its continu-
ous approximation µ̂–the solid surface–for the set
of typical values listed in Table 1.



0

50

100 0

50

100

10

20

30

40

 ρ
 i+1

, veh/Km
 ρ

 i
, veh/Km

 µ
, K

m
2 /h

Fig. 1. Comparison between the original anticipa-
tion term and its smooth approximation.

2.4 Change of coordinates

The traffic control problem is normally formulated
as the stabilization of the density, or both the
speed and the density, around a given set-point ρd,
or (ρd, vd) with vd = ve(ρd). A standard procedure
is to define the state transformation:

x1 = v − vd

x2 = ρ − ρd.

Expressed in this set of coordinates and modified
by (3), (4), and (5), the system equations read as:

ẋ1 = −
1

τ
x1 −

vf

τ

(

x2 + ρd

ρjam

)l

+ ψ

− µf

(x2 + ρd)

(x1 + vd)−1

(

1 −
x2 + ρd

ρjam

)

qr

(6a)

ẋ2 =
1 − 2α

L
(ρdx1 + vdx2 + x1x2)

+
1

λL

(

1 −
x2 + ρd

ρjam

)

qr + φ,
(6b)

where all constant terms and unknown variables
have been lumped together into the disturbances
ψ(t, δ) and φ(t) given by:

ψ =
1

τ
(vf − vd) −

µ(t)

τL

ρds(t) − ρ(t)

ρ(t) + χ
+ δ

+
ρus(t)

ρ(t) + χ′

vus(t)

L

[

√

vus(t)v(t) − v(t)
]

(7)

and:

φ =
1 − 2α

L
ρdvd +

α

L
qus(t) −

1 − α

L
qds(t). (8)

If δ, the additive modeling error in (1d), is
bounded inside the operating range, so are the
above disturbances because the state of each high-
way section is bounded inside the closed set:

X =
{

ρ, v ∈ R
2
∣

∣

∣
0 ≤ ρ ≤ ρjam, 0 ≤ v ≤ vf

}

, (9)

which constitutes the operating space.

The control input qr(t) is bounded inside the
interval R = [0, qrM ], where qrM is a constant
value determined by the geometry of the on-ramp
and depends on other conditions such as weather
and incidents.

The system equations are now in the form ẋ =
f(x) + g(x)u with f(0) 6= 0 and an equilibrium
point inside X that is unique for a given value of ρd

and instantaneous values of ψ(t, δ) and φ(t). The
disturbances ψ(t, δ) and φ(t) are non-matched
non-vanishing perturbations (Khalil, 1996) and
g(x)|ρ=ρjam

= 0, which implies that standard con-
trol design techniques cannot be directly applied
without considering possible control singularities.

3. ESTIMATION OF DISTURBANCES

Variable structure observers can provide very
precise estimates of the instantaneous values
of lumped disturbances (Rundell et al., 1996),
(Becerril et al., 2004). Consider and observer with
the following equations:

˙̂x1 = −
1

τ
x1 −

vf

τ

(

x2 + ρd

ρjam

)l

+ K̄1sgn(s1)

− µf(x2 + ρd)(x1 + vd)

(

1 −
x2 + ρd

ρjam

)

qr

˙̂x2 =
1 − 2α

L
ρdx1 +

1 − 2α

L
vdx2 +

1 − 2α

L
x1x2

+
1

λL

(

1 −
x2 + ρd

ρjam

)

qr + K̄2sgn(s2)

and the sliding surfaces defined by s1 , x1 − x̂1

and s2 , x2 − x̂2. The associated error dynamics
are given by:

ṡ1 = ψ(t, δ) − K̄1sgn(s1)
ṡ2 = φ(t) − K̄2sgn(s2).

(10)

Since the traffic flow through the adjacent high-
way sections is limited, upper bounds to the dis-
turbances exist and can be represented by:

|ψ(t, δ)| < ψM , |φ(t)| < φM . (11)

These values can be used to define the observer
gains K̄1 = ψM + K1 and K̄2 = φM + K2, which
make the sliding surfaces s1 and s2 globally attrac-
tive for any positive constants K1 and K2. The
proof of attractiveness results from the Lyapunov

functions Vs1 =
s2
1

2
and Vs2 =

s2
2

2
, with derivatives:

V̇s1 = s1ψ(t, δ) − (ψM + K1)|s1|

V̇s2 = s2φ(t) − (φM + K2)|s2|.

It follows from (11) that s1ψ(t, δ) − |s1|ψM ≤ 0
and s2φ(t) − |s2|φM ≤ 0 for all ψ(t, δ), φ(t),
s1, and s2. Consequently, V̇s1 ≤ −K1|s1|, V̇s2 ≤
−K2|s2|, and the sliding surfaces s1 and s2 are
globally attractive for any positive K1 and K2. An



equivalent mode is thus reached so that ṡi = 0 for
i = 1, 2. Let the subscript “eq” denote equivalent
mode values. The global attractiveness of the
sliding surfaces and (10) imply that ψ(t, δ) =
K̄1 [sgn(s1)]eq and φ(t) = K̄2 [sgn(s2)]eq, and so
the estimates of the disturbances can be found.

4. CONTROL DESIGN

Like previous work in the field, the proposed de-
sign focuses on controlling the variable x2 because
ρ determines whether the state of the system lies
inside the stable or the unstable region of the
traffic fundamental diagram.

Let qr = β(x, t) be a control signal that ensures
x2 → 0 as t → 0. Assuming that the disturbances
vary slowly and that the stabilizing control β(x, t)
exists, one can obtain an expression for the steady-
state control signal qr = qrss as well as for the
steady-state velocity. From (6b), the value of the
control qr when the solution x2(t) = 0 has been
reached is given by:

qrss =
λL

1 − ρd

ρjam

(

2α − 1

L
ρdx1 − φ(t)

)

. (12)

The existence of this control is necessary for
regulation but the nature of the plant is such
that this control might lie outside of the feasible
range of values of qr. This implies that, under
certain conditions, the solution x2(t) = 0 cannot
be reached. From (12) and the bounds on the
control effort 0 ≤ qrss ≤ qrM , the conditions for
the existence of qrss are given by:

−
qrM

(

1 − ρd

ρjam

)

λL
≤ φ(t)−

2α − 1

L
ρdx1 ≤ 0. (13)

As stated before, the flow qr is strictly positive
and so is the term it multiplies in (6b). It follows
that the effect of any non-zero qr is to increase
the deviation between the desired and the actual
densities. More specifically, any non-zero value
of the on-ramp flow contributes to increase the
actual density, as suggested by (1c). qr also affects
x2 through x1 by increasing it because the friction
reduces the speed and so reduces the flow exiting
the section. Consequently, a properly designed
qr can drive ρ(t) to ρd only when x2 < 0, i.e,
the mainstream flow can be increased when its
density is below the desired level but it cannot be
reduced when its density surpasses the prescribed
limit. When x2 > 0, qr must be maintained as
small as possible in order to avoid congestion in
the mainstream–these facts can be easily inferred
from (1c). On the other hand, the available de-
mand is an upper bound to qr. This implies that
the controller might not be able to achieve a
given ρd when the demand is too low. Given these

limitations on the control effort, the control design
must maintain the state ρ below and as close as
possible to a predefined value ρd so as to maximize
the utilization of the capacity of the highway sec-
tion. Since an insufficient on-ramp demand would
lead to a value of ρ below ρd, which is acceptable
when the main objective is to prevent congestion,
one can assume that the available control signal
qr is always at its maximum qrM .

The globally stabilizing universal formula pro-
posed in (Lin and Sontag, 1994) provides an effec-
tive way to stabilize a class of nonlinear systems
by means of a control signal whose magnitude is
bounded by 1. Although this formula was con-
ceived originally for autonomous systems, it can
be applied to this problem because the availability
of the disturbance estimates allows one to treat
the plant (6) as an autonomous system as long as
certain conditions are satisfied. To find these con-
ditions, the plant must be rewritten in a different
form so that x2 = 0 is an unforced equilibrium
point of the subsystem (6b).

Lemma 1. For a set of disturbances φ(t) satisfying
(13), there exists a control signal qrss(t) such that,
when applied to (6), the closed-loop system has
the form ẋ2 = f2(x) + g2(x)u(t) and satisfies the
condition f2(0) = 0.

P
¯
ROOF. The existence of the feedback qrss(t) that

makes x2 = 0 an unforced equilibrium point is
subject to (13) because this condition guarantees
that qrss(t) lies inside the feasible range of qr(t),
i.e. that qrss ∈ [0, qrM ]. Therefore, the preliminary
feedback that transforms (6) into the form ẋ2 =
f2(x) + g2(x)u(t) with f2(0) = 0 is given by
qr(t) = qrss(t) + qrC(t), where qrC(t) is the control
that drives the system to the state x2(t) = 0 and
qrss(t) has been defined in (12) as the control that
keeps x2(t) at zero by enforcing ẋ2(t) = 0. The
closed-loop density subsystem is then defined by:

f2 =
1 − 2α

L
(ρdx1 + vdx2 + x1x2)

+ g2qrCMqrss + φ(t)

g2 =
1

qrCMλL

(

1 −
x2 + ρd

ρjam

)

.

(14)

¥

Since qrss(t) is uniquely defined for given values
of the disturbances, qrC(t) must now be designed
so that the solution x2(t) = 0 is attractive and
qr(t) ∈ [0, qrM ]. The signal qrC(t) relates to the
control input u(t), |u(t)| ≤ 1, through qrC(t) =
u(t)/qrCM where qrCM is the maximum value of
qrC(t). Once the bound qrCM is defined, the design
procedure continues by proposing V2 = x2

2/2 as
a Control Lyapunov function for ẋ2 = f2(x) +
g2(x)u(t) inside the interval x2 ∈ [−ρd, ρjam−ρd).



Theorem 1. For a set of disturbances φ(t) satisfy-
ing (13), there is a control signal u(t) given by:

u =















−
f2 +

√

f2
2 + x2

2g
4
2

g2

(

1 +
√

1 + x2
2g

2
2

) if b2 6= 0

0 if b2 = 0.

(15)

b2 =∇V2g2, (16)

such that, when applied to (14), ρd is an asymp-
totically stable equilibrium point of the closed-
loop density dynamics.

P
¯
ROOF. It is trivial to verify that the distur-

bances are the only variables that could introduce
discontinuities into the model. Since the control
(12) completely compensates for them, the signal
u(t) can be continuous and therefore the Lya-
punov function satisfies the small control prop-
erty (Lin and Sontag, 1994). Moreover, Lemma 1
guarantees that, inside a time-varying set that
depends on the choice of qrEM , the plant satisfies
f2(0) = 0. Since these two main conditions for
the existence of the bounded stabilizing feedback
method presented in (Lin and Sontag, 1994) are
satisfied, such a stabilizing feedback exists.

The universal stabilizing formula for bounded
controls introduced in (Lin and Sontag, 1994)
requires the definition of the functions a2(x) =
∇V2f2(x) and b2(x) as in (16) that are to be
substituted into the following formula:

u =















−
a2 +

√

a2
2 + b4

2

b2

(

1 +
√

1 + b2
2

) if b2 6= 0

0 if b2 = 0.

(17)

Since a2(x) and b2(x) are both scalars, the com-
mon factor ∇V2 = x2 cancels out and (17) reduces
to (15). ¥

This control law is bounded by |u| ≤ 1 and
guarantees the asymptotic stability of the system
(Lin and Sontag, 1994) as long as there exists a
control qrE such that f2(0) = 0. If qrE does not
lie inside the feasible range, then the intrinsic
properties of the system prevent arbitrary set-
point stabilization. A nice property of the control
signal (15) that is hard to attain through other
control techniques is its well-definiteness at x2 =
ρjam − ρd, i.e., when g2(x) = 0.

Finally, to prevent the case when the on-ramp
queue pervades the surface roads in the surround-
ings, one can set a positive lower bound qrm to the
on-ramp flow. If this option is to be implemented
with the control law proposed above, the control
signal qrE must be maintained above the value of
qrm + qrCM in order to guarantee that qr ≥ qrm.

Table 2. Observer and controller param-
eters.

K̄1 K̄2 qrCM qrm

10 000 10 000 1 (veh/h) 200 (veh/h)
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Fig. 2. Convergence of the disturbance estimator
states.
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Fig. 3. Convergence comparison between ALINEA
and the nonlinear controller.
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Fig. 4. Control effort comparison between
ALINEA and the nonlinear controller.

5. SIMULATION RESULTS

Simulations were conducted to compare the per-
formance of the proposed strategy with the pop-
ular ALINEA controller (Smaragdis et al., 2003).
The justification for using this linear controller as
a reference is its wide use and copious available in-
formation. Furthermore, both controllers address
the stabilization of the ρ dynamics only.

The discrete-time integral control law reads as:

qr[k] = max {qr[k − 1] − K(ρ[k] − ρd), qrm} ,

where K is a constant frequently set to 16 and k is
the time index. Although a sampling period equal



to 40s is proposed for the integral control law
in (Papageorgiou et al., 1990), these simulations
used a shorter period of 10s to increase the speed
of response of the controller. In turn, the distur-
bance observer and the nonlinear controller were
tuned with the parameters listed in Table 2. The
plant employed the parameters listed in Table 1
and was affected by the disturbances:

vus =
1

2
vf +

1

10
vf sin

(

t

150π

)

ρds =
1

2
ρjam +

3

5
ρjam cos

(

t

300π

)

.

For initial conditions x(0) = [3/4vf 1/4ρjam]T

and desired density ρd = 49.5veh/Km, the con-
trollers performed as shown in Figs. 2, 3, and 4.

Fig. 2 shows that the disturbance estimates ap-
proach the actual values very fast and, conse-
quently, that the nonlinear controller becomes ef-
fective very quickly. Fig. 3 reveals that the non-
linear controller drastically reduces the amplitude
of the density variations and clearly outperforms
the linear control law. The figure also shows that
the nonlinear controller produces a second over-
shoot, during which no controller can stabilize the
system because a feasible stabilizing control input
does not exist. Fig. 4 shows that the integral con-
troller over-reacts to the fast-varying disturbances
and this causes large state swings that do not
occur when the nonlinear controller is used.

6. CONCLUSIONS

Taking into account the usually neglected effects
of merging, this work proposes local nonlinear
controllers to reduce congestion in highways. The
control strategy is robust because it estimates and
compensates for any difference between the math-
ematical model and the actual plant. Therefore, it
is effective in the presence of incidents, changing
weather conditions, and seasonal variations.

In contrast to previous approaches, the proposed
control law addresses the fact that the on-ramp
flow may be limited by the mainstream flow. This
is an important advantage since it allows the
controller to react faster. The simulations confirm
this by showing that the new controller acts more
promptly than a similar well-known control strat-
egy, thus achieving better performance.

Besides being computationally inexpensive, this
approach is also affordable because its localized
nature eliminates the need for expensive commu-
nication systems. If necessary, it can also be com-
bined with wide-area centralized methods–such as
the one presented in (Kotsialos et al., 2002)–to
achieve optimal performance.
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