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Abstract: Batch processes play a significant role in the production of most modern high-
value added products. The paper illustrates the benefits of nonlinear model predictive 
control (NMPC) for the setpoint tracking control of an industrial batch polymerization 
reactor. Real-time feasibility of the on-line optimization problem from the NMPC is 
achieved using an efficient multiple shooting algorithm. A real-time formulation of the 
NMPC that takes computational delay into account is described. The control relevant 
model used in the NMPC is derived from the complex first principles model and is fitted 
to the experimental data using maximum likelihood estimation. A parameter adaptive 
extended Kalman filter (PAEKF) is used for state estimation and on-line model 
adaptation. The performance of the NMPC implementation is assessed via simulation and 
experimental results. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The inherent advantages of batch processes, 
including their ability to produce multiple related 
products in the same facility, as well as their ability 
to handle variations in feed stocks, product 
specifications and market demand patterns, makes 
them well suited for the manufacture of low-volume, 
high-value products. For these reasons, batch 
processes are the production scheme of choice for the 
pharmaceutical, biotechnology, specialty chemical, 
consumer products, agricultural chemical, and 
microelectronics industries. The production of these 
high value-added chemicals, today contributes a 
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significant and growing portion of the revenue and 
earnings of the chemical process industries. Due to 
the highly competitive and profit driven nature of 
today’s process industries, nonlinear model 
predictive control (NMPC) techniques are becoming 
increasingly accepted, being one of the approaches 
that inherently can cope with process constraints, 
nonlinearities, and different objectives derived from 
economical or environmental considerations 
(Bequette, 1991; Morari and Lee, 1997; Henson, 
1998). However, despite the significant and 
continuously increasing importance of batch 
processes, the number of NMPC applications is 
significantly lower than in the case of continuous 
processes (Qin and Badgwell, 2003). Although the 
inherent nonlinearity of batch processes suggests 
NMPC as a natural choice for the advanced control 
of these systems, most industrial NMPC vendors for 
example do not support typical batch NMPC 
problems. This can be explained mainly by the 
special features of batch processes that make their 



     

control very challenging. Generally, in batch process 
operation, two different control problems arise: 
 
(a) End-point property control (setpoint optimization 

approach). In the case of batch processes the real 
economic objective is usually related to the 
product quality at the end of the batch, leading to 
the formulation of a control problem in terms of 
economic or performance objective at the end of 
the batch, which is always implemented in a 
shrinking horizon approach.  

 
(b) Setpoint tracking, when off-line or on-line 

determined, usually time-varying setpoint 
trajectories have to be followed in a moving or 
shrinking (or combination of the two) horizon 
approach. In this case usually a quadratic (least 
squares type) objective function is used. 

 
Most of the applications in advanced batch process 
control deal with the tight temperature regulation. 
Although this is a typical control problem, it presents 
a major difference compared to the operation of 
continuous processes, since important properties 
such as Lyapunov stability are no longer defined. 
Controller performance can only be assessed based 
on the chosen objective function, existing constraints 
and robustness against model/plant mismatch or 
control implementation uncertainties. Additionally, 
in the case of continuous processes computational 
burden can be reduced by choosing a shorter control 
horizon then prediction horizon, whereas in the case 
of batch NMPC the control and prediction horizons 
should be chosen equal, to avoid large deviations of 
the predicted quantities from their (usually time-
varying) setpoints due to the transient character of 
the process, increasing significantly the 
computational demand. In this paper an efficient 
real-time NMPC is applied to an industrial batch 
polymerization reactor. The approach exploits the 
advantages of an efficient optimization algorithm 
based on multiple shooting technique (Franke and 
Arnold; Diehl, 2001) to achieve real-time feasibility 
of the on-line optimization problem involved in the 
NMPC, even in the case of the large control and 
prediction horizon. The complex first principle 
model of the process is used off-line to determine the 
optimal temperature profile that provides the 
required quality and conversion in minimum time. 
The NMPC is used for tight setpoint tracking of the 
optimal temperature profile. Based on the available 
measurements the complex model is not observable 
hence cannot be used directly in the NMPC strategy. 
To overcome the problem of unobservable states, a 
grey-box modelling approach is used, where some 
unobservable parts of the model are described 
through nonlinear empirical relations, developed 
from the detailed first-principles model. The resulted 
control-relevant model is fine tuned using 
experimental data and maximum likelihood 
estimation. A parameter adaptive extended Kalman 
filter (PAEKF) is used for state estimation and on-
line parameter adaptation to account for mode/plant 
mismatch. 

2. COMPUTATIONALY EFFICIENT REAL-TIME 
OUTPUT FEEDBACK NMPC  

 
 
2.1 Problem formulation 
 
Nonlinear model predictive control is an 
optimization-based multivariable constrained control 
technique that uses a nonlinear dynamic model for 
the prediction of the process outputs. At each 
sampling time the model is updated on the basis of 
new measurements and state variable estimates. Then 
the open-loop optimal manipulated variable moves 
are calculated over a finite prediction horizon with 
respect to some cost function, and the manipulated 
variables for the subsequent prediction horizon are 
implemented. Then the prediction horizon is shifted 
or shrunk by usually one sampling time into the 
future, and the previous steps are repeated.   
 The optimal control problem to be solved on-line 
in every sampling time in the NMPC algorithm can 
be formulated as: 
 
Problem P1: 

� �
��� � � �� � ���
� �

� � � � �
��
� ,  (1) 

subject to: 
� � � � �� � ���� � � � � � � ��� ,  (2) 

� � � � �� � ���� � � � � � � �� ,  (3) 

� �	 	� � � �� � �� �� � � � � � �� � , (4) 

� � �� � ��� �� 
 � �� �	 � � � � � � �� � � , (5) 

 
where � is the performance objective, t is the time, tk 
is the time at sampling instance k, tF is the final time 
at the end of prediction, � � �
� � � � is the nx vector of 
states, u(t) ∈ � is the nu set of input vectors, 
� � �
� � � � is the ny vector of measured variables 

used to compute the estimated states 	� ��� � ,  

�� ����  is the n� vector of possible uncertain 

parameters, where the set Θ can be either defined by 
hard bounds or probabilistic, characterized by a 
multivariate probability density function. The 
function � � �
 
� � ���� ��  is the twice 
continuously differentiable vector function of the 
dynamic equations of the system, 
� ��



� � ���� �� is the measurement equations 
function, and � �
 �	 � ���� ��  is the vector of 
functions that describe all linear and nonlinear, time-
varying or end-time algebraic constraints for the 
system, where c denotes the number of these 
constraints. The objective function can have the 
following general form: 
 

� � �� � ��� � � ��� � � �� � ���
�

�

�

�
�

� � � � � � � � � � ��� � �� 	� � � . (6) 

 
We assume that � �
 � ���� �� � is twice 
continuously differentiable, thus fast optimization 
algorithms, based on first and second order 
derivatives may be exploited in the solution of (6). 
The form of (6) is general enough to express a wide 
range of objectives encountered in NMPC 
applications (moving or shrinking horizon approach 
on regulation and/or setpoint tracking, direct 



     

minimization of the operation time, optimal initial 
conditions, multiple simultaneous objectives, 
treatment of soft constraints, terminal penalty term 
for stability, etc.). For batch processes with end-point 
optimization the objective usually reduces to the 
Mayer form ( � � �
 �� ), however the Lagrange term 
( � �
� ) still may be used, e.g. to implement soft 
constraints on control rate. In NMPC the 
optimization problem (1)-(5) is solved iteratively on-
line, in a moving (receding) horizon (tF < tf) or 
shrinking horizon (tF = tf) approach, where tf is the 
batch time. 
 
 
2.2 Efficient solution of the NMPC optimization via 

multiple shooting 
 
Considering the discrete nature of the on-line control 
problem, the continuous time optimization problem 
involved in the NMPC formulation is solved by 
formulating a discrete approximation to it, that can 
be handled by conventional nonlinear programming 
(NLP) solvers (Biegler, 2000). The time horizon 

�
 � ��� � �� is divided into  equally spaced time 
intervals ∆� (stages), with discrete time steps ��������
��∆�, and �������������. Model equations are 
discretized, 
 

� � � ��� � � �� � � � �� �   (7) 
 
and added to the optimization problem as equality 
constraints. Problem P2 gives the general discrete 
time formulation of Problem P1. 
 
Problem P2: 

�� � �
��� � � �� � � ���

�

�

�
� � � �

� 
� 

�  � � �
� � �

� �

� � �� �
� �

�
�

�
�

��
�

� � ,    (8) 

 subject to: 
� � �� �� � �� � � � � ,  (9) 

   � � �� �� � �� � � � � ,  (10) 
 
where � is the number of stages in the prediction 
horizon 
��������� � � ��


 



��
�� ���� ��  corresponds 

to all equality constraints resulted from (7) and (3), 
�� � �
 � 


��
�� ���� ��  is the vector function of 

all inequality constraints (5), including the 
constraints on the inputs considering. We consider 
here that the set of possible inputs is given as hard 
bounds. It is assumed that the vector functions� and 
� are twice continuously differentiable.  
 
A very efficient solution technique for the problem 
(8)-(10) is based on the multiple shooting approach 
(Diehl, 2001; Frake and Arnold). This procedure 
consists of dividing up the time interval �
 � ��� � ��  
into a series of grid points � � �
 � � � � ��� � � �� . Note that 
the grid points do not necessary correspond to the 
discretization points in the definition of problem P2. 
Using a local control parameterizations a shooting 
method is performed between successive grid points 
(see Figure 2). The differential equations and cost on 
these intervals are integrated independently during 
each optimization iteration, based on the current 
guess of the control. The continuity/consistency of 
the final state trajectory at the end of the 
optimization is enforced by adding consistency 

constraints to the nonlinear programming problem. A 
set of starting values for the state and adjoint vectors 
is required at each grid point in time, and continuity 
conditions for the solution trajectory introduce 
additional interior boundary conditions, which are 
incorporated into one large zero-finding problem to 
be solved. The solution of Problem P2 is performed 
using an NMPC tool (Nagy et al., 2004) based on the 
sequential-quadratic-programming (SQP) type 
optimizer HQP, which is used in conjunction with 
the implicit differential-algebraic-equation (DAE) 
solver, DASPK, for robust and fast solution of the 
model equations. 
 

 
 
Fig. 1. Illustration of the multiple shooting approach. 
  
 
2.3 Real-time NMPC algorithm 
 
The solution of problem P2 requires a certain, 
usually not negligible, amount of computation 
time �� , while the system will evolve to a different 
state. In this case the optimal feedback control 

�� �� �� � 
 � � � �
� � � �� � �  �� � � � �� �

� computed in moment ��  
corresponding to the information available up to this 
moment, will no longer be optimal. Computational 
delay �� has to be taken into consideration in real-
time applications. In the approach used here, in 
moment �� , first the control input from the second 
stage of the previous optimization  problem 

�����
�


(which corresponds to the first stage of the 

current optimization) is injected into the process, and 
then the solution of the current optimization problem 
is started, with fixed 

��� �� �� �� �� �


� After completion, 
the optimization idles for the remaining period 
of �� � �� � �� � �� �� � , and then at the beginning of the 
next stage, at moment �� �� � �� � �� , ����

� is 
introduced into the process, and the algorithm is 
repeated. This approach requires real-time feasibility 
for the solution of each open-loop optimization 
problems ( � �� � � ). 
 
 
2.4 State estimation 
 
Proper state estimation is crucial for the success of 
the NMPC application. Extended Kalman filter 
(EKF) has been widely used in process control 
applications, however its performance strongly 
depends on the accuracy of the model. To avoid 
highly biased model predictions, some of the model 
parameters are estimated together with the states, 



     

leading to a parameter adaptive EKF formulation 
(PAEKF) (Valappil and Georgakis, 2002). Define 
� �� � as the subset of the estimated parameters 
from the parameter vector, and �� � ��� ��  the set of 
the remaining parameters. The augmented state 
vector in this case is given by 
 � ��� � ��� , and the 
augmented model used for estimation is given by 
 


 � � � � �� � 
 � �� �� � � � �
�

� � �� ��� ���� , (11) 

 
where � , and �

� �  are zero-mean Gaussian white 
noise variables. The time-varying state space matrix 
of the locally linearized augmented model is defined 
as follows: 
 

� � �� � �� � ��� � � �� � �� � ���

� �
� � � � � �

�

� � � � � � � � � � � �

� �

� � � �

�

� �� �� � ��� �� �
� ��� � �� �
� �� �� �

� .  (12) 

 
The measurement covariance matrix is determined 
based on the accuracy of the measurements. The 
appropriate choice of the state covariance matrix,� , 
is however often difficult in practical applications.  
An estimate of � can be obtained by assuming that 
the process noise vector mostly represents the effects 
of parametric uncertainty (Valapil and Georgakis, 
2000). Based on this assumption and performing a 
first-order power series expansion of the model error 
equations using the nominal parameter vector and 
control trajectory, the process noise covariance 
matrix can be computed as follows: 

 
� � � � � ��� � �� � ��� � � � ,  (13) 

 
where 
 
� �

�

��� �  is the parameter covariance 
matrix, and � ���� is the jacobian computed using the 
nominal parameters and estimated states: 
 

		� �� � ��

� �
� � � �

�
��

��

� �� ��� �� ��� ��
�    (14) 

 
Equation (13) provides an easily implementable way 
to estimate the process noise covariance matrix, since 
the parameter covariance matrix ��  is usually 
available from parameter estimation, and the 
sensitivity coefficients in � ����  can be computed by 
finite differences or via sensitivity equations 
(Feehery et al, 1997). Note that the above approach 
leads to a time-varying, full covariance matrix, 
which has been shown to provide better estimation 
performance for batch processes than the classically 
used constant, diagonal � ( Valapil and Georgakis, 
2000; Nagy and Braatz, 2003). 
 
 

3. SETPOINT TRACKING NMPC OF THE 
INDUSTRIAL BATCH REACTOR 

 
A schematic representation of the experimental pilot 
plant is shown on Figure 2. The reactor temperature 
is controlled using a complex heating-cooling 
system, which is based on a closed oil circuit, which 
is recycled through the jacket with a constant flow 
rate �� . The heating-cooling medium goes through a 
multi-tubular heat exchanger where a PI controller 

tries to keep the temperature difference constant by 
adjusting the cooling water flow rate. Heating is 
performed using an electric heater. The power of the 
heater is adjusted by the lower level PI controller that 
controls the input temperature into the jacket. The 
setpoint of the PI controller is determined by the 
higher level NMPC that has the objective to track a 
predetermined temperature profile in the reactor. 
 
 
3.1 Modelling and identification of the reactor 
 
A detailed first-principles model of the process 
containing material and energy balances as well as 
detailed kinetic and thermodynamic models was 
developed and identified based on off-line 
experiments. Since only temperature measurements 
are available in the plant, many states of the detailed 
model are not estimable, or not even detectable. The 
complex model however was used to determine the 
optimal temperature profile, and for deriving the 
control-relevant model. Available measurements are: 
reactor temperature ( �� ), and input and output 
temperatures into and from the jacket, ( ���
 �� � ). 
With this set of measurements the following reduced 
model was used in the NMPC: 
 

�� � �
 � �� ��             (15) 

� � � � �

� � �

� � � � � � ��

�� �

� � � � � � � � � ����� � � ���

� �� � �� ����� ������

� �  ! � �  ! � �

� � � � � �

� �   

� �

�

     (16) 

� � � � �� � � � ��� ��� � � � � � � � � � � � � � ���  ! � �  ! � � � ��   �   (17) 

� � � � � � �

� � �

� � � � �

� � � ���� �

� � � � � � � � � � � � � � � �

����� � � ��� � � �

� � � � �  ! � �

 ! � � � �

� �   

 

� �
   (18) 

 
where �� ��� �� , �� �� ��

�
, �� �� ��

�
, ��� ��
� �� , 

�
  is the number of mol of monomer, ��� is the 
enthalpy of reaction, �� is the wall temperature, 
 and ! are heat transfer coefficients and areas from 
reactor to wall ���
  or wall to jacket ���
 , 
� � � � �� � � ����� � ��  and � � � �� � ����� � ��  are the heat 

capacities and masses of monomer, polymer, water, 
wall and oil, ����  is the ambient temperature, ��  is 
the density of the oil, � �� ������ � !  heat loss 
coefficients in the reactor and jacket, respectively. 
 
To estimate the transport delay, the reactor, wall and 
jacket were divided in ���  elements, leading to a 
system of 13 differential equations. For proper 
temperature control the estimation of the generated 

 
 
Fig. 2. Schematic representation of the batch reactor 

with the heating/cooling system. 



     

heat ��  is important, therefore an empirical 
nonlinear relation � � �� � � �� � 
 ��  was determined 
from the complex first principle model, simulating 
the process for different temperature profiles. Figure 
3 shows the heat generation surface obtained from 
the empirical model and the heat generated when the 
desired temperature trajectory is followed.  
 
Maximum likelihood estimation was used to fit the 
parameters of the model (15)-(18) to the data 
obtained from the plant, performing several water 
batches (when ��� � ), and minimizing the 
objective function below: 
 

���

���
� �

� � � ��� ��� � ��
����





�"# ��

� �


� � � �
� �

� � �  (19) 

 
where ���
 is the number of experimental points, 
from each of the ����
 sensors, and ���  is the error 
between the measurement and model prediction. The 
following parameter vector was used in the 
estimation: 
 

� �
� � � � � � � � � ������ ����� � � � � � � !  !  ! �  ! �� �    (20) 
 
This procedure gives the optimal nominal parameter 
estimates, 	�� , and the corresponding uncertainty 
description given by the covariance matrix, estimated 
from the Hessian of the objective (19) at the optimal 
parameter estimate,

� � � �
	� � ��� � �

� �
 

�
� � � �� �

� . 
The good fit between the experimental data end the 
model is shown on Figure 4.  

 
3.2 NMPC of the bath reactor 
 
Model (15)-(18) was used in an adaptive output 
feedback NMPC approach, where the objective was 
to provide a tight setpoint tracking, by minimizing 
online, in every sampling instance � , the following 
quadratic objective: 
 

� �

� �
��� �� � � � �� � � �

�

�

�

���

� � �
� �

�

� � � � � �� � ��� �	  (21) 

 
The optimal setpoint profile ���

��  was obtained via 
off-line optimization using the detailed model. The 
manipulated input of the NMPC , � � �$�� � �� , is the 
setpoint temperature to the lower level PI controller, 
which controls the input temperature into the jacket. 
Real-time simulations were performed when the 
complex model was used to simulate the real plant on 
one computer, whereas the NMPC was running on a 
different computer. The communication between the 
plant and NMPC was performed via the standard 
OPC interface, simulating the real industrial setup. 
The performance of the NMPC is presented on 
Figures 5 and 6. The grey bands in the figures 
represent the set of model predictions and control 
inputs during the batch. Figure 5 demonstrates the 
very good setpoint tracking performance of the 
controller and prediction abilities of the model, 
which has been adapted during the batch. The 
parameters  
 � �� � ��  !� � �  were estimated together 
with the model states in the PAEKF. The parameter 
covariance matrix �� , resulted from the 
identification was used to compute the state 
covariance matrix in the estimator according to (13). 
This approach provides a good estimate of the 
generated heat, shown in Figure 7. A weighting 
coefficient of ������ � , and prediction and control 
horizons of 8000 s were used, in the optimization, 
with a sampling time of 20 s. The control input was 
discretized in 400 piecewise constant inputs, leading 
to a significantly high dimensional optimization 
problem. The efficient multiple shooting approach 
guarantees the real-time feasibility of the NMPC 
implementation. Even with the large control 
discretization of 400 the computation time was below 
the sampling time of 20 s, as can be seen in Figure 8. 
The larger control error during the first half of the 
constant temperature profile (or the end of the batch) 
is caused by the saturation of the lower level PI 
controller, which can also be observed on Figure 6. 
In these periods of the batch the setpoint values given 
by the NMPC can not be achieved. This error can be 
eliminated only if the lower level PI controller is 
introduced in the prediction model.  
 
Similar conclusions have been achieved from the 
experiments conducted in the real plant located at 
BASF in Ludwigshafen, Germany. Initial results 
predict the good performance of the NMPC shown 
on Figure 9. The experiments demonstrate the 
improvement in the control performance if the lower 
level controller is modelled (in scenarios when 
saturation can occur) and illustrate the necessity of 
proper online model adaptation, when the complex 
cooling-heating system is not modelled in detail.  

 
 

Fig. 3. Heat generation surface obtained from the 
detailed model. The solid line represents the heat 
generation corresponding to the desired 
temperature trajectory. 

 

 
 

Fig. 4. Validation of the model compared to plant 
data. 

 

 



     

 
Fig. 8. Estimated and real reaction heat ( �� ). 
 

 
Fig. 9. Tracking error of the NMPC in the case of 

two real plant experiments: without (upper plot) 
and with (lower plot) the prediction of heat 
generation and slave controller model. 

4. CONCLUSIONS 
  
The paper present a computationally efficient NMPC 
approach that combines output feedback design with 
efficient optimization technique to provide a 
nonlinear model predictive control approach that can 
be supported in an industrial environment. Detailed 
first-principles model is used to derive the reduced 
control-relevant model based on the available 
measurements, which is tuned using data from the 
plant, and used then in the NMPC. A PAEKF is 
combined with the control algorithm for the on-line 
state estimation and model adaptation to achieve 
offset free control. Simulation and experimental 
results demonstrate the efficiency of the NMPC 
approach in an industrial application. The approach 
presented here is applicable to a generic class of 
batch systems with exothermic reaction, requiring 
only the determination of the proper heat generation 
function in each case (and model parameters if other 
reactor is used), which can be obtained either from a 
detailed first-principles model or from plant data in 
an iterative learning framework. 
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Fig. 5. Setpoint tracking performance of the NMPC, 
and model predictions during the batch.  

 
Fig. 6. NMPC control input profiles ( � �� $����������� ), the 

finally implemented control input ( �� $�� ), and the 
real jacket temperature �� ���
�� . 

 

 
Fig. 7. Total CPU times (estimation + optimization) 

along the batch. 


